refactoring complete

This commit is contained in:
quackerd 2019-11-28 13:02:52 -05:00
parent d9e3e91109
commit 18830d645a
Signed by: d
GPG Key ID: 590A22374D0B819F
65 changed files with 2829 additions and 3575 deletions

1
.gitignore vendored
View File

@ -1,3 +1,4 @@
.idea
cmake-build-debug
out/
.vscode

View File

@ -4,9 +4,9 @@ cmake_minimum_required(VERSION 3.10)
set(CMAKE_DISABLE_IN_SOURCE_BUILD ON)
set(CMAKE_DISABLE_SOURCE_CHANGES ON)
project(fusion)
project(bond)
set(proj fusion)
set(proj bond)
set(INC ${CMAKE_CURRENT_SOURCE_DIR}/inc)
set(MK ${CMAKE_CURRENT_SOURCE_DIR}/mk)
set(arch amd64)
@ -27,17 +27,23 @@ FOREACH(f IN LISTS TOOLCHAINS)
endif()
endforeach(f)
set(CC_WARN_IGNORE
-Wno-gnu-statement-expression # this means we can assign the return val of the last statment in a block, useful in MAX, MIN, etc.
-Wno-gnu-zero-variadic-macro-arguments # this enables us to use __VA_ARGS__ in macros
)
set(CC_FLAGS
-std=c17
-c
-g
-O2
-Og
-Wall
-Wextra
-Wpedantic
-Werror
${CC_WARN_IGNORE}
-ffreestanding
-I${CMAKE_CURRENT_SOURCE_DIR}/inc
-I${INC}
-fno-pic
-fno-stack-protector
${CC_FLAGS_${ARCH}})
@ -64,7 +70,8 @@ set(DMP_FLAGS
set(SUBMODULES
kern
arch
scripts)
scripts
test)
# process submodules
FOREACH(f IN LISTS SUBMODULES)
@ -125,8 +132,9 @@ add_custom_target(${proj}_iso ALL
# hack for clion not parsing custom targets
if ($ENV{CLION_IDE})
include_directories(inc)
include_directories(${INC})
add_executable(kernel ${G_CC_SRC})
target_compile_options(kernel PRIVATE ${CC_FLAGS})
endif()

View File

@ -1,7 +1,4 @@
# Building
### Environment
All platforms where the required packages are available.
### Required packages
For compiling kernel only (make compile):
@ -24,3 +21,46 @@ Load the iso with your favorite simulator or use "-kernel" option with QEMU.
For UEFI simulation, use qemu_bios.bin in the root dir with QEMU.
# C++
I would like my kernel code to be explicit so that I can reason about performance, memory allocation/deallocation. That mostly means when I look at a statement I know exactly what it does.
The philosophy overlaps with Go's design quite a lot: https://commandcenter.blogspot.com/2012/06/less-is-exponentially-more.html.
Using fully-featured C++ is overly complicated for kernels and I'm dubious of OOP in general. With "modern" C++ sometimes I find myself struggling more with the language itself than getting work done. Although the kernel is compiled with a C++ compiler, the base is very much C and we only add few nice things we can benefit from C++:
## Stronger types
C++ is stronger typed than C. Simply compiling the kernel itself with a C++ compiler provides more type safety than C.
## C++ style casts (no dynamic_cast)
They are compile time casts so no runtime overhead. They provide a bit better type safety than C style casts. The only two casts we would need are probably const_cast and reinterpret_cast.
## template
For type safety for data structures. Linux's list.h isn't type safe. FreeBSD's queue.h tries to mimic templates with macros, which is less elegant than just using template.
## namespace
Oh boy how I wish C standard would include namespace, if it weren't for backward compaibility and stable ABI.
## Banned features worth mentioning
This list explains SOME of the banned features that might seem useful.
### Class and ctors/dtors
All data structures should be POD structs. Basically it means a struct without user-defined constructors and destructors. The reason is 1. encapsulation is pretty useless in the kernel. 2. constructors and destructors are implicitly called when declaring objects and when objects go out of scope, which violates explicitness. 3. Everything becomes easy to reason about. Now I don't need to worry about "Object obj;" implicitly invoking the allocator, acquiring a lock and querying a SQL database.
RAII which relies on ctors/dtors sure is nice but IMO Golang's defer is a much better approach being expressive as well as functionally "similar". C has the extension "cleanup" supported by GCC and Clang which does the same thing as defer. I'll investigate the latter.
### Member methods
Member methods should just be functions that take the struct as a parameter. It's what C++ does internally anyway. Adding member methods also obfuscates the PODness of structs, ergo banned.
### Inheritance
Inheritance is banned except for describing interfaces like file descriptors and other possible places that might benefit from it. Even then it shouldn't be abused - e.g. the kernel does NOT need a generic list interface with a billion implementations.
### Function overloading
Just give it an expressive enough name. Function overloading is obfuscation.
### Operator overriding
Think about what "f();" could mean in C++ and the code executed by "a + b;". Need I say more?
### References
I don't like mixing references with pointers. I don't find reference offering much more than raw pointers.
### RTTI and Exceptions
Totally useless for kernels.

View File

@ -4,12 +4,12 @@ set(CC_SRC
init.c
intr.c
mem.c
print.c)
print.c
brute.c)
set(AS_SRC
boot.asm
mb_hdr.asm
atomic.asm
cpu.asm
intr.asm)

View File

@ -1,27 +0,0 @@
section .text
bits 64
; Performs compare and swap
; ARGS:
; 1 int32*: target ptr
; 2 int32: old value
; 3 int32: new value
; RETURNS uint32 value read
global arch_cmp_swp_32
arch_cmp_swp_32:
mov eax, esi
lock cmpxchg dword [rdi], edx
ret
; Performs fetch and add
; ARGS:
; 1 int32*: target ptr
; 2 int32: increment value
; 3 int32: new value
; RETURNS uint32 value read
global arch_fet_add_32:
arch_fet_add_32:
lock xadd dword [rdi], esi
xor rax, rax
mov eax, esi
ret

View File

@ -82,7 +82,7 @@ arch_init_32:
; switch to long mode
jmp init_gdt.code:GET_PADDR(arch_init_64)
.end:
hlt
jmp $
check_long_mode:
push ebp
@ -137,9 +137,11 @@ arch_init_64:
mov gs,ax
mov ss,ax
; initial kernel stack, 4k
mov rsp, init_stack
xor rdi, rdi
mov edi, dword [multiboot_info_ptr]
; init arch
call arch_main
.end:
hlt

6
arch/brute.c Normal file
View File

@ -0,0 +1,6 @@
#include <arch/brute.h>
void arch_brute()
{
while(1) {}
}

View File

@ -19,6 +19,22 @@ global arch_write_msr
section .text
bits 64
; uint64* arch_random_int64(void)
; Returns a random 64-bit integer
global arch_random_int64
arch_random_int64:
rdrand rax
ret
; uint32* arch_random_int32(void)
; Returns a random 32-bit integer
global arch_random_int32
arch_random_int32:
rdrand eax
ret
arch_flush_gdt:
push rbp
mov rbp,rsp
@ -185,7 +201,6 @@ nop
nop
ret
arch_read_port_8:
mov rdx,rdi
xor rax,rax
@ -204,7 +219,6 @@ nop
nop
ret
arch_read_port_32:
mov rdx,rdi
xor rax,rax

View File

@ -1,6 +1,7 @@
#include <arch/cpu.h>
#include <kern/cdef.h>
#include "cpu.h"
#define GDT_ENTRY_SIZE 8
#define GDT_ENTRY_NUM 9
@ -21,7 +22,6 @@
#define SEG_AVAILABLE (1ull << 52)
#define SEG_32_BITS (1ull << 54)
static uint8 _gdts[HAL_CORE_COUNT][GDT_ENTRY_NUM * GDT_ENTRY_SIZE];
static struct hal_gdt_ptr _gdt_ptrs[HAL_CORE_COUNT];
@ -34,8 +34,7 @@ static inline uint32 seg_selector(uint32 index, uint32 rpl)
static void
write_segment_descriptor(void *const gdt, uint32 const base, uint32 const limit, uint64 const attr)
{
if (gdt == NULL)
{
if (gdt == NULL) {
return;
}
uint64 const seg_desc = (((uint64) base & 0xFFFF) << 16) | ((((uint64) base >> 16) & 0xFF) << 32) |
@ -57,26 +56,26 @@ void hal_init_gdt(void)
// get gdt ready
write_segment_descriptor((void *) &_gdts[coreid][0], 0, 0, 0);
write_segment_descriptor((void *) &_gdts[coreid][8], 0, 0,
SEG_DPL_0 | SEG_CODE_DATA | SEG_PRESENT | SEG_LONG | SEG_TYPE_CODE_X);
SEG_DPL_0 | SEG_CODE_DATA | SEG_PRESENT | SEG_LONG | SEG_TYPE_CODE_X);
write_segment_descriptor((void *) &_gdts[coreid][16], 0, 0,
SEG_DPL_0 | SEG_CODE_DATA | SEG_PRESENT | SEG_LONG | SEG_TYPE_DATA_RW);
SEG_DPL_0 | SEG_CODE_DATA | SEG_PRESENT | SEG_LONG | SEG_TYPE_DATA_RW);
write_segment_descriptor((void *) &_gdts[coreid][24], 0, 0,
SEG_DPL_3 | SEG_CODE_DATA | SEG_PRESENT | SEG_LONG | SEG_TYPE_CODE_X);
SEG_DPL_3 | SEG_CODE_DATA | SEG_PRESENT | SEG_LONG | SEG_TYPE_CODE_X);
write_segment_descriptor((void *) &_gdts[coreid][32], 0, 0,
SEG_DPL_3 | SEG_CODE_DATA | SEG_PRESENT | SEG_LONG | SEG_TYPE_DATA_RW);
SEG_DPL_3 | SEG_CODE_DATA | SEG_PRESENT | SEG_LONG | SEG_TYPE_DATA_RW);
write_segment_descriptor((void *) &_gdts[coreid][40], 0, 0xFFFFF,
SEG_DPL_0 | SEG_GRANULARITY | SEG_CODE_DATA | SEG_PRESENT | SEG_32_BITS |
SEG_TYPE_CODE_X);
SEG_DPL_0 | SEG_GRANULARITY | SEG_CODE_DATA | SEG_PRESENT | SEG_32_BITS |
SEG_TYPE_CODE_X);
write_segment_descriptor((void *) &_gdts[coreid][48], 0, 0xFFFFF,
SEG_DPL_0 | SEG_GRANULARITY | SEG_CODE_DATA | SEG_PRESENT | SEG_32_BITS |
SEG_TYPE_DATA_RW);
SEG_DPL_0 | SEG_GRANULARITY | SEG_CODE_DATA | SEG_PRESENT | SEG_32_BITS |
SEG_TYPE_DATA_RW);
write_segment_descriptor((void *) &_gdts[coreid][56], 0, 0xFFFFF,
SEG_DPL_3 | SEG_GRANULARITY | SEG_CODE_DATA | SEG_PRESENT | SEG_32_BITS |
SEG_TYPE_CODE_X);
SEG_DPL_3 | SEG_GRANULARITY | SEG_CODE_DATA | SEG_PRESENT | SEG_32_BITS |
SEG_TYPE_CODE_X);
write_segment_descriptor((void *) &_gdts[coreid][64], 0, 0xFFFFF,
SEG_DPL_3 | SEG_GRANULARITY | SEG_CODE_DATA | SEG_PRESENT | SEG_32_BITS |
SEG_TYPE_DATA_RW);
SEG_DPL_3 | SEG_GRANULARITY | SEG_CODE_DATA | SEG_PRESENT | SEG_32_BITS |
SEG_TYPE_DATA_RW);
_gdt_ptrs[coreid].base = (uint64) &_gdts[coreid];
_gdt_ptrs[coreid].limit = GDT_ENTRY_NUM * GDT_ENTRY_SIZE - 1;
arch_flush_gdt(&_gdt_ptrs[coreid], seg_selector(1, 0), seg_selector(2, 0));

View File

@ -2,6 +2,17 @@
#include <kern/cdef.h>
#define HAL_CORE_COUNT 1
struct ATTR_PACKED hal_gdt_ptr {
uint16 limit;
uint64 base;
};
struct ATTR_PACKED hal_idt_ptr {
uint16 limit;
uint64 base;
};
void KABI out_8(uint16 port, uint8 data);
void KABI out_16(uint16 port, uint16 data);
@ -38,4 +49,44 @@ uint64 KABI read_cr3();
void KABI write_cr3(uint64 val);
void KABI flush_tlb();
void KABI flush_tlb();
/**
* ASM declaration
*/
void KABI arch_cpuid(uint32 *eax, uint32 *ebx, uint32 *ecx, uint32 *edx);
void KABI arch_halt(void);
void KABI arch_flush_gdt(struct hal_gdt_ptr *gdt_ptr, uint64 code_slct, uint64 data_slct);
void KABI arch_flush_tlb(void);
void KABI arch_flush_idt(struct hal_idt_ptr *idt_ptr);
void KABI arch_read_idt(struct hal_idt_ptr **idt_ptr);
void KABI arch_read_msr(uint32 *ecx, uint32 *edx, uint32 *eax);
void KABI arch_write_msr(uint32 *ecx, uint32 *edx, uint32 *eax);
void KABI arch_write_cr3(uint64 base);
uint64 KABI arch_read_cr3(void);
void KABI arch_write_cr8(uint64 pri);
uint64 KABI arch_read_cr8(void);
int8 KABI arch_read_port_8(uint16 port);
int16 KABI arch_read_port_16(uint16 port);
int32 KABI arch_read_port_32(uint16 port);
void KABI arch_write_port_8(uint16 port, uint8 data);
void KABI arch_write_port_16(uint16 port, uint16 data);
void KABI arch_write_port_32(uint16 port, uint32 data);

View File

@ -1,20 +1,21 @@
#include <kern/cdef.h>
#include <kern/print.h>
#include <arch/print.h>
#include <arch/brute.h>
// private headers
#include "multiboot2.h"
/**
* What the heck was that?
* @param mb_info
*/
void arch_main(void* mb_info)
void arch_main(ATTR_UNUSED void* mb_info)
{
UNREFERENCED(mb_info);
/* init printf related stuff */
arch_print_init();
arch_printf("In arch stuff...\n");
kprintf("Initializing arch layer...\n");
arch_brute();
/* if (mb_info == NULL)
/* if (mb_info == NULL)
{
goto err;
}

View File

@ -1,48 +1,52 @@
#include <arch/cpu.h>
#include <arch/intr.h>
#include <arch/mem.h>
#include <arch/print.h>
#include <kern/print.h>
#include <kern/status.h>
#include <kern/brute.h>
#include "cpu.h"
#define HAL_CORE_COUNT 1
static uint8 cpu_idts[HAL_CORE_COUNT][IDT_ENTRY_NUM * IDT_ENTRY_SIZE];
static struct hal_idt_ptr cpu_idt_ptrs[HAL_CORE_COUNT];
static void* k_intr_disps[HAL_CORE_COUNT];
static void *k_intr_disps[HAL_CORE_COUNT];
uint32
arch_raise_irql(uint32 irql)
int
arch_raise_irql(ATTR_UNUSED int irql)
{
UNREFERENCED(irql);
return 0;
}
uint32
arch_lower_irql(uint32 irql)
int
arch_lower_irql(ATTR_UNUSED int irql)
{
UNREFERENCED(irql);
return 0;
}
uint32
arch_get_irql(void)
int
arch_get_irql()
{
return 0;
}
void
hal_write_gate(void *const gate, uint64 const offset, uint32 const selector, uint32 const attr)
hal_write_gate(void *gate, const uint64 offset, const uint32 selector, uint32 const attr)
{
((uint8 *) gate)[0] = (uint8) (offset & 0xFF);
((uint8 *) gate)[1] = (uint8) ((offset >> 8) & 0xFF);
((uint8 *) gate)[2] = (uint8) (selector & 0xFF);
((uint8 *) gate)[3] = (uint8) ((selector >> 8) & 0xFF);
((uint8 *) gate)[4] = (uint8) (attr & 0xFF);
((uint8 *) gate)[5] = (uint8) ((attr >> 8) & 0xFF);
((uint8 *) gate)[6] = (uint8) ((offset >> 16) & 0xFF);
((uint8 *) gate)[7] = (uint8) ((offset >> 24) & 0xFF);
((uint8 *) gate)[8] = (uint8) ((offset >> 32) & 0xFF);
((uint8 *) gate)[9] = (uint8) ((offset >> 40) & 0xFF);
((uint8 *) gate)[10] = (uint8) ((offset >> 48) & 0xFF);
((uint8 *) gate)[11] = (uint8) ((offset >> 56) & 0xFF);
((uint8 *) gate)[0] = (uint8) (offset & 0xFFu);
((uint8 *) gate)[1] = (uint8) ((offset >> 8u) & 0xFFu);
((uint8 *) gate)[2] = (uint8) (selector & 0xFFu);
((uint8 *) gate)[3] = (uint8) ((selector >> 8u) & 0xFFu);
((uint8 *) gate)[4] = (uint8) (attr & 0xFFu);
((uint8 *) gate)[5] = (uint8) ((attr >> 8u) & 0xFFu);
((uint8 *) gate)[6] = (uint8) ((offset >> 16u) & 0xFFu);
((uint8 *) gate)[7] = (uint8) ((offset >> 24u) & 0xFFu);
((uint8 *) gate)[8] = (uint8) ((offset >> 32u) & 0xFFu);
((uint8 *) gate)[9] = (uint8) ((offset >> 40u) & 0xFFu);
((uint8 *) gate)[10] = (uint8) ((offset >> 48u) & 0xFFu);
((uint8 *) gate)[11] = (uint8) ((offset >> 56u) & 0xFFu);
((uint8 *) gate)[12] = 0;
((uint8 *) gate)[13] = 0;
((uint8 *) gate)[14] = 0;
@ -53,9 +57,8 @@ void KABI
hal_interrupt_dispatcher(uint64 int_vec, struct interrupt_context *context)
{
uint32 coreid = 0;
if (k_intr_disps[coreid] == NULL)
{
arch_printf("Unhandled interrupt %d at 0x%X.\n", int_vec, context->rip);
if (k_intr_disps[coreid] == NULL) {
kprintf("Unhandled interrupt %ld at 0x%lx.\n", int_vec, context->rip);
}
/*else
{
@ -66,10 +69,10 @@ hal_interrupt_dispatcher(uint64 int_vec, struct interrupt_context *context)
static void
populate_idt(void)
{
return;
}
kstatus
void
arch_intr_init(void)
{
uint32 coreid;
@ -81,10 +84,8 @@ arch_intr_init(void)
// detect APIC first
eax = 1;
arch_cpuid(&eax, &ebx, &ecx, &edx);
if (!(edx & (1 << 9)))
{
arch_printf("ERROR: APIC is not present.\n");
return 1;
if (!(edx & (1u << 9u))) {
BRUTE("ERROR: APIC is not present.\n");
}
coreid = 0;
@ -106,18 +107,15 @@ arch_intr_init(void)
arch_write_port_8(0x21, 0xff);
uint64 apic_base_reg = 0;
uint64 apic_base = 0;
ATTR_UNUSED uint64 apic_base = 0;
ecx = 0;
arch_read_msr(&ecx, &edx, &eax);
apic_base_reg = ((uint64) edx << 32) + (uint64) eax;
apic_base = apic_base_reg & bit_field_mask(12, 35);
UNREFERENCED(apic_base);
apic_base_reg = ((uint64) edx << 32u) + (uint64) eax;
//apic_base = apic_base_reg & bit_field_mask(12, 35);
// hardware enable APIC
ecx = 0;
eax = (uint32) ((apic_base_reg & bit_field_mask(0, 31)) | bit_mask(11));
// eax = (uint32) ((apic_base_reg & bit_field_mask(0, 31)) | (1 << 11));
arch_write_msr(&ecx, &edx, &eax);
return 0;
}

View File

@ -1,7 +1,4 @@
#include <kern/cdef.h>
#include <arch/cpu.h>
#include <arch/mem.h>
#include <arch/mlayout.h>
@ -56,21 +53,14 @@ write_page_tbl(void *base, uintptr pdpt_addr, uint64 attr)
{
return;
}
uint64 entry = (pdpt_addr & 0xFFFFFFFFFF000) | attr;
((uint8 *) base)[0] = (uint8) (entry & 0xFF);
((uint8 *) base)[1] = (uint8) ((entry >> 8) & 0xFF);
((uint8 *) base)[2] = (uint8) ((entry >> 16) & 0xFF);
((uint8 *) base)[3] = (uint8) ((entry >> 24) & 0xFF);
((uint8 *) base)[4] = (uint8) ((entry >> 32) & 0xFF);
((uint8 *) base)[5] = (uint8) ((entry >> 40) & 0xFF);
((uint8 *) base)[6] = (uint8) ((entry >> 48) & 0xFF);
((uint8 *) base)[7] = (uint8) ((entry >> 56) & 0xFF);
uint64 entry = (pdpt_addr & 0xFFFFFFFFFF000ul) | attr;
((uint8 *) base)[0] = (uint8) (entry & 0xFFul);
((uint8 *) base)[1] = (uint8) ((entry >> 8u) & 0xFFu);
((uint8 *) base)[2] = (uint8) ((entry >> 16u) & 0xFFu);
((uint8 *) base)[3] = (uint8) ((entry >> 24u) & 0xFFu);
((uint8 *) base)[4] = (uint8) ((entry >> 32u) & 0xFFu);
((uint8 *) base)[5] = (uint8) ((entry >> 40u) & 0xFFu);
((uint8 *) base)[6] = (uint8) ((entry >> 48u) & 0xFFu);
((uint8 *) base)[7] = (uint8) ((entry >> 56u) & 0xFFu);
}
void*
arch_pmap_map(uintptr paddr, usize size)
{
UNREFERENCED(size);
return (void*)(paddr + KERNEL_PMAP_VADDR);
}

View File

@ -1,218 +1,60 @@
#include <kern/cdef.h>
#include <arch/cpu.h>
#include <arch/mem.h>
#include <arch/print.h>
#include <kern/clib.h>
#include <kern/spin_lock.h>
#include <kern/libkern.h>
#define CALC_ROW(pos) ((pos) / 80)
#define CALC_POS(row, col) ((row) * 80 + (col))
#define FB_PADDR (0xb8000)
#define FB_ROW (25)
#define FB_COL (80)
#define BYTE_PER_CHAR (2)
#define FB_SZ (FB_ROW * FB_COL * BYTE_PER_CHAR)
#define DEFAULT_COLOR (0x07)
static void *base;
static uint64 text_pos;
static struct spin_lock print_lock;
static char *base;
static uint text_pos;
static void
_fb_scroll()
{
memmove(base, base + FB_COL * BYTE_PER_CHAR, FB_SZ - (FB_COL * BYTE_PER_CHAR));
text_pos = FB_SZ - (FB_COL * BYTE_PER_CHAR);
}
static void
_print_newline(void)
{
text_pos += FB_COL * BYTE_PER_CHAR - text_pos % (FB_COL * BYTE_PER_CHAR);
if (text_pos >= FB_SZ) {
_fb_scroll();
}
}
void
arch_print_init(void)
{
// 0 here since it doesn't matter direct mapped
base = arch_pmap_map(FB_PADDR, 0);
base = arch_pmap_map(FB_PADDR, FB_SZ);
text_pos = 0;
spin_init(&print_lock);
}
static void
handle_scroll(void)
void
arch_cls()
{
mem_mv((void *) ((uintptr) base + CALC_POS(1, 0) * 2), (void *) ((uintptr) base + CALC_POS(0, 0) * 2),
(80 * 24) * 2);
memset(base, 0, FB_SZ);
}
static void
print_str(char const *str)
void
arch_putc(const char c)
{
if (str == NULL)
{
if (c == '\n') {
_print_newline();
return;
}
while (*str != 0)
{
if (*str == '\n')
{
text_pos = 80 * (CALC_ROW(text_pos) + 1);
if (text_pos > 80 * 25 - 1)
{
//can't hold
handle_scroll();
mem_set((void *) ((uintptr) base + 80 * 24 * 2), 0, 80 * 2); // clear last row
text_pos = 80 * 24;
}
str++;
}
else
{
if (text_pos > 80 * 25 - 1)
{
//can't hold
handle_scroll();
text_pos = 80 * 24;
}
*((char *) base + text_pos * 2) = *str;
*((char *) base + text_pos * 2 + 1) = 7;
str++;
text_pos++;
}
}
}
static void
print_uint(uint64 number)
{
char arr[21]; // do not need to initialize
arr[20] = 0; //zero-terminated
uint32 index = 19;
uint32 const div = 10;
while (1)
{
uint64 quo = number / div;
uint64 rmd = number % div;
number = quo;
arr[index--] = (char) ('0' + rmd);
if (number == 0)
{
break;
}
if (text_pos >= FB_SZ) {
_fb_scroll();
}
print_str(&(arr[index + 1]));
}
static void
print_int(int64 number)
{
char arr[21]; // do not need to initialize
arr[20] = 0; //zero-terminated
uint32 index = 19;
uint32 isNegative = 0;
uint32 const div = 10;
if (number < 0)
{
isNegative = 1;
number *= -1;
}
while (1)
{
int64 quo = number / div;
int64 rmd = number % div;
number = quo;
arr[index--] = (char) ('0' + rmd);
if (number == 0)
{
break;
}
}
if (isNegative)
{
arr[index--] = '-';
}
print_str(&(arr[index + 1]));
}
static void
print_hex(uint64 number, uint64 capital)
{
char const lookup_table_cap[16] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'};
char const lookup_table[16] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'};
char const *const look_up = capital == 1 ? &lookup_table_cap[0] : &lookup_table[0];
char arr[17];
arr[16] = 0; //zero-terminated
uint32 index = 15;
uint32 const div = 16;
while (1)
{
uint64 quo = number / div;
uint64 rmd = number % div;
number = quo;
arr[index--] = look_up[rmd];
if (number == 0)
{
break;
}
}
print_str(&(arr[index + 1]));
}
void
arch_cls(void)
{
text_pos = 0; // reset text_pos
mem_set(base, 0, 25 * 80 * 2);
}
void
arch_vprintf(char const *format, va_list args)
{
char buf[2];
int64 d;
uint64 u;
char *s;
char c;
buf[1] = '\0';
for (; *format != '\0'; format++)
{
if (*format != '%')
{
buf[0] = *format;
print_str(buf);
continue;
}
format++;
switch (*format)
{
case 'd':
d = va_arg(args, int64);
print_int(d);
break;
case 'u':
u = va_arg(args, uint64);
print_uint(u);
break;
case 's':
s = va_arg(args, char *);
print_str(s);
break;
case 'c':
c = (char) va_arg(args, int64);
buf[0] = c;
print_str(buf);
break;
case 'x':
u = va_arg(args, uint64);
print_hex(u, 0);
break;
case 'X':
u = va_arg(args, uint64);
print_hex(u, 1);
break;
case '%':
buf[0] = '%';
print_str(buf);
break;
default:
buf[0] = '%';
print_str(buf);
format--;
break;
}
}
}
void
arch_printf(char const *format, ...)
{
va_list args;
va_start(args, format);
arch_vprintf(format, args);
va_end(args);
base[text_pos++] = c;
base[text_pos++] = DEFAULT_COLOR;
}

View File

@ -1,8 +0,0 @@
#pragma once
#include <kern/cdef.h>
int32 KABI arch_cmp_swp_32(int32* dst, int32 old, int32 val);
int32 KABI arch_fet_add_32(int32* dst, int32 val);

3
inc/arch/brute.h Normal file
View File

@ -0,0 +1,3 @@
#pragma once
void arch_brute();

View File

@ -1,57 +0,0 @@
#pragma once
#include <kern/cdef.h>
#define HAL_CORE_COUNT 1
struct PRAGMA_PACKED hal_gdt_ptr
{
uint16 limit;
uint64 base;
};
struct PRAGMA_PACKED hal_idt_ptr
{
uint16 limit;
uint64 base;
};
/**
* ASM declaration
*/
void KABI arch_cpuid(uint32 *eax, uint32 *ebx, uint32 *ecx, uint32 *edx);
void KABI arch_halt(void);
void KABI arch_flush_gdt(struct hal_gdt_ptr *gdt_ptr, uint64 code_slct, uint64 data_slct);
void KABI arch_flush_tlb(void);
void KABI arch_flush_idt(struct hal_idt_ptr *idt_ptr);
void KABI arch_read_idt(struct hal_idt_ptr **idt_ptr);
void KABI arch_read_msr(uint32 *ecx, uint32 *edx, uint32 *eax);
void KABI arch_write_msr(uint32 *ecx, uint32 *edx, uint32 *eax);
void KABI arch_write_cr3(uint64 base);
uint64 KABI arch_read_cr3(void);
void KABI arch_write_cr8(uint64 pri);
uint64 KABI arch_read_cr8(void);
int8 KABI arch_read_port_8(uint16 port);
int16 KABI arch_read_port_16(uint16 port);
int32 KABI arch_read_port_32(uint16 port);
void KABI arch_write_port_8(uint16 port, uint8 data);
void KABI arch_write_port_16(uint16 port, uint16 data);
void KABI arch_write_port_32(uint16 port, uint32 data);

View File

@ -1,7 +1,6 @@
#pragma once
#include <arch/intr.h>
#include <kern/clib.h>
#include <kern/status.h>
/**
@ -36,7 +35,7 @@ struct interrupt_context
/**
* C declaration
*/
kstatus
void
arch_intr_init(void);
/**
@ -51,11 +50,11 @@ arch_exc_disp(uint64 exc_vec, struct interrupt_context *context, uint32 errorcod
/**
* ASM declaration
*/
uint32
arch_raise_irql(uint32 irql);
int
arch_raise_irql(int irql);
uint32
arch_lower_irql(uint32 irql);
int
arch_lower_irql(int irql);
uint32
arch_get_irql(void);
int
arch_get_irql();

View File

@ -1,7 +1,10 @@
#pragma once
#include <kern/cdef.h>
#include <arch/mlayout.h>
void *
arch_pmap_map(uintptr paddr, usize size);
static inline void *
arch_pmap_map(uintptr paddr, ATTR_UNUSED usize size)
{
return (void*)(paddr + KERNEL_PMAP_VADDR);
}

View File

@ -3,13 +3,10 @@
#include <arch/print.h>
void
arch_printf(const char *format, ...);
arch_cls();
void
arch_cls(void);
arch_print_init();
void
arch_print_init(void);
void
arch_vprintf(char const *format, va_list args);
arch_putc(char c);

View File

@ -1,8 +0,0 @@
#pragma once
#include <kern/cdef.h>
#define KASSERT(expr) kassert_ex(#expr, __FILE__, __LINE__, expr)
void
kassert_ex(const char *expr_str, const char *file, int32 line, int32 expr);

View File

@ -1,83 +0,0 @@
#pragma once
#include <kern/cdef.h>
struct atree_node
{
struct atree_node *left;
struct atree_node *right;
int32 height;
};
/*
* A comparison function between self (yours) and treenode (tree's)
* Returns:
* < 0 if treenode < self
* = 0 if treenode = self
* > 0 if treenode > self
*/
typedef int32 (*atree_cmp_fn)(struct atree_node *tree_node, struct atree_node *self);
struct atree
{
atree_cmp_fn cmpf;
struct atree_node *root;
};
/*
* init operations
*/
void
atree_init(struct atree *tree, atree_cmp_fn compare);
static inline bool
atree_empty(struct atree *tree)
{
return (tree->root == NULL);
}
/*
* tree operations
*/
struct atree_node *
atree_search(struct atree *tree, struct atree_node *entry);
struct atree_node *
atree_insert(struct atree *tree, struct atree_node *entry);
struct atree_node *
atree_remove(struct atree *tree, struct atree_node *entry);
/*
* traversal operations
*/
struct atree_node *
atree_max(struct atree *tree);
struct atree_node *
atree_min(struct atree *tree);
struct atree_node *
atree_next(struct atree *tree, struct atree_node *entry);
struct atree_node *
atree_prev(struct atree *tree, struct atree_node *entry);
/*
* internal operations (testing only)
*/
bool
atree_validate(struct atree *tree);
uint32
atree_size(struct atree *tree);

86
inc/kern/avl_tree.h Normal file
View File

@ -0,0 +1,86 @@
#pragma once
#include <kern/cdef.h>
struct avl_node
{
struct avl_node *left;
struct avl_node *right;
int height;
};
/*
* A comparison function between self (yours) and other
* Returns:
* < 0 if other < self
* = 0 if other = self
* > 0 if other > self
*/
typedef int (*avl_cmpf)(struct avl_node *tree_node, struct avl_node *self);
struct avl_root
{
avl_cmpf cmpf;
struct avl_node *root;
};
/*
* init operations
*/
static inline void
avl_init(struct avl_root *root, avl_cmpf cmpf)
{
root->root = NULL;
root->cmpf = cmpf;
}
static inline int
avl_empty(struct avl_root *root)
{
return (root->root == NULL);
}
/*
* tree operations
*/
struct avl_node *
avl_search(struct avl_root *root, struct avl_node *node);
struct avl_node *
avl_insert(struct avl_root *root, struct avl_node *node);
struct avl_node *
avl_remove(struct avl_root *root, struct avl_node *node);
/*
* traversal operations
*/
struct avl_node *
avl_first(struct avl_root *root);
struct avl_node *
avl_last(struct avl_root *root);
struct avl_node *
avl_next(struct avl_root *root, struct avl_node *node);
struct avl_node *
avl_prev(struct avl_root *root, struct avl_node *node);
/*
* internal operations (testing only)
*/
int
avl_validate(struct avl_root *root);
usize
avl_size(struct avl_root *root);

View File

@ -1,5 +1,18 @@
#pragma once
#include <kern/cdef.h>
#define BITSET_DEFINE(sz)
static inline uint64
bit_mask(uint32 bit)
{
return (uint64) 1 << bit;
}
static inline uint64
bit_field_mask(uint32 low, uint32 high)
{
return ~(~(uint64) 0 << high << 1) << low;
}
static inline uint8* bit_byte(void* base, uint32 bit)
{

16
inc/kern/brute.h Normal file
View File

@ -0,0 +1,16 @@
#pragma once
#include <kern/cdef.h>
#include <kern/print.h>
#include <arch/brute.h>
#define BRUTE(fmt, ...) do { \
kprintf("Kernel brute: " fmt "\n", ##__VA_ARGS__); \
arch_brute(); \
} while(0)
#define KASSERT(expr, msg, ...) do { \
if (!(expr)) { \
BRUTE("Assertion \"" #expr "\" failed at %s:%d: " msg , __FILE__, __LINE__ , ##__VA_ARGS__); \
} \
} while(0)

View File

@ -3,7 +3,10 @@
#include <stdint.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdatomic.h>
typedef uintmax_t uintmax;
typedef intmax_t intmax;
typedef uint32_t uint32;
typedef int32_t int32;
typedef uint64_t uint64;
@ -14,25 +17,21 @@ typedef int16_t int16;
typedef uint8_t uint8;
typedef int8_t int8;
typedef size_t usize;
typedef _Bool bool;
#define TRUE (1)
#define FALSE (0)
#define PRAGMA_PACKED __attribute__((packed))
#define PRAGMA_SECTION(x) __attribute__ ((section (x)))
#define PRAGMA_ALIGN(x) __attribute__ ((aligned(x)))
#define ALIGN_2(type, num, align) (((type)(num) + ((type)align - 1)) & ~((type)align - 1))
#define ALIGN(type, num, align) (((type)(num) + (type)(align) - 1) / (type)(align))
#define UNREFERENCED(x) do { \
(x) = (x); \
} while(0)
typedef unsigned char uchar;
typedef unsigned long ulong;
typedef unsigned int uint;
#define KABI __attribute__((sysv_abi))
#define STATIC_ASSERT(cond, msg) _Static_assert((cond), msg)
#define TYPEOF(type) __typeof__(type)
/* Declarations */
#define DECL_ATOMIC(type) _Atomic type
/* Attributes */
#define ATTR_PACKED __attribute__((packed))
#define ATTR_UNUSED __attribute__((unused))
#define ATTR_USED __attribute__((used))
#define ATTR_SECTION(x) __attribute__ ((section (#x)))
#define ATTR_ALIGN(x) _Alignas(x)
#define ATTR_FMT_PRINTF __attribute__((format (printf, 1, 2)))

View File

@ -1,56 +0,0 @@
#pragma once
#include <kern/cdef.h>
/*
* Common macros, etc
*/
#define OBTAIN_STRUCT_ADDR(member_addr, struct_name, member_name) ((struct_name*)((uintptr)(member_addr) - (uintptr)(&(((struct_name*)0)->member_name))))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define SWAP(a, b, T) \
do { \
T temp = *(a); \
*(a) = *(b); \
*(b) = temp; \
} while(0);
uint32
krand(void);
void
ksrand(uint32 _seed);
uint64
str_len(char const *str);
uint64
str_cmp(char const *str1, char const *str2);
void
mem_cpy(void *src, void *dst, uint64 size);
void
mem_mv(void *src, void *dst, uint64 size);
void
mem_set(void *src, uint8 val, uint64 size);
static inline uint64
bit_mask(uint32 bit)
{
return (uint64) 1 << bit;
}
static inline uint64
bit_field_mask(uint32 low, uint32 high)
{
return ~(~(uint64) 0 << high << 1) << low;
}

33
inc/kern/kinit.h Normal file
View File

@ -0,0 +1,33 @@
#pragma once
#include <kern/lds.h>
typedef void (kinitf)(void*);
struct kinit {
void* args;
kinitf* func;
int pri;
int subsys;
const char* name;
};
#define KINIT_START (struct kinit **)LDS_START(kinit)
#define KINIT_STOP (struct kinit **)LDS_STOP(kinit)
LDS_DECL(kinit);
#define KINIT_DECL(_name, _subsys, _pri, _func, _args) \
static const struct kinit _kinit_##name = { \
.args = _args, \
.func = _func, \
.subsys = _subsys, \
.pri= _pri, \
.name = #_name \
}; \
LDS_ATTR(kinit) ATTR_USED static const struct kinit * _kinit_lds_##name = &_kinit_##name
enum {
KINIT_SUBSYS_KERN = 0,
KINIT_SUBSYS_KTEST = 1
};

11
inc/kern/lds.h Normal file
View File

@ -0,0 +1,11 @@
#pragma once
#include <kern/cdef.h>
#define LDS_DECL(name) \
extern const char __start_##name[]; \
extern const char __stop_##name[]
#define LDS_START(name) ((void*)__start_##name)
#define LDS_STOP(name) ((void*)__stop_##name)
#define LDS_ATTR(name) ATTR_SECTION(name)

77
inc/kern/libkern.h Normal file
View File

@ -0,0 +1,77 @@
#pragma once
#include <kern/cdef.h>
/*
* Common macros, etc
*/
#define OBTAIN_STRUCT_ADDR(member_addr, struct_name, member_name) ((struct_name*)((uintptr)(member_addr) - (uintptr)(&(((struct_name*)0)->member_name))))
#define CEIL(num, div) \
({ __typeof__(num) _num = (num); \
__typeof__(div) _div = (div); \
((_num + _div - 1) / _div); })
#define MIN(a, b) \
({ __typeof__(a) _a = (a); \
__typeof__(b) _b = (b); \
(_a) < (_b) ? (_a) : (_b); })
#define MAX(a, b) \
({ __typeof__(a) _a = (a); \
__typeof__(b) _b = (b); \
(_a) > (_b) ? (_a) : (_b); })
#define SWAP(a, b) do { \
__typeof__(*a) temp = *(a); \
*(a) = *(b); \
*(b) = temp; \
} while(0)
#define BIT_FIELD_MASK(low, high) ((1ul >> (high)) - 1)
#define BIT_MASK(bit) (1ul >> (bit))
void
memswp(void *dst, void *src, usize size);
void *
memcpy(void *dst, const void *src, usize size);
void *
memset(void *dst, int val, usize size);
void
qsort(void *base, usize num, usize sz, int (*cmpf)(const void *, const void *));
void *
memmove(void *dst, const void *src, usize size);
static inline
int toupper(int c)
{
if (c >= 'a' && c <= 'z') {
return c - ('a' - 'A');
} else {
return c;
}
}
/* convert a max 15 d to its character, otherwise d is returned */
static inline
uint dtoa(uint d)
{
if (d < 10) {
return d + '0';
} else if (d < 16) {
return d - 10 + 'a';
}
return d;
}
ulong
krand();
void
ksrand(ulong sd);

View File

@ -1,43 +1,30 @@
#pragma once
#include <kern/cdef.h>
#include <kern/assert.h>
#include <kern/poison.h>
#include <kern/brute.h>
struct list_entry {
struct list_entry *next;
struct list_entry *prev;
};
struct list {
struct list_entry *head;
struct list_entry *tail;
struct list_entry *next;
};
/*
* Init Operations
*/
static inline void
list_init(struct list *list)
list_init(struct list_entry *head)
{
list->head = NULL;
list->tail = NULL;
head->next = head;
head->prev = head;
}
static inline void
list_entry_init(struct list_entry *ent)
{
ent->prev = NULL;
ent->next = NULL;
}
static inline bool
static inline int
list_empty(struct list_entry *ent)
{
return (ent->next == NULL);
return (ent->next == ent);
}
/*
* Location Operations
*/
static inline struct list_entry *
list_prev(struct list_entry *ent)
{
@ -50,55 +37,54 @@ list_next(struct list_entry *ent)
return ent->next;
}
static inline struct list_entry *
list_head(struct list *list)
{
return list->head;
}
static inline struct list_entry *
list_tail(struct list *list)
{
return list->tail;
}
/*
* Insert Operations
*/
void
list_insert(struct list *list, struct list_entry *cur, struct list_entry *ent);
static inline void
list_insert_head(struct list *list, struct list_entry *ent)
static inline void
list_insert(struct list_entry *head, struct list_entry *ent)
{
list_insert(list, NULL, ent);
ent->next = head->next;
ent->prev = head;
head->next->prev = ent;
head->next = ent;
}
static inline void
list_insert_tail(struct list *list, struct list_entry *ent)
list_insert_before(struct list_entry *head, struct list_entry *ent)
{
list_insert(list, list_tail(list), ent);
list_insert(head->prev, ent);
}
/*
* Remove Operations
*/
void
list_remove(struct list *list, struct list_entry *ent);
static inline struct list_entry *
list_remove_tail(struct list *list)
list_remove(struct list_entry *ent)
{
struct list_entry *ret = list_tail(list);
list_remove(list, ret);
return ret;
ent->next->prev = ent->prev;
ent->prev->next = ent->next;
ent->next = POISON_LIST;
ent->prev = POISON_LIST;
return ent;
}
static inline struct list_entry *
list_remove_head(struct list *list)
list_remove_before(struct list_entry *list)
{
struct list_entry *ret = list_head(list);
list_remove(list, ret);
return ret;
return list_remove(list->prev);
}
static inline struct list_entry *
list_remove_after(struct list_entry *list)
{
return list_remove(list->next);
}
#define LIST_FOREACH(list, it) \
for (it = list_next(list); it != list; it = list_next(it))
#define LIST_FOREACH_REVERSE(list, it) \
for (it = list_prev(list); it != list; it = list_prev(it))

View File

@ -1,6 +0,0 @@
#pragma once
#include <kern/cdef.h>
void
panic(uint32 reason);

9
inc/kern/poison.h Normal file
View File

@ -0,0 +1,9 @@
#pragma once
#define POISON_BASE (0xDEAD000000000000)
#define POISON_STEP (0x1000)
#define MAKE_POISON(idx) (POISON_BASE + POISON_STEP * (idx))
#define POISON_LIST ((void*)MAKE_POISON(0))
#define POISON_AVL ((void*)MAKE_POISON(1))

View File

@ -3,8 +3,8 @@
#include <kern/cdef.h>
#include <kern/print.h>
void
ATTR_FMT_PRINTF int
kprintf(const char *str, ...);
void
int
kvprintf(const char *str, va_list args);

View File

@ -2,16 +2,26 @@
#include <kern/cdef.h>
struct spin_lock
{
int32 val;
// implements a simple ticket lock
struct spin_lock {
// LOW 16 bits: cur ticket
// HIGH 16 bits: cur owner
DECL_ATOMIC(uint32) val;
};
void
spin_init(struct spin_lock *lock);
#define SPIN_LOCK_INITIALIZER {.val = ATOMIC_VAR_INIT(0)}
STATIC_ASSERT(sizeof(struct spin_lock) == sizeof(uint32), "spin_lock size isn't 32 bits");
void
spin_lock(struct spin_lock *lock);
spin_lock_init(struct spin_lock *lock);
void
spin_unlock(struct spin_lock *lock);
spin_lock_acq(struct spin_lock *lock);
void
spin_lock_rel(struct spin_lock *lock);
// returns non-zero on success otherwise zero
int
spin_lock_try_acq(struct spin_lock *lock);

View File

@ -5,11 +5,10 @@
/**
* Specific error codes
*/
typedef enum {
SUCCESS = 0x0,
ENOMEM = 0x1,
EINVARG = 0x2,
EINIT = 0x3,
EDUP = 0x4
} kstatus;
enum {
S_OK = 0x0,
S_NOMEM = 0x1,
S_INVARG = 0x2,
S_INIT = 0x3,
S_DUP = 0x4
};

36
inc/test/ktest.h Normal file
View File

@ -0,0 +1,36 @@
#pragma once
#include <kern/cdef.h>
#include <kern/lds.h>
LDS_DECL(ktest);
typedef void (ktestf)(void*);
struct ktest {
void* args;
ktestf* func;
int subsys;
const char* name;
};
#define KTEST_START (struct ktest **)LDS_START(ktest)
#define KTEST_STOP (struct ktest **)LDS_STOP(ktest)
#define KTEST_DECL(_name, _subsys, _func, _args) \
static const struct ktest _ktest_##_name = { \
.args = _args, \
.func = _func, \
.subsys = _subsys, \
.name = #_name \
}; \
LDS_ATTR(ktest) ATTR_USED static const struct ktest * _ktest_lds_##_name = &_ktest_##_name
enum {
KTEST_SUBSYS_LIST = 0,
KTEST_SUBSYS_AVL = 1,
KTEST_SUBSYS_QSORT = 2,
};
void
ktest_begin(const char* name);

View File

@ -1,13 +1,11 @@
set(SUBMODULE kern)
set(CC_SRC
assert.c
atree.c
clib.c
main.c
panic.c
avl_tree.c
libkern.c
kmain.c
print.c
spin_lock.c
list.c )
)
include(${MK}/kern.cmake)

View File

@ -1,11 +0,0 @@
#include <kern/cdef.h>
#include <kern/assert.h>
#include <kern/print.h>
void kassert_ex(const char *expr_str, const char *file, int32 line, int32 expr)
{
if (!expr)
{
kprintf("Assertion \"%s\" failed at %s:%d.\n", expr_str, file, line);
}
}

View File

@ -1,473 +0,0 @@
#include <kern/atree.h>
#include <kern/clib.h>
#include <kern/cdef.h>
static struct atree_node *
atree_node_max(struct atree_node *node)
{
while ((node != NULL) && (node->right != NULL)) {
node = node->right;
}
return node;
}
static struct atree_node *
atree_node_min(struct atree_node *node)
{
while ((node != NULL) && (node->left != NULL)) {
node = node->left;
}
return node;
}
static void
atree_node_init(struct atree_node *it)
{
if (it != NULL) {
it->height = 0;
it->left = NULL;
it->right = NULL;
}
}
static int32
atree_node_get_height(struct atree_node *node)
{
return node == NULL ? -1 : node->height;
}
static int32
atree_node_get_balance_factor(struct atree_node *node)
{
if (node == NULL) {
return 0;
}
return atree_node_get_height(node->left) - atree_node_get_height(node->right);
}
static struct atree_node *
atree_node_right_rotate(struct atree_node *node)
{
struct atree_node *lchild = node->left;
node->left = lchild->right;
lchild->right = node;
node->height = MAX(atree_node_get_height(node->left), atree_node_get_height(node->right)) + 1;
lchild->height = MAX(atree_node_get_height(lchild->left), atree_node_get_height(lchild->right)) + 1;
return lchild;
}
static struct atree_node *
atree_node_left_rotate(struct atree_node *node)
{
struct atree_node *rchild = node->right;
node->right = rchild->left;
rchild->left = node;
node->height = MAX(atree_node_get_height(node->left), atree_node_get_height(node->right)) + 1;
rchild->height = MAX(atree_node_get_height(rchild->left), atree_node_get_height(rchild->right)) + 1;
return rchild;
}
static struct atree_node *
atree_node_balance(struct atree_node *node)
{
int32 bf;
int32 cbf;
bf = atree_node_get_balance_factor(node);
if (bf > 1) {
/*
* Left double heavy
*/
cbf = atree_node_get_balance_factor(node->left);
if (cbf >= 0) {
/*
*
* Left child is left heavy
* x (k) y (k-1)
* / \ RR(x) / \
* (k-1) y A (k-3) -----------> (k-2)B x (k-2)
* / \ / \
* (k-2) B C (k-3) (k-3) C A (k-3)
*/
return atree_node_right_rotate(node);
} else {
/*
*
* Left child is right heavy
* x (k) x (k)
* / \ / \
* (k-1) y A (k-3) LR(y) (k-1) z A (k-3)
* / \ ------------> / \
* (k-3) B z (k-2) (k-2) y D (k-4)
* / \ / \
* (k-3) C D (k-4) (k-3) B C (k-3)
*
*
* x (k) __z__ (k-1)
* / \ / \
* (k-1) z A (k-3) (k-2) y x (k-2)
* / \ RR(x) / \ / \
* (k-2) y D (k-4) ------------> B C D A
* / \
* (k-3)B C (k-3)
*/
node->left = atree_node_left_rotate(node->left);
return atree_node_right_rotate(node);
}
} else if (bf < -1) {
{
cbf = atree_node_get_balance_factor(node->right);
if (cbf <= 0) {
// right right, see above
return atree_node_left_rotate(node);
} else {
// right left, see above
node->right = atree_node_right_rotate(node->right);
return atree_node_left_rotate(node);
}
}
} else {
return node;
}
}
static struct atree_node *
atree_node_insert(struct atree_node *node, struct atree_node *entry, atree_cmp_fn compare,
struct atree_node **overwritten)
{
if (node == NULL) {
atree_node_init(entry);
return entry;
}
int32 comp = compare(node, entry);
if (comp < 0) {
node->right = atree_node_insert(node->right, entry, compare, overwritten);
} else {
if (comp == 0) {
/*
* overwrite existing value
*/
atree_node_init(entry);
entry->right = node->right;
entry->left = node->left;
entry->height = node->height;
*overwritten = node;
return entry;
} else {
node->left = atree_node_insert(node->left, entry, compare, overwritten);
}
}
node->height = MAX(atree_node_get_height(node->left), atree_node_get_height(node->right)) + 1;
return atree_node_balance(node);
}
static struct atree_node *
atree_node_search(struct atree_node *node, struct atree_node *entry, atree_cmp_fn compare, struct atree_node **parent)
{
int32 comp;
struct atree_node *prev;
struct atree_node *temp;
prev = NULL;
while (node != NULL) {
comp = compare(node, entry);
temp = node;
if (comp < 0) {
node = node->right;
} else if (comp > 0) {
node = node->left;
} else {
break;
}
prev = temp;
}
if (parent != NULL) {
*parent = prev;
}
return node;
}
static struct atree_node *
atree_node_delete(struct atree_node *node, struct atree_node *entry, atree_cmp_fn compare, struct atree_node **deleted)
{
int32 comp;
struct atree_node *succ_parent;
if (node == NULL) {
return NULL;
}
comp = compare(node, entry);
if (comp < 0) {
node->right = atree_node_delete(node->right, entry, compare, deleted);
} else if (comp > 0) {
node->left = atree_node_delete(node->left, entry, compare, deleted);
} else {
/*
* Write the deleted node first
*/
*deleted = node;
if ((node->left == NULL) || (node->right == NULL)) {
/*
* 0 or 1 child
*/
struct atree_node *child = node->left != NULL ? node->left : node->right;
if (child == NULL) {
node = NULL;
} else {
node = child;
}
} else {
/*
* 2 children
* meaning that the successor must be in the right subtree
*/
struct atree_node *succ = atree_node_min(node->right);
atree_node_search(node, succ, compare, &succ_parent);
/*
* Swap the nodes
* note that after swapping, the BST property of the right subtree is preserved
*/
if (succ_parent == node) {
/*
* check special case where the successor is the right child
*/
node->right = succ->right;
succ->right = node;
} else {
if (succ_parent->left == succ) {
succ_parent->left = node;
} else {
succ_parent->right = node;
}
SWAP(&node->right, &succ->right, struct atree_node*);
}
SWAP(&node->left, &succ->left, struct atree_node*);
SWAP(&node->height, &succ->height, int32);
/*
* Delete the node from the right subtree
*/
succ->right = atree_node_delete(succ->right, node, compare, deleted);
node = succ;
}
}
/*
* balance the new head
*/
if (node != NULL) {
node->height = MAX(atree_node_get_height(node->left), atree_node_get_height(node->right)) + 1;
node = atree_node_balance(node);
}
return node;
}
struct atree_node *
atree_min(struct atree *tree)
{
return atree_node_min(tree->root);
}
struct atree_node *
atree_max(struct atree *tree)
{
return atree_node_max(tree->root);
}
struct atree_node *
atree_next(struct atree *tree, struct atree_node *entry)
{
struct atree_node *succ;
struct atree_node *node;
int32 comp;
if (entry->right != NULL) {
succ = atree_node_min(entry->right);
} else {
succ = NULL;
node = tree->root;
while (node != NULL) {
comp = tree->cmpf(node, entry);
if (comp < 0) {
node = node->right;
} else if (comp > 0) {
succ = node;
node = node->left;
} else {
break;
}
}
}
return succ;
}
struct atree_node *
atree_prev(struct atree *tree, struct atree_node *entry)
{
struct atree_node *prev;
struct atree_node *node;
int32 comp;
if (entry->left != NULL) {
prev = atree_node_max(entry->left);
} else {
prev = NULL;
node = tree->root;
while (node != NULL) {
comp = tree->cmpf(node, entry);
if (comp < 0) {
prev = node;
node = node->right;
} else if (comp > 0) {
node = node->left;
} else {
break;
}
}
}
return prev;
}
struct atree_node *
atree_search(struct atree *tree, struct atree_node *entry)
{
return atree_node_search(tree->root, entry, tree->cmpf, NULL);
}
struct atree_node *
atree_insert(struct atree *tree, struct atree_node *entry)
{
struct atree_node *old;
old = NULL;
tree->root = atree_node_insert(tree->root, entry, tree->cmpf, &old);
return old;
}
struct atree_node *
atree_remove(struct atree *tree, struct atree_node *entry)
{
struct atree_node *node;
node = NULL;
tree->root = atree_node_delete(tree->root, entry, tree->cmpf, &node);
return node;
}
uint32
atree_size(struct atree *tree)
{
uint32 size;
struct atree_node *node;
size = 0;
if (tree->root != NULL) {
node = atree_min(tree);
while (node != NULL) {
size++;
node = atree_next(tree, node);
}
}
return size;
}
void
atree_init(struct atree *tree, atree_cmp_fn compare)
{
tree->cmpf = compare;
tree->root = NULL;
}
/*
* For tests
*/
static int32
atree_node_calc_height(struct atree_node *tree)
{
if (tree == NULL) {
return -1;
}
return MAX(atree_node_calc_height(tree->left), atree_node_calc_height(tree->right)) + 1;
}
static bool
atree_node_test(struct atree_node *tree, atree_cmp_fn compare)
{
if (tree == NULL) {
return TRUE;
}
if (atree_node_get_balance_factor(tree) < -1 || atree_node_get_balance_factor(tree) > 1 ||
atree_node_calc_height(tree) != tree->height) {
return FALSE;
}
if (tree->height == 0 && ((tree->left != NULL) || (tree->right != NULL))) {
return FALSE;
}
if (tree->right == tree || tree->left == tree || (tree->right == tree->left && tree->right != NULL)) {
return FALSE;
}
if ((tree->right != NULL && compare(tree, tree->right) > 0) ||
(tree->left != NULL && compare(tree, tree->left) < 0)) {
return FALSE;
}
return atree_node_test(tree->left, compare) && atree_node_test(tree->right, compare);
}
bool
atree_validate(struct atree *tree)
{
if (tree == NULL) {
return TRUE;
}
return atree_node_test(tree->root, tree->cmpf);
}

462
kern/avl_tree.c Normal file
View File

@ -0,0 +1,462 @@
#include <kern/avl_tree.h>
#include <kern/libkern.h>
#include <kern/poison.h>
#include <kern/cdef.h>
static inline struct avl_node *
_avl_node_max(struct avl_node *node)
{
while (node != NULL) {
node = node->right;
}
return node;
}
/* the minimum in the subtree with parent */
static inline struct avl_node *
_avl_node_minp(struct avl_node *node, struct avl_node **parent)
{
struct avl_node *p = NULL;
while (node != NULL) {
p = node;
node = node->left;
}
if (parent != NULL) {
*parent = p;
}
return node;
}
static inline struct avl_node *
_avl_node_min(struct avl_node *node)
{
return _avl_node_minp(node, NULL);
}
static inline void
_avl_node_poison(struct avl_node *node)
{
node->left = POISON_AVL;
node->right = POISON_AVL;
}
static inline int
_avl_node_height(struct avl_node *node)
{
return node == NULL ? -1 : node->height;
}
static inline int
_avl_node_bf(struct avl_node *node)
{
if (node == NULL) {
return 0;
}
return _avl_node_height(node->left) - _avl_node_height(node->right);
}
static inline struct avl_node *
_avl_node_rr(struct avl_node *node)
{
struct avl_node *lchild = node->left;
node->left = lchild->right;
lchild->right = node;
node->height = MAX(_avl_node_height(node->left), _avl_node_height(node->right)) + 1;
lchild->height = MAX(_avl_node_height(lchild->left), _avl_node_height(lchild->right)) + 1;
return lchild;
}
static inline struct avl_node *
_avl_node_lr(struct avl_node *node)
{
struct avl_node *rchild = node->right;
node->right = rchild->left;
rchild->left = node;
node->height = MAX(_avl_node_height(node->left), _avl_node_height(node->right)) + 1;
rchild->height = MAX(_avl_node_height(rchild->left), _avl_node_height(rchild->right)) + 1;
return rchild;
}
/* balances the subtree, returns the new root of the subtree */
static struct avl_node *
_avl_node_balance(struct avl_node *node)
{
int bf;
int cbf;
bf = _avl_node_bf(node);
if (bf > 1) {
/*
* Left double heavy
*/
cbf = _avl_node_bf(node->left);
if (cbf >= 0) {
/*
*
* Left child is left heavy
* x (k) y (k-1)
* / \ RR(x) / \
* (k-1) y A (k-3) -----------> (k-2)B x (k-2)
* / \ / \
* (k-2) B C (k-3) (k-3) C A (k-3)
*/
return _avl_node_rr(node);
} else {
/*
*
* Left child is right heavy
* x (k) x (k)
* / \ / \
* (k-1) y A (k-3) LR(y) (k-1) z A (k-3)
* / \ ------------> / \
* (k-3) B z (k-2) (k-2) y D (k-4)
* / \ / \
* (k-3) C D (k-4) (k-3) B C (k-3)
*
*
* x (k) __z__ (k-1)
* / \ / \
* (k-1) z A (k-3) (k-2) y x (k-2)
* / \ RR(x) / \ / \
* (k-2) y D (k-4) ------------> B C D A
* / \
* (k-3)B C (k-3)
*/
node->left = _avl_node_lr(node->left);
return _avl_node_rr(node);
}
} else if (bf < -1) {
{
cbf = _avl_node_bf(node->right);
if (cbf <= 0) {
// right right, see above
return _avl_node_lr(node);
} else {
// right left, see above
node->right = _avl_node_rr(node->right);
return _avl_node_lr(node);
}
}
} else {
return node;
}
}
/* does not allow duplicates, returns the new root of the subtree after insertion */
static struct avl_node *
_avl_node_insert(struct avl_node *node, struct avl_node *entry, avl_cmpf cmpf, struct avl_node **out)
{
if (node == NULL) {
/* leaf */
entry->height = 0;
entry->left = NULL;
entry->right = NULL;
*out = entry;
return entry;
}
int comp = cmpf(node, entry);
if (comp < 0) {
node->right = _avl_node_insert(node->right, entry, cmpf, out);
} else if (comp == 0) {
/* duplicate */
*out = NULL;
return node;
} else {
node->left = _avl_node_insert(node->left, entry, cmpf, out);
}
node->height = MAX(_avl_node_height(node->left), _avl_node_height(node->right)) + 1;
return _avl_node_balance(node);
}
/* find the node and its parent in the subtree */
static struct avl_node *
_avl_node_search(struct avl_node *node, struct avl_node *entry, avl_cmpf cmpf)
{
int comp;
while (node != NULL) {
comp = cmpf(node, entry);
if (comp < 0) {
node = node->right;
} else if (comp > 0) {
node = node->left;
} else {
break;
}
}
return node;
}
static struct avl_node *
_avl_node_delete(struct avl_node *node, struct avl_node *entry, avl_cmpf cmpf, struct avl_node **deleted)
{
int comp;
struct avl_node *succ_parent;
if (node == NULL) {
return NULL;
}
comp = cmpf(node, entry);
if (comp < 0) {
node->right = _avl_node_delete(node->right, entry, cmpf, deleted);
} else if (comp > 0) {
node->left = _avl_node_delete(node->left, entry, cmpf, deleted);
} else {
/*
* Write the deleted node first
*/
*deleted = node;
if ((node->left == NULL) || (node->right == NULL)) {
/*
* 0 or 1 child
*/
struct avl_node *child = node->left != NULL ? node->left : node->right;
if (child == NULL) {
node = NULL;
} else {
node = child;
}
} else {
/*
* 2 children
* meaning that the successor must be in the right subtree
*/
struct avl_node *succ = _avl_node_minp(node->right, &succ_parent);
/*
* Swap the nodes
* note that after swapping, the BST property of the right subtree is preserved
*/
if (succ_parent == node) {
/*
* check special case where the successor is the right child
*/
node->right = succ->right;
succ->right = node;
} else {
if (succ_parent->left == succ) {
succ_parent->left = node;
} else {
succ_parent->right = node;
}
SWAP(&node->right, &succ->right);
}
SWAP(&node->left, &succ->left);
SWAP(&node->height, &succ->height);
/*
* Delete the node from the right subtree
*/
succ->right = _avl_node_delete(succ->right, node, cmpf, deleted);
node = succ;
}
/* poison the node */
_avl_node_poison(*deleted);
}
/*
* balance the new head
*/
if (node != NULL) {
node->height = MAX(_avl_node_height(node->left), _avl_node_height(node->right)) + 1;
node = _avl_node_balance(node);
}
return node;
}
struct avl_node *
avl_first(struct avl_root *root)
{
return _avl_node_min(root->root);
}
struct avl_node *
avl_last(struct avl_root *root)
{
return _avl_node_max(root->root);
}
struct avl_node *
avl_next(struct avl_root *root, struct avl_node *entry)
{
struct avl_node *succ;
struct avl_node *node;
int comp;
if (entry->right != NULL) {
succ = _avl_node_min(entry->right);
} else {
succ = NULL;
node = root->root;
while (node != NULL) {
comp = root->cmpf(node, entry);
if (comp < 0) {
node = node->right;
} else if (comp > 0) {
succ = node;
node = node->left;
} else {
break;
}
}
}
return succ;
}
struct avl_node *
avl_prev(struct avl_root *root, struct avl_node *entry)
{
struct avl_node *prev;
struct avl_node *node;
int comp;
if (entry->left != NULL) {
prev = _avl_node_max(entry->left);
} else {
prev = NULL;
node = root->root;
while (node != NULL) {
comp = root->cmpf(node, entry);
if (comp < 0) {
prev = node;
node = node->right;
} else if (comp > 0) {
node = node->left;
} else {
break;
}
}
}
return prev;
}
struct avl_node *
avl_search(struct avl_root *root, struct avl_node *entry)
{
return _avl_node_search(root->root, entry, root->cmpf);
}
struct avl_node *
avl_insert(struct avl_root *root, struct avl_node *entry)
{
struct avl_node *old;
root->root = _avl_node_insert(root->root, entry, root->cmpf, &old);
return old;
}
struct avl_node *
avl_remove(struct avl_root *root, struct avl_node *entry)
{
struct avl_node *node;
node = NULL;
root->root = _avl_node_delete(root->root, entry, root->cmpf, &node);
return node;
}
usize
avl_size(struct avl_root *root)
{
usize size;
struct avl_node *node;
if (avl_empty(root))
return 0;
size = 0;
node = _avl_node_min(root->root);
while (node != NULL) {
size++;
node = avl_next(root, node);
}
return size;
}
/*
* For tests
*/
static int
_avl_node_calc_height(struct avl_node *tree)
{
if (tree == NULL) {
return -1;
}
return MAX(_avl_node_calc_height(tree->left), _avl_node_calc_height(tree->right)) + 1;
}
static int
_avl_node_test(struct avl_node *tree, avl_cmpf compare)
{
if (tree == NULL) {
return 1;
}
if (_avl_node_bf(tree) < -1 || _avl_node_bf(tree) > 1 ||
_avl_node_calc_height(tree) != tree->height) {
return 0;
}
if (tree->height == 0 && ((tree->left != NULL) || (tree->right != NULL))) {
return 0;
}
if (tree->right == tree || tree->left == tree || (tree->right == tree->left && tree->right != NULL)) {
return 0;
}
if ((tree->right != NULL && compare(tree, tree->right) > 0) ||
(tree->left != NULL && compare(tree, tree->left) < 0)) {
return 0;
}
return _avl_node_test(tree->left, compare) && _avl_node_test(tree->right, compare);
}
int
avl_validate(struct avl_root *root)
{
if (avl_empty(root)) {
return 1;
}
return _avl_node_test(root->root, root->cmpf);
}

View File

@ -1,115 +0,0 @@
#include <kern/cdef.h>
#include <kern/clib.h>
void
mem_cpy(void *src, void *dst, uint64 size)
{
if (src == NULL || dst == NULL)
{
return;
}
char *cSrc = (char *) src;
char *cDst = (char *) dst;
while (size--)
{
*(cDst++) = *(cSrc++);
}
}
void
mem_set(void *src, uint8 val, uint64 size)
{
if (src == NULL)
{
return;
}
while (size--)
{
*(uint8 *) src = val;
src = (void *) ((uintptr) src + 1);
}
}
void
mem_mv(void *src, void *dst, uint64 size)
{
if (src == NULL || dst == NULL)
{
return;
}
if (src >= dst)
{
mem_cpy(src, dst, size);
return;
}
src = (void *) ((uintptr) src + size - 1);
dst = (void *) ((uintptr) dst + size - 1);
while (size--)
{
*(char *) dst = *(char *) src;
dst = (void *) ((uintptr) dst - 1);
src = (void *) ((uintptr) src - 1);
}
}
//
// Random Generator
//
static uint32 seed = 1;
static uint32 max = (uint32)-1;
uint32
krand(void)
{
seed = seed * 1103512986 + 29865;
return (unsigned int) (seed / 65536) % (max + 1);
}
void
ksrand(uint32 _seed)
{
seed = _seed;
}
//
// String Library
//
uint64
str_len(char const *str)
{
uint64 length = 0;
if (str == NULL)
{
return 0;
}
while (*str != 0)
{
str++;
length++;
}
return length;
}
uint64
str_cmp(char const *str1, char const *str2)
{
if (str1 == NULL || str2 == NULL)
{
return 0;
}
uint64 length = str_len(str1);
if (length != str_len(str2))
{
return 0;
}
while (length--)
{
if (*(str1 + length) != *(str2 + length))
{
return 0;
}
}
return 1;
}

35
kern/kmain.c Normal file
View File

@ -0,0 +1,35 @@
#include <kern/cdef.h>
#include <kern/brute.h>
#include <kern/kinit.h>
#include <kern/libkern.h>
static int
kinit_cmpf(const void *ki1, const void *ki2)
{
const struct kinit *const *kinit1 = ki1;
const struct kinit *const *kinit2 = ki2;
return (*kinit1)->pri - (*kinit2)->pri;
}
static void
init_kinit()
{
qsort(KINIT_START, ((uintptr) KINIT_STOP - (uintptr) KINIT_START) / sizeof(struct kinit *), sizeof(struct kinit *),
kinit_cmpf);
for (struct kinit **it = KINIT_START; it < KINIT_STOP; it++) {
(*it)->func((*it)->args);
}
}
/**
* Kernel entry point
* @param boot_info passed by the bootloader
*/
ATTR_UNUSED void KABI
kmain(ATTR_UNUSED void *boot_info)
{
KASSERT(boot_info != NULL, "bootinfo is NULL");
init_kinit();
BRUTE("Control reached end of kmain");
}

147
kern/libkern.c Normal file
View File

@ -0,0 +1,147 @@
#include <kern/cdef.h>
#include <kern/libkern.h>
void
memswp(void *dst, void *src, usize size)
{
char tmp;
char *buf1 = dst;
char *buf2 = src;
while (size--) {
tmp = *buf1;
*buf1 = *buf2;
*buf2 = tmp;
buf1++;
buf2++;
}
}
void *
memcpy(void *dst, const void *src, usize size)
{
const char *csrc = (const char *) src;
char *cdst = (char *) dst;
while (size--) {
*(cdst++) = *(csrc++);
}
return dst;
}
void *
memset(void *dst, int val, usize size)
{
while (size--) {
*(uint8 *) dst = (uchar) val;
dst = (void *) ((uintptr) dst + 1);
}
return dst;
}
void *
memmove(void *dst, const void *src, usize size)
{
if (src >= dst) {
memcpy(dst, src, size);
} else {
src = (void *) ((uintptr) src + size - 1);
dst = (void *) ((uintptr) dst + size - 1);
while (size--) {
*(char *) dst = *(char *) src;
dst = (void *) ((uintptr) dst - 1);
src = (void *) ((uintptr) src - 1);
}
}
return dst;
}
/*
* randoms taken from FreeBSD
*/
#define NSHUFF (50)
static ulong seed = 937186357;
ulong
krand()
{
long x, hi, lo, t;
/*
* Compute x[n + 1] = (7^5 * x[n]) mod (2^31 - 1).
* From "Random number generators: good ones are hard to find",
* Park and Miller, Communications of the ACM, vol. 31, no. 10,
* October 1988, p. 1195.
*/
/* Can't be initialized with 0, so use another value. */
if ((x = seed) == 0)
x = 123459876;
hi = x / 127773;
lo = x % 127773;
t = 16807 * lo - 2836 * hi;
if (t < 0)
t += 0x7fffffff;
seed = t;
return (t);
}
void
ksrand(ulong sd)
{
seed = sd;
for (int i = 0; i < NSHUFF; i++) {
krand();
}
}
/*
* quicksort
*/
static int
_qsort_partition(void *base, size_t num, size_t sz, int (*cmpf)(const void *, const void *))
{
void *smaller = base;
void *pivot = (char *)base + (num - 1) * sz;
/* number of items smaller than pivot */
int smaller_idx = 0;
/* pivot = last element */
while (base < pivot) {
if (cmpf(base, pivot) < 0) {
/* base < pivot */
/*swap smaller and base*/
if (smaller != base) {
memswp(smaller, base, sz);
}
smaller_idx++;
smaller = (char*)smaller + sz;
}
base = (char*)base + sz;
}
/* swap the pivot to its correct position */
if (smaller != pivot) {
memswp(smaller, pivot, sz);
}
return smaller_idx;
}
void
qsort(void *base, size_t num, size_t sz, int (*cmpf)(const void *, const void *))
{
int pivot;
if (num > 0) {
pivot = _qsort_partition(base, num, sz, cmpf);
qsort(base, pivot, sz, cmpf);
qsort((char*)base + (pivot + 1) * sz, (num - pivot - 1), sz, cmpf);
}
}

View File

@ -1,58 +0,0 @@
#include <kern/list.h>
#include <kern/cdef.h>
void
list_insert(struct list *list, struct list_entry *cur, struct list_entry *ent)
{
struct list_entry *left_ent;
struct list_entry *right_ent;
/*
* adjust the current entry
*/
if (cur == NULL) {
ent->next = list->head;
ent->prev = NULL;
} else {
ent->prev = cur;
ent->next = cur->next;
}
/*
* make left and right entry point at correct things
*/
left_ent = cur;
right_ent = cur == NULL ? list->head : cur->next;
/*
* adjust left and treenode node accordingly
*/
if (left_ent != NULL) {
left_ent->next = ent;
} else {
list->head = ent;
}
if (right_ent != NULL) {
right_ent->prev = ent;
} else {
list->tail = ent;
}
}
void
list_remove(struct list *list, struct list_entry *ent)
{
if (ent->prev != NULL) {
ent->prev->next = ent->next;
} else {
list->head = ent->next;
}
if (ent->next != NULL) {
ent->next->prev = ent->prev;
} else {
list->tail = ent->prev;
}
}

View File

@ -1,15 +0,0 @@
#include <kern/cdef.h>
#include <kern/status.h>
#include <arch/cpu.h>
/**
* Kernel entry point
* @param boot_info passed by the bootloader
*/
void KABI
kmain(void *boot_info)
{
UNREFERENCED(boot_info);
arch_halt();
}

View File

@ -1,11 +0,0 @@
#include <kern/panic.h>
#include <kern/print.h>
#include <kern/cdef.h>
#include <arch/cpu.h>
void panic(uint32 reason)
{
kprintf("BugCheck: Reason - %ul\n", reason);
arch_halt();
}

View File

@ -1,20 +1,159 @@
#include <kern/print.h>
#include <kern/assert.h>
#include <arch/print.h>
#include <kern/libkern.h>
#include <kern/spin_lock.h>
void
kprintf(const char *str, ...)
/* max space needed for each byte is when printing it in binary = 8 bits */
#define NBUF_SZ (sizeof(uintmax) * 8)
static char nbuf[NBUF_SZ];
static struct spin_lock print_lock = SPIN_LOCK_INITIALIZER;
static int
_printu(char *buf, uintmax num, uint base, int cap)
{
int len;
char c;
len = 0;
while (num > 0) {
c = dtoa(num % base);
if (cap) {
c = (char) toupper(c);
}
buf[len] = c;
len++;
num = num / base;
}
return len;
}
static int
_vprintf(const char *fmt, va_list args)
{
uintmax num;
char c;
const char * s;
int base, usignf, capf, sz_ptr, sz_long, len, ret;
ret = 0;
for (; *fmt != '\0'; fmt++) {
if (*fmt != '%') {
arch_putc(*fmt);
continue;
}
base = 10;
usignf = 0;
sz_ptr = 0;
sz_long = 0;
capf = 0;
retry:
fmt++;
switch (*fmt) {
case 'p':
sz_ptr = 1;
goto pnum;
case 'd':
goto pnum;
case 'u':
usignf = 1;
goto pnum;
case 's':
s = (char*)va_arg(args, char *);
while (*s != '\0') {
arch_putc(*s);
s++;
ret++;
}
break;
case 'c':
c = (char) va_arg(args, int);
arch_putc(c);
ret++;
break;
case 'x':
base = 16;
usignf = 1;
goto pnum;
case 'X':
base = 16;
usignf = 1;
capf = 1;
goto pnum;
case 'l':
sz_long = 1;
goto retry;
case '%':
arch_putc('%');
ret++;
break;
default:
/* ignore */
break;
pnum:
if (usignf) {
if (sz_ptr) {
num = (uintptr) va_arg(args, uintptr);
} else if (sz_long) {
num = (ulong) va_arg(args, ulong);
} else {
num = (uint) va_arg(args, uint);
}
} else {
if (sz_ptr) {
num = (uintptr) va_arg(args, uintptr);
} else if (sz_long) {
num = (long) va_arg(args, long);
} else {
num = (int) va_arg(args, int);
}
}
/* print num */
if (!usignf && (intmax) num < 0) {
num = -(intmax)num;
arch_putc('-');
}
len = _printu(nbuf, num, base, capf);
while (len) {
arch_putc(nbuf[len]);
len--;
}
ret += len;
}
}
return ret;
}
ATTR_FMT_PRINTF int
kprintf(const char *fmt, ...)
{
int ret;
va_list args;
va_start(args, str);
kvprintf(str, args);
va_start(args, fmt);
spin_lock_acq(&print_lock);
ret = _vprintf(fmt, args);
spin_lock_rel(&print_lock);
va_end(args);
return ret;
}
void
kvprintf(const char *str, va_list args)
int
kvprintf(const char *fmt, va_list args)
{
UNREFERENCED(str);
UNREFERENCED(args);
arch_vprintf(str, args);
int ret;
spin_lock_acq(&print_lock);
ret = _vprintf(fmt, args);
spin_lock_rel(&print_lock);
return ret;
}

View File

@ -1,34 +1,60 @@
#include <kern/cdef.h>
#include <kern/spin_lock.h>
#include <arch/atomic.h>
void
spin_init(struct spin_lock *lock)
static inline uint32
_spin_lock_get_ticket(uint32 val)
{
if (lock != NULL)
{
lock->val = 0;
}
return val & 0xFFFFu;
}
void
spin_lock(struct spin_lock *lock)
static inline uint32
_spin_lock_get_owner(uint32 val)
{
if (lock != NULL)
{
while (arch_cmp_swp_32(&lock->val, 0, 1) != 0)
{}
}
return val >> 16u;
}
void
spin_unlock(struct spin_lock *lock)
spin_lock_init(struct spin_lock *lock)
{
if (lock != NULL)
{
lock->val = 0;
}
atomic_store(&lock->val, 0);
}
void
spin_lock_acq(struct spin_lock *lock)
{
uint32 val;
do {
val = atomic_load(&lock->val);
} while (!atomic_compare_exchange_weak(&lock->val, &val, val + (1u << 16u)));
// val now contains cur ticket and target ticket
while (_spin_lock_get_ticket(val) != _spin_lock_get_owner(val)) {
val = atomic_load(&lock->val);
}
// owner = ticket, we've acquired the lock
}
void
spin_lock_rel(struct spin_lock *lock)
{
// increment ticket
atomic_fetch_add(&lock->val, 1);
}
int
spin_lock_try_acq(struct spin_lock *lock)
{
uint32 val;
val = atomic_load(&lock->val);
if ((_spin_lock_get_owner(val) == _spin_lock_get_ticket(val)) &&
atomic_compare_exchange_weak(&lock->val, &val, val + (1u << 16u))) {
return 1;
}
return 0;
}

View File

@ -1,28 +0,0 @@
#include <mm/balloc.h>
#include <math.h>
#include <ke/clib.h>
#include <ke/bitmap.h>
// for each size
// we have - bitmap representing each frame_size
int32 balloc_init(struct balloc_desc* desc, void* start, usize length, usize frame_size)
{
// calculate size required
// calculate the # of levels
usize aligned_len = ALIGN(usize, length, frame_size);
usize total_frames = aligned_len / frame_size;
usize levels = (usize)ceil(log2(total_frames)) + 1; // include the 0th level
}
void* balloc(struct balloc_desc* desc, usize num_frames)
{
}
void bfree(struct balloc_desc* desc, uintptr ptr)
{
}

View File

@ -1,104 +0,0 @@
#include "kern/cdef.h"
#include "kern/mlayout.h"
#include "lb/dlist.h"
/**
* Simplified Slab Allocator
*/
#define LARGE_THRESHOLD (8)
struct ssalloc_page_desc
{
struct dlist_node node;
uint32 used_obj_num;
uint8 free_list[0]; /* free list inside each slab */
};
struct ssalloc_obj_desc
{
struct dlist free_list;
struct dlist full_list;
struct dlist empty_list;
usize obj_size;
uint32 align;
};
struct ssalloc_desc
{
uint32 chunk_size;
void* malloc_chunk(void); // allocate a chunk
void* free_chunk(void); // free a chunk
};
static void* scalloc_large(struct ssalloc_desc* desc, struct ssalloc_obj_desc* obj_desc)
{
}
static void scfree_large(struct ssalloc_desc* desc, struct ssalloc_obj_desc* obj_desc, void* addr)
{
}
static void* scalloc_small(struct ssalloc_desc* desc, struct ssalloc_obj_desc* obj_desc)
{
// check the current free list first
if (lb_dlist_size(&obj_desc->free_list) > 0)
{
// if it exists then we grab something from the list
struct llist_node* node = lb_dlist_first(node);
}
else
{
}
}
static void scfree_small(struct ssalloc_desc* desc, struct ssalloc_obj_desc* obj_desc, void* addr)
{
}
void ssalloc_desc_init(struct ssalloc_desc* desc)
{
}
void ssalloc_obj_desc_init(struct ssalloc_obj_desc* obj_desc, usize obj_size, uint32 align)
{
obj_desc->obj_size = obj_size;
obj_desc->align = align;
lb_dlist_init(&obj_desc->empty_list);
lb_dlist_init(&obj_desc->full_list);
lb_dlist_init(&obj_desc->free_list);
}
void* scalloc(struct ssalloc_desc* desc, struct ssalloc_obj_desc* obj_desc)
{
void* ret = NULL;
if(obj_desc->obj_size < desc->chunk_size / LARGE_THRESHOLD)
{
ret = scalloc_small(desc, obj_desc);
}
else
{
// large objects
ret = scalloc_large(desc, obj_desc);
}
return ret;
}
void scfree(struct ssalloc_desc* desc, struct ssalloc_obj_desc* obj_desc, void* address)
{
if(obj_desc->obj_size < desc->chunk_size)
{
scfree_small(desc, obj_desc, address);
}
else
{
// large objects
scfree_large(desc, obj_desc, address);
}
}

View File

@ -1,6 +1,6 @@
set timeout=0
set default=0
menuentry "fusion" {
multiboot2 fusion.elf
menuentry "bond" {
multiboot2 bond.elf
}

View File

@ -11,21 +11,4 @@ SECTIONS
{
*(.multiboot_header)
}
.text ALIGN(KERNEL_PAGE_SIZE) : AT(ADDR(.text) - KERNEL_IMG_VADDR)
{
*(.text)
}
.data ALIGN(KERNEL_PAGE_SIZE) : AT(ADDR(.data) - KERNEL_IMG_VADDR)
{
*(.data)
*(.rodata*)
}
.bss ALIGN(KERNEL_PAGE_SIZE) : AT(ADDR(.bss) - KERNEL_IMG_VADDR)
{
*(.bss)
*(COMMON)
}
}

10
test/CMakeLists.txt Normal file
View File

@ -0,0 +1,10 @@
set(SUBMODULE test)
set(CC_SRC
avl_test.c
list_test.c
ktest.c
qsort_test.c
)
include(${MK}/kern.cmake)

File diff suppressed because it is too large Load Diff

979
test/avl_test.c Normal file
View File

@ -0,0 +1,979 @@
#include <kern/cdef.h>
#include <kern/libkern.h>
#include <kern/avl_tree.h>
#include <test/ktest.h>
#include <kern/brute.h>
struct test_node {
struct avl_node tree_entry;
int32 val;
} test_node;
#define AVL_BRUTE_TEST_NODE 1024
#define AVL_MAX_TEST_NODE (AVL_BRUTE_TEST_NODE + 512)
static struct test_node avl_alloc_nodes[AVL_MAX_TEST_NODE];
static int avl_alloc_idx = 0;
static struct test_node *
create_test_node(int val)
{
KASSERT(avl_alloc_idx < AVL_MAX_TEST_NODE, "node allocation overflow");
struct test_node *rs = &avl_alloc_nodes[avl_alloc_idx++];
rs->val = val;
return rs;
}
static int
test_node_compare(struct avl_node *root, struct avl_node *node)
{
struct test_node *tree_node = OBTAIN_STRUCT_ADDR(root, struct test_node, tree_entry);
struct test_node *self = OBTAIN_STRUCT_ADDR(node, struct test_node, tree_entry);
return tree_node->val - self->val;
}
static void
pre_order_print(struct avl_node *node)
{
if (node == NULL) {
return;
}
struct test_node *t_node = OBTAIN_STRUCT_ADDR(node, struct test_node, tree_entry);
kprintf("%d-", t_node->val);
pre_order_print(node->left);
pre_order_print(node->right);
}
static void ATTR_UNUSED
pre_order(struct avl_node *node)
{
pre_order_print(node);
}
static int
_pre_order_assert(struct avl_node *node, const int *order, int size, int *counter)
{
if (node == NULL) {
return 1;
}
if (*counter >= size) {
return 0;
}
int result = 1;
struct test_node *t_node = OBTAIN_STRUCT_ADDR(node, struct test_node, tree_entry);
if (order[*counter] != t_node->val) {
result = 0;
}
(*counter)++;
result = result && _pre_order_assert(node->left, order, size, counter);
result = result && _pre_order_assert(node->right, order, size, counter);
return result;
}
static int
pre_order_assert(struct avl_root *tree, int order[], int size)
{
int ret;
int counter = 0;
ret = _pre_order_assert(tree->root, order, size, &counter);
#ifdef TDBG
if (!ret)
{
printf("[AVL ASSERT] Expected: ");
for (int i = 0; i < size; i++)
{
printf("%d-", order[i]);
}
printf("\n Got:");
pre_order(tree->root);
printf("\n");
fflush(stdout);
}
#endif
return ret;
}
/**
* Tests
*/
static void
insert_simple_l(void)
{
//1 2
// \ / \
// 2 == 1L ==> 1 3
// \
// 3
ktest_begin("insert_simple_l");
struct avl_root tree;
avl_init(&tree, test_node_compare);
avl_insert(&tree, &create_test_node(1)->tree_entry);
avl_insert(&tree, &create_test_node(2)->tree_entry);
int val1[] = {1, 2};
KASSERT(pre_order_assert(&tree, val1, 2), "insert_simple_l_1");
avl_insert(&tree, &create_test_node(3)->tree_entry);
int val2[] = {2, 1, 3};
KASSERT(pre_order_assert(&tree, val2, 3), "insert_simple_l_2");
KASSERT(avl_validate(&tree), "validate");
}
static void
insert_simple_r(void)
{
// 3 2
// / / \
// 2 == 1R ==> 1 3
// /
//1
ktest_begin("insert_simple_r");
struct avl_root tree;
avl_init(&tree, test_node_compare);
avl_insert(&tree, &create_test_node(3)->tree_entry);
avl_insert(&tree, &create_test_node(2)->tree_entry);
int val1[] = {3, 2};
KASSERT(pre_order_assert(&tree, val1, 2), "insert_simple_r_1");
avl_insert(&tree, &create_test_node(1)->tree_entry);
int val2[] = {2, 1, 3};
KASSERT(pre_order_assert(&tree, val2, 3), "insert_simple_r_2");
KASSERT(avl_validate(&tree), "validate");
}
static void
insert_simple_ll(void)
{
//2 3
// \ / \
// 4 == 2L ==> 2 4
// /
//3
ktest_begin("insert_simple_ll");
struct avl_root tree;
avl_init(&tree, test_node_compare);
avl_insert(&tree, &create_test_node(2)->tree_entry);
avl_insert(&tree, &create_test_node(4)->tree_entry);
int val1[] = {2, 4};
KASSERT(pre_order_assert(&tree, val1, 2), "insert_simple_ll_1");
avl_insert(&tree, &create_test_node(3)->tree_entry);
int val2[] = {3, 2, 4};
KASSERT(pre_order_assert(&tree, val2, 3), "insert_simple_ll_2");
KASSERT(avl_validate(&tree), "validate");
}
static void
insert_simple_rr(void)
{
// 4 3
// / / \
//2 == 2R ==> 2 4
// \
// 3
ktest_begin("insert_simple_rr");
struct avl_root tree;
avl_init(&tree, test_node_compare);
avl_insert(&tree, &create_test_node(4)->tree_entry);
avl_insert(&tree, &create_test_node(2)->tree_entry);
int val1[] = {4, 2};
KASSERT(pre_order_assert(&tree, val1, 2), "insert_simple_rr_1");
avl_insert(&tree, &create_test_node(3)->tree_entry);
int val2[] = {3, 2, 4};
KASSERT(pre_order_assert(&tree, val2, 3), "insert_simple_rr_2");
KASSERT(avl_validate(&tree), "validate");
}
static void
insert_complex_1(void)
{
// 20+ 20++ 20++ 9
// / \ / \ / \ / \
// 4 26 => 4- 26 => 9+ 26 => 4+ 20
// / \ / \ / \ / / \
//3 9 3 9- 4+ 15 3 15 26
// \ /
// 15 3
ktest_begin("insert_complex_1");
struct avl_root tree;
avl_init(&tree, test_node_compare);
avl_insert(&tree, &create_test_node(20)->tree_entry);
avl_insert(&tree, &create_test_node(4)->tree_entry);
avl_insert(&tree, &create_test_node(26)->tree_entry);
avl_insert(&tree, &create_test_node(3)->tree_entry);
avl_insert(&tree, &create_test_node(9)->tree_entry);
int val1[] = {20, 4, 3, 9, 26};
KASSERT(pre_order_assert(&tree, val1, 5), "insert_complex_1_1");
avl_insert(&tree, &create_test_node(15)->tree_entry);
int val2[] = {9, 4, 3, 20, 15, 26};
KASSERT(pre_order_assert(&tree, val2, 6), "insert_complex_1_2");
KASSERT(avl_validate(&tree), "validate");
}
static void
insert_complex_2(void)
{
// 20+ 20++ 20++ 9
// / \ / \ / \ / \
// 4 26 => 4- 26 => 9++ 26 => 4 20-
// / \ / \ / / \ \
//3 9 3 9+ 4 3 8 26
// / / \
// 8 3 8
ktest_begin("insert_complex_2");
struct avl_root tree;
avl_init(&tree, test_node_compare);
avl_insert(&tree, &create_test_node(20)->tree_entry);
avl_insert(&tree, &create_test_node(4)->tree_entry);
avl_insert(&tree, &create_test_node(26)->tree_entry);
avl_insert(&tree, &create_test_node(3)->tree_entry);
avl_insert(&tree, &create_test_node(9)->tree_entry);
int val1[] = {20, 4, 3, 9, 26};
KASSERT(pre_order_assert(&tree, val1, 5), "insert_complex_2_1");
avl_insert(&tree, &create_test_node(8)->tree_entry);
int val2[] = {9, 4, 3, 8, 20, 26};
KASSERT(pre_order_assert(&tree, val2, 6), "insert_complex_2_2");
KASSERT(avl_validate(&tree), "validate");
}
static void
insert_complex_3(void)
{
// __20+__ _20++_ __20++_ ___9___
// / \ / \ / \ / \
// 4 26 => 4- 26 => 9+ 26 => 4+ __20__
// / \ / \ / \ / \ / \ / \ / \ / \
// 3+ 9 21 30 3+ 9- 21 30 4+ 11- 21 30 3+ 7 11- 26
// / / \ / / \ / \ \ / \ / \
//2 7 11 2 7 11- 3+ 7 15 2 15 21 30
// \ /
// 15 2
ktest_begin("insert_complex_3");
struct avl_root tree;
avl_init(&tree, test_node_compare);
avl_insert(&tree, &create_test_node(20)->tree_entry);
avl_insert(&tree, &create_test_node(4)->tree_entry);
avl_insert(&tree, &create_test_node(26)->tree_entry);
avl_insert(&tree, &create_test_node(3)->tree_entry);
avl_insert(&tree, &create_test_node(9)->tree_entry);
avl_insert(&tree, &create_test_node(21)->tree_entry);
avl_insert(&tree, &create_test_node(30)->tree_entry);
avl_insert(&tree, &create_test_node(2)->tree_entry);
avl_insert(&tree, &create_test_node(7)->tree_entry);
avl_insert(&tree, &create_test_node(11)->tree_entry);
int val1[] = {20, 4, 3, 2, 9, 7, 11, 26, 21, 30};
KASSERT(pre_order_assert(&tree, val1, 10), "insert_complex_3_1");
avl_insert(&tree, &create_test_node(15)->tree_entry);
int val2[] = {9, 4, 3, 2, 7, 20, 11, 15, 26, 21, 30};
KASSERT(pre_order_assert(&tree, val2, 11), "insert_complex_3_2");
KASSERT(avl_validate(&tree), "validate");
}
static void
insert_complex_4(void)
{
// __20+__ _20++_ __20++_ ___9___
// / \ / \ / \ / \
// 4 26 4- 26 9+ 26 4 _20-
// / \ / \ / \ / \ / \ / \ / \ / \
// 3+ 9 21 30 => 3+ 9+ 21 30 => 4 11 21 30 => 3+ 7- 11 26
// / / \ / / \ / \ / \ / \
//2 7 11 2 7- 11 3+ 7- 2 8 21 30
// \ / \
// 8 2 8
ktest_begin("insert_complex_4");
struct avl_root tree;
avl_init(&tree, test_node_compare);
avl_insert(&tree, &create_test_node(20)->tree_entry);
avl_insert(&tree, &create_test_node(4)->tree_entry);
avl_insert(&tree, &create_test_node(26)->tree_entry);
avl_insert(&tree, &create_test_node(3)->tree_entry);
avl_insert(&tree, &create_test_node(9)->tree_entry);
avl_insert(&tree, &create_test_node(21)->tree_entry);
avl_insert(&tree, &create_test_node(30)->tree_entry);
avl_insert(&tree, &create_test_node(2)->tree_entry);
avl_insert(&tree, &create_test_node(7)->tree_entry);
avl_insert(&tree, &create_test_node(11)->tree_entry);
int val1[] = {20, 4, 3, 2, 9, 7, 11, 26, 21, 30};
KASSERT(pre_order_assert(&tree, val1, 10), "insert_complex_4_1");
avl_insert(&tree, &create_test_node(8)->tree_entry);
int val2[] = {9, 4, 3, 2, 7, 8, 20, 11, 26, 21, 30};
KASSERT(pre_order_assert(&tree, val2, 11), "insert_complex_4_2");
KASSERT(avl_validate(&tree), "validate");
}
static void
insert_duplicate(void)
{
// __20+__ _20++_ __20++_ ___9___
// / \ / \ / \ / \
// 4 26 4- 26 9+ 26 4 _20-
// / \ / \ / \ / \ / \ / \ / \ / \
// 3+ 9 21 30 => 3+ 9+ 21 30 => 4 11 21 30 => 3+ 7- 11 26
// / / \ / / \ / \ / \ / \
//2 7 11 2 7- 11 3+ 7- 2 8 21 30
// \ / \
// 8 2 8
ktest_begin("insert_duplicate");
struct avl_root tree;
struct test_node *temp, *temp20, *temp30, *temp7, *temp2;
avl_init(&tree, test_node_compare);
temp20 = create_test_node(20);
temp30 = create_test_node(30);
temp7 = create_test_node(7);
temp2 = create_test_node(2);
avl_insert(&tree, &temp20->tree_entry);
avl_insert(&tree, &create_test_node(4)->tree_entry);
avl_insert(&tree, &create_test_node(26)->tree_entry);
avl_insert(&tree, &create_test_node(3)->tree_entry);
avl_insert(&tree, &create_test_node(9)->tree_entry);
avl_insert(&tree, &create_test_node(21)->tree_entry);
avl_insert(&tree, &temp30->tree_entry);
avl_insert(&tree, &temp2->tree_entry);
avl_insert(&tree, &temp7->tree_entry);
avl_insert(&tree, &create_test_node(11)->tree_entry);
int val1[] = {20, 4, 3, 2, 9, 7, 11, 26, 21, 30};
KASSERT(pre_order_assert(&tree, val1, 10), "insert_duplicate_1");
// should return the value being overwritten
temp = OBTAIN_STRUCT_ADDR(avl_insert(&tree, &create_test_node(20)->tree_entry), struct test_node, tree_entry);
KASSERT((temp == temp20), "insert_duplicate_2");
temp = OBTAIN_STRUCT_ADDR(avl_insert(&tree, &create_test_node(30)->tree_entry), struct test_node, tree_entry);
KASSERT((temp == temp30), "insert_duplicate_3");
temp = OBTAIN_STRUCT_ADDR(avl_insert(&tree, &create_test_node(7)->tree_entry), struct test_node, tree_entry);
KASSERT((temp == temp7), "insert_duplicate_4");
temp = OBTAIN_STRUCT_ADDR(avl_insert(&tree, &create_test_node(2)->tree_entry), struct test_node, tree_entry);
KASSERT((temp == temp2), "insert_duplicate_5");
KASSERT(pre_order_assert(&tree, val1, 10), "insert_duplicate_6");
KASSERT(avl_validate(&tree), "validate");
}
static void
delete_simple_l(void)
{
// 2 3
// x \ / \
//1 3 == 1L ==> 2 4
// \
// 4
ktest_begin("delete_simple_l");
struct avl_root tree;
avl_init(&tree, test_node_compare);
struct test_node *deleted = create_test_node(1);
avl_insert(&tree, &create_test_node(2)->tree_entry);
avl_insert(&tree, &create_test_node(3)->tree_entry);
avl_insert(&tree, &deleted->tree_entry);
avl_insert(&tree, &create_test_node(4)->tree_entry);
int val1[] = {2, 1, 3, 4};
KASSERT(pre_order_assert(&tree, val1, 4), "delete_simple_l_1");
avl_remove(&tree, &deleted->tree_entry);
int val2[] = {3, 2, 4};
KASSERT(pre_order_assert(&tree, val2, 3), "delete_simple_l_2");
KASSERT(avl_validate(&tree), "validate");
}
static void
delete_simple_r(void)
{
// 3 2
// / x / \
// 2 4 == 1R ==> 1 3
// /
//1
ktest_begin("delete_simple_r");
struct avl_root tree;
avl_init(&tree, test_node_compare);
struct test_node *deleted = create_test_node(4);
avl_insert(&tree, &create_test_node(3)->tree_entry);
avl_insert(&tree, &create_test_node(2)->tree_entry);
avl_insert(&tree, &deleted->tree_entry);
avl_insert(&tree, &create_test_node(1)->tree_entry);
int val1[] = {3, 2, 1, 4};
KASSERT(pre_order_assert(&tree, val1, 4), "delete_simple_r_1");
avl_remove(&tree, &deleted->tree_entry);
int val2[] = {2, 1, 3};
KASSERT(pre_order_assert(&tree, val2, 3), "delete_simple_r_2");
KASSERT(avl_validate(&tree), "validate");
}
static void
delete_simple_ll(void)
{
// 2 3
// x \ / \
//1 4 == 2L ==> 2 4
// /
// 3
ktest_begin("delete_simple_ll");
struct avl_root tree;
avl_init(&tree, test_node_compare);
struct test_node *deleted = create_test_node(1);
avl_insert(&tree, &create_test_node(2)->tree_entry);
avl_insert(&tree, &create_test_node(4)->tree_entry);
avl_insert(&tree, &deleted->tree_entry);
avl_insert(&tree, &create_test_node(3)->tree_entry);
int val1[] = {2, 1, 4, 3};
KASSERT(pre_order_assert(&tree, val1, 4), "delete_simple_ll_1");
avl_remove(&tree, &deleted->tree_entry);
int val2[] = {3, 2, 4};
KASSERT(pre_order_assert(&tree, val2, 3), "delete_simple_ll_2");
KASSERT(avl_validate(&tree), "validate");
}
static void
delete_simple_rr(void)
{
// 3 2
// / x / \
//2 4 == 2R ==> 1 3
// \
// 1
ktest_begin("delete_simple_rr");
struct avl_root tree;
avl_init(&tree, test_node_compare);
struct test_node *deleted = create_test_node(4);
avl_insert(&tree, &create_test_node(3)->tree_entry);
avl_insert(&tree, &create_test_node(2)->tree_entry);
avl_insert(&tree, &deleted->tree_entry);
avl_insert(&tree, &create_test_node(1)->tree_entry);
int val1[] = {3, 2, 1, 4};
KASSERT(pre_order_assert(&tree, val1, 4), "delete_simple_rr_1" );
avl_remove(&tree, &deleted->tree_entry);
int val2[] = {2, 1, 3};
KASSERT(pre_order_assert(&tree, val2, 3), "delete_simple_rr_2" );
KASSERT(avl_validate(&tree), "validate");
}
static void
delete_complex_1(void)
{
// Test Case #1
// - A single node tree has its only node removed.
// Create:
// 10
//
// Call: remove(10)
//
// Result:
// empty tree
ktest_begin("delete_complex_1");
struct avl_root tree;
avl_init(&tree, test_node_compare);
struct test_node *deleted = create_test_node(10);
avl_insert(&tree, &deleted->tree_entry);
int val1[] = {10};
KASSERT(pre_order_assert(&tree, val1, 1), "delete_complex_1_1");
avl_remove(&tree, &deleted->tree_entry);
KASSERT(pre_order_assert(&tree, val1, 0), "delete_complex_1_2");
KASSERT(avl_validate(&tree), "validate");
}
static void
delete_complex_2(void)
{
// Test Case #2
// - A small tree has its root removed.
// Create:
// 20
// / \
// 10 30
// / \
// 25 35
//
// Call: remove(20)
//
// Results: (simplest result with no rotations)
// (replace root with smallest value on the treenode or 25)
//
// 25
// / \
// 10 30
// \
// 35
//
ktest_begin("delete_complex_2");
struct avl_root tree;
avl_init(&tree, test_node_compare);
struct test_node *deleted = create_test_node(20);
avl_insert(&tree, &deleted->tree_entry);
avl_insert(&tree, &create_test_node(10)->tree_entry);
avl_insert(&tree, &create_test_node(30)->tree_entry);
avl_insert(&tree, &create_test_node(25)->tree_entry);
avl_insert(&tree, &create_test_node(35)->tree_entry);
int val1[] = {20, 10, 30, 25, 35};
KASSERT(pre_order_assert(&tree, val1, 5), "delete_complex_2_1");
avl_remove(&tree, &deleted->tree_entry);
int val2[] = {25, 10, 30, 35};
KASSERT(pre_order_assert(&tree, val2, 4), "delete_complex_2_2");
KASSERT(avl_validate(&tree), "validate");
}
static void
delete_complex_3(void)
{
// Test Case #3
// - A small tree has a node with 2 children removed
// 20
// / \
// 10 30
// / \ /
// 5 15 25
//
// Call: remove(10)
//
// Results:
// 20
// / \
// 15 30
// / /
// 5 25
ktest_begin("delete_complex_3");
struct avl_root tree;
avl_init(&tree, test_node_compare);
struct test_node *deleted = create_test_node(10);
avl_insert(&tree, &create_test_node(20)->tree_entry);
avl_insert(&tree, &deleted->tree_entry);
avl_insert(&tree, &create_test_node(30)->tree_entry);
avl_insert(&tree, &create_test_node(5)->tree_entry);
avl_insert(&tree, &create_test_node(15)->tree_entry);
avl_insert(&tree, &create_test_node(25)->tree_entry);
int val1[] = {20, 10, 5, 15, 30, 25};
KASSERT(pre_order_assert(&tree, val1, 6), "delete_complex_3_1");
avl_remove(&tree, &deleted->tree_entry);
int val2[] = {20, 15, 5, 30, 25};
KASSERT(pre_order_assert(&tree, val2, 5), "delete_complex_3_2");
KASSERT(avl_validate(&tree), "validate");
}
static void
delete_complex_4(void)
{
// Test Case #4
// - A small tree has all nodes but the root removed from the bottom up.
// Create:
// 20
// / \
// 10 30
// / \ /
// 5 15 25
//
// Call: remove(5), remove(15), remove(25), remove(10), remove(30)
//
//
// Results:
// 20
//
ktest_begin("delete_complex_4");
struct avl_root tree;
avl_init(&tree, test_node_compare);
struct test_node *delete5 = create_test_node(5);
struct test_node *delete10 = create_test_node(10);
struct test_node *delete15 = create_test_node(15);
struct test_node *delete25 = create_test_node(25);
struct test_node *delete30 = create_test_node(30);
avl_insert(&tree, &create_test_node(20)->tree_entry);
avl_insert(&tree, &delete10->tree_entry);
avl_insert(&tree, &delete30->tree_entry);
avl_insert(&tree, &delete5->tree_entry);
avl_insert(&tree, &delete15->tree_entry);
avl_insert(&tree, &delete25->tree_entry);
int val1[] = {20, 10, 5, 15, 30, 25};
KASSERT(pre_order_assert(&tree, val1, 6), "delete_complex_4_1");
avl_remove(&tree, &delete5->tree_entry);
avl_remove(&tree, &delete15->tree_entry);
avl_remove(&tree, &delete25->tree_entry);
avl_remove(&tree, &delete10->tree_entry);
avl_remove(&tree, &delete30->tree_entry);
int val2[] = {20};
KASSERT(pre_order_assert(&tree, val2, 1), "delete_complex_4_2");
KASSERT(avl_validate(&tree), "validate");
}
static void
delete_complex_single_rotation(void)
{
// Test case single rotation
//
// Create:
//
// 20
// / \
// 10 30
// / \ / \
// 5 15 25 40
// / / / \
// 12 22 35 50
// /
// 31
//
// Call: remove(50)
//
// 20
// / \
// 10 30
// / \ / \
// 5 15 25 35
// / / / \
// 12 22 31 40
//
//
ktest_begin("delete_complex_single_rotation");
struct avl_root tree;
avl_init(&tree, test_node_compare);
struct test_node *deleted = create_test_node(50);
avl_insert(&tree, &create_test_node(20)->tree_entry);
avl_insert(&tree, &create_test_node(10)->tree_entry);
avl_insert(&tree, &create_test_node(30)->tree_entry);
avl_insert(&tree, &create_test_node(5)->tree_entry);
avl_insert(&tree, &create_test_node(15)->tree_entry);
avl_insert(&tree, &create_test_node(25)->tree_entry);
avl_insert(&tree, &create_test_node(40)->tree_entry);
avl_insert(&tree, &create_test_node(12)->tree_entry);
avl_insert(&tree, &create_test_node(22)->tree_entry);
avl_insert(&tree, &create_test_node(35)->tree_entry);
avl_insert(&tree, &deleted->tree_entry);
avl_insert(&tree, &create_test_node(31)->tree_entry);
int val1[] = {20, 10, 5, 15, 12, 30, 25, 22, 40, 35, 31, 50};
KASSERT(pre_order_assert(&tree, val1, 12), "delete_complex_single_rotation_1");
avl_remove(&tree, &deleted->tree_entry);
int val2[] = {20, 10, 5, 15, 12, 30, 25, 22, 35, 31, 40};
KASSERT(pre_order_assert(&tree, val2, 11), "delete_complex_single_rotation_2");
KASSERT(avl_validate(&tree), "validate");
}
static void
delete_complex_double_rotation(void)
{
// Test case double rotation
//
// Create:
//
// 20
// / \
// 10 30
// / \ / \
// 5 15 25 40
// / / / \
// 12 22 35 50
// /
// 31
//
// Call: remove(22)
//
// 20
// / \
// 10 35
// / \ / \
// 5 15 30 40
// / / \ \
// 12 25 31 50
//
//
ktest_begin("delete_complex_double_rotation");
struct avl_root tree;
avl_init(&tree, test_node_compare);
struct test_node *deleted = create_test_node(22);
avl_insert(&tree, &create_test_node(20)->tree_entry);
avl_insert(&tree, &create_test_node(10)->tree_entry);
avl_insert(&tree, &create_test_node(30)->tree_entry);
avl_insert(&tree, &create_test_node(5)->tree_entry);
avl_insert(&tree, &create_test_node(15)->tree_entry);
avl_insert(&tree, &create_test_node(25)->tree_entry);
avl_insert(&tree, &create_test_node(40)->tree_entry);
avl_insert(&tree, &create_test_node(12)->tree_entry);
avl_insert(&tree, &deleted->tree_entry);
avl_insert(&tree, &create_test_node(35)->tree_entry);
avl_insert(&tree, &create_test_node(50)->tree_entry);
avl_insert(&tree, &create_test_node(31)->tree_entry);
int val1[] = {20, 10, 5, 15, 12, 30, 25, 22, 40, 35, 31, 50};
KASSERT(pre_order_assert(&tree, val1, 12), "delete_complex_double_rotation_1");
avl_remove(&tree, &deleted->tree_entry);
int val2[] = {20, 10, 5, 15, 12, 35, 30, 25, 31, 40, 50};
KASSERT(pre_order_assert(&tree, val2, 11), "delete_complex_double_rotation_2");
KASSERT(avl_validate(&tree), "validate");
}
static void
delete_complex_multiple_rotation(void)
{
// Test case multiple rotation
//
// Create:
// 20
// / \
// 10 30
// / \ / \
// 5 15 25 40
// / / / \
// 12 22 35 50
// /
// 31
//
// Call: remove(5)
//
// Results:
// 30
// / \
// 20 40
// / \ / \
// 12 25 35 50
// / \ / /
// 10 15 22 31
//
//
ktest_begin("delete_complex_multiple_rotation");
struct avl_root tree;
avl_init(&tree, test_node_compare);
struct test_node *deleted = create_test_node(5);
avl_insert(&tree, &create_test_node(20)->tree_entry);
avl_insert(&tree, &create_test_node(10)->tree_entry);
avl_insert(&tree, &create_test_node(30)->tree_entry);
avl_insert(&tree, &deleted->tree_entry);
avl_insert(&tree, &create_test_node(15)->tree_entry);
avl_insert(&tree, &create_test_node(25)->tree_entry);
avl_insert(&tree, &create_test_node(40)->tree_entry);
avl_insert(&tree, &create_test_node(12)->tree_entry);
avl_insert(&tree, &create_test_node(22)->tree_entry);
avl_insert(&tree, &create_test_node(35)->tree_entry);
avl_insert(&tree, &create_test_node(50)->tree_entry);
avl_insert(&tree, &create_test_node(31)->tree_entry);
int val1[] = {20, 10, 5, 15, 12, 30, 25, 22, 40, 35, 31, 50};
KASSERT(pre_order_assert(&tree, val1, 12), "delete_complex_multiple_rotation_1");
avl_remove(&tree, &deleted->tree_entry);
int val2[] = {30, 20, 12, 10, 15, 25, 22, 40, 35, 31, 50};
KASSERT(pre_order_assert(&tree, val2, 11), "delete_complex_multiple_rotation_2");
KASSERT(avl_validate(&tree), "validate");
}
static void
delete_DNE(void)
{
// Test case DNE
// Delete a node that does not exist
// 20
// / \
// 10 30
// / \ /
// 5 15 25
//
// Call: remove(100), remove(24)
//
//
// Results:
// 20
// / \
// 10 30
// / \ /
// 5 15 25
//
ktest_begin("delete_DNE");
struct avl_root tree;
avl_init(&tree, test_node_compare);
struct test_node *delete100 = create_test_node(100);
struct test_node *delete24 = create_test_node(24);
avl_insert(&tree, &create_test_node(20)->tree_entry);
avl_insert(&tree, &create_test_node(10)->tree_entry);
avl_insert(&tree, &create_test_node(30)->tree_entry);
avl_insert(&tree, &create_test_node(5)->tree_entry);
avl_insert(&tree, &create_test_node(15)->tree_entry);
avl_insert(&tree, &create_test_node(25)->tree_entry);
int val1[] = {20, 10, 5, 15, 30, 25};
KASSERT(pre_order_assert(&tree, val1, 6), "delete_DNE_1");
avl_remove(&tree, &delete24->tree_entry);
avl_remove(&tree, &delete100->tree_entry);
KASSERT(pre_order_assert(&tree, val1, 6), "delete_DNE_2");
KASSERT(avl_validate(&tree), "validate");
}
static void
test_apocalypse(void)
{
struct avl_root tree;
ktest_begin("test_apocalypse");
ksrand(1337523847);
avl_init(&tree, test_node_compare);
// insert test
for (int i = 0; i < AVL_BRUTE_TEST_NODE; i++) {
avl_alloc_nodes[i].val = krand();
while (avl_search(&tree, &avl_alloc_nodes[i].tree_entry) != NULL) {
avl_alloc_nodes[i].val += krand() % 32765;
}
avl_insert(&tree, &avl_alloc_nodes[i].tree_entry);
}
// integrity test
KASSERT(avl_validate(&tree), "validate");
KASSERT(avl_size(&tree) == AVL_BRUTE_TEST_NODE, "test_apo_sz_1");
// smaller and bigger test
struct avl_node *entry = avl_first(&tree);
uint32 size = 0;
int32 prev = -1;
int32 cur = OBTAIN_STRUCT_ADDR(entry, struct test_node, tree_entry)->val;
while (entry != NULL) {
if (cur < prev) {
KASSERT(0, "test_apo_order_1");
break;
}
size++;
entry = avl_next(&tree, entry);
prev = cur;
if (entry != NULL) {
cur = OBTAIN_STRUCT_ADDR(entry, struct test_node, tree_entry)->val;
}
}
KASSERT(size == AVL_BRUTE_TEST_NODE, "test_apo_1");
// larger test
entry = avl_last(&tree);
size = 0;
cur = OBTAIN_STRUCT_ADDR(entry, struct test_node, tree_entry)->val;
prev = cur;
while (entry != NULL) {
if (cur > prev) {
KASSERT(0, "test_apo_order_1");
break;
}
size++;
entry = avl_prev(&tree, entry);
prev = cur;
if (entry != NULL) {
cur = OBTAIN_STRUCT_ADDR(entry, struct test_node, tree_entry)->val;
}
}
KASSERT(size == AVL_BRUTE_TEST_NODE, "test_apo_2");
// delete and search test
for (int i = 0; i < AVL_BRUTE_TEST_NODE; i++) {
KASSERT((avl_search(&tree, &avl_alloc_nodes[i].tree_entry) != NULL), "test_apo_search_1");
avl_remove(&tree, &avl_alloc_nodes[i].tree_entry);
KASSERT((avl_search(&tree, &avl_alloc_nodes[i].tree_entry) == NULL), "test_apo_search_2");
KASSERT(avl_validate(&tree), "test_apo_validate_2");
}
KASSERT((avl_size(&tree) == 0), "test_apo_sz_2");
}
static void
avl_tree_test(ATTR_UNUSED void *unused)
{
insert_simple_l();
insert_simple_r();
insert_simple_ll();
insert_simple_rr();
// complex ones
insert_complex_1();
insert_complex_2();
insert_complex_3();
insert_complex_4();
// insert duplicate
insert_duplicate();
// simple tests
delete_simple_l();
delete_simple_r();
delete_simple_ll();
delete_simple_rr();
// complex tests
delete_complex_1();
delete_complex_2();
delete_complex_3();
delete_complex_4();
delete_complex_single_rotation();
delete_complex_double_rotation();
delete_complex_multiple_rotation();
delete_DNE();
/* clear all memory */
test_apocalypse();
}
KTEST_DECL(avl_tree, KTEST_SUBSYS_AVL, avl_tree_test, NULL);

View File

@ -1,15 +0,0 @@
#ifndef TEST_TEST_H
#define TEST_TEST_H
#include "kern/cdef.h"
void
linked_list_test(void);
void
avl_tree_test(void);
void
salloc_test(void);
#endif

View File

@ -1,18 +0,0 @@
#ifndef TEST_DRIVER_H
#define TEST_DRIVER_H
#include "kern/cdef.h"
void
test_begin(char *name);
void
test_end(void);
void *
talloc(uint32 size);
void
run_case(char *name, bool result);
#endif

View File

@ -1,73 +0,0 @@
#include "kern/cdef.h"
#include "hal.h"
/**
* Bogus implementation of HAL
*/
int32 KABI
hal_atomic_xchg_32(int32 *target, int32 val)
{
return 0;
}
int32 KABI
hal_atomic_inc_32(int32 *target, int32 increment)
{
return 0;
}
int32 KABI
hal_atomic_cmpxchg_32(int32 *target, int32 compare, int32 val)
{
return 0;
}
uint32 KABI
hal_set_irql(uint32 irql)
{
return 0;
}
uint32 KABI
hal_get_irql(void)
{
return 0;
}
void KABI
hal_issue_intr(uint32 core, uint32 vector)
{
}
void KABI
hal_reg_intr(uint32 index, k_intr_dispatcher handler)
{
}
void KABI
hal_dereg_intr(uint32 index)
{
}
void KABI
hal_reg_exc(uint32 exc, k_exc_dispatcher handler)
{
}
void KABI
hal_dereg_exc(uint32 exc)
{
}
uint32 KABI
hal_get_core_id(void)
{
return 0;
}
void KABI
hal_halt(void)
{
}

35
test/ktest.c Normal file
View File

@ -0,0 +1,35 @@
#include <test/ktest.h>
#include <kern/cdef.h>
#include <kern/print.h>
#include <kern/kinit.h>
static uint ktest_cases = 0;
static void
ktest_reset()
{
ktest_cases = 0;
}
void
ktest_begin(const char* name)
{
kprintf(" Running test %d: %s...", ktest_cases, name);
ktest_cases++;
}
static void
ktest_main(ATTR_UNUSED void* args)
{
kprintf("Running ktest test suite...\n\n");
// run all ktests XXX: we don't care about priority for now as qsort is part of the test
for(struct ktest **it = KTEST_START; it < KTEST_STOP; it++) {
ktest_reset();
kprintf("Testing subsystem %s...\n", (*it)->name);
(*it)->func((*it)->args);
kprintf("%d test cases passed.\n\n", ktest_cases);
}
kprintf("All tests completed.\n");
}
KINIT_DECL(ktest, KINIT_SUBSYS_KTEST, 0, ktest_main, NULL);

274
test/list_test.c Normal file
View File

@ -0,0 +1,274 @@
#include <test/ktest.h>
#include <kern/cdef.h>
#include <kern/list.h>
#include <kern/libkern.h>
#define ARR_SZ(arr) (sizeof(arr) / sizeof((arr)[0]))
struct test_list_node {
struct list_entry lnode;
int val;
};
static void
validate_list(struct list_entry *list)
{
if (list_empty(list)) {
return;
}
KASSERT(!(list->prev == NULL || list->next == NULL), "list head ptr corrupted");
struct list_entry *it;
LIST_FOREACH(list, it) {
KASSERT(it->next->prev == it && it->prev->next == it, "forward list entry ptr corrupted");
}
LIST_FOREACH_REVERSE(list, it) {
KASSERT(it->next->prev == it && it->prev->next == it, "backward list entry ptr corrupted");
}
}
//static void
//print_list(struct list_entry *list)
//{
// struct list_entry *e;
//
// LIST_FOREACH(list, e) {
// struct test_list_node *enode = OBTAIN_STRUCT_ADDR(e, struct test_list_node, lnode);
// kprintf("%d->", enode->val);
// }
// kprintf("[END]\n");
//}
static void
check_list_elements(struct list_entry *list, const int *val, int size)
{
struct list_entry *node;
int i = 0;
LIST_FOREACH(list, node) {
struct test_list_node *enode = OBTAIN_STRUCT_ADDR(node, struct test_list_node, lnode);
KASSERT(enode->val == val[i], "check list element failed at idx %d: %d != %d", i, enode->val, val[i]);
i++;
}
KASSERT(i == size, "list size != expected size");
}
static void
assert_list(struct list_entry *list, const int *val, int size)
{
validate_list(list);
check_list_elements(list, val, size);
}
static void
insert_test_front(void)
{
ktest_begin("insert_test_front");
struct list_entry list;
struct test_list_node n0 = {.val = 0};
struct test_list_node n1 = {.val = 1};
struct test_list_node n2 = {.val = 2};
struct test_list_node n3 = {.val = 3};
list_init(&list);
list_insert(&list, &n0.lnode);
list_insert(&list, &n1.lnode);
list_insert(&list, &n2.lnode);
list_insert(&list, &n3.lnode);
int val[] = {3, 2, 1, 0};
assert_list(&list, val, ARR_SZ(val));
}
static void
insert_test_before(void)
{
ktest_begin("insert_test_before");
struct list_entry list;
struct test_list_node n0 = {.val = 0};
struct test_list_node n1 = {.val = 1};
struct test_list_node n2 = {.val = 2};
struct test_list_node n3 = {.val = 3};
list_init(&list);
list_insert_before(&list, &n0.lnode);
list_insert_before(&list, &n1.lnode);
list_insert_before(&list, &n2.lnode);
list_insert_before(&list, &n3.lnode);
int val[] = {0, 1, 2, 3};
assert_list(&list, val, ARR_SZ(val));
}
static void
insert_test_middle(void)
{
ktest_begin("insert_test_middle");
struct list_entry list;
struct test_list_node n0 = {.val = 0};
struct test_list_node n1 = {.val = 1};
struct test_list_node n2 = {.val = 2};
struct test_list_node n4 = {.val = 4};
struct test_list_node n5 = {.val = 5};
struct test_list_node n6 = {.val = 6};
list_init(&list);
list_insert(&list, &n0.lnode);
list_insert(&list, &n1.lnode);
list_insert(&list, &n2.lnode);
list_insert(&n1.lnode, &n4.lnode);
list_insert(&n1.lnode, &n5.lnode);
list_insert_before(&n4.lnode, &n6.lnode);
int val[] = {2, 1, 5, 6, 4, 0};
assert_list(&list, val, ARR_SZ(val));
}
static void
insert_test_back(void)
{
ktest_begin("insert_test_back");
struct list_entry list;
struct test_list_node n0 = {.val = 0};
struct test_list_node n1 = {.val = 1};
struct test_list_node n2 = {.val = 2};
struct test_list_node n3 = {.val = 3};
list_init(&list);
list_insert(&list, &n0.lnode);
list_insert(&n0.lnode, &n1.lnode);
list_insert(&n1.lnode, &n2.lnode);
list_insert(&n2.lnode, &n3.lnode);
int val[] = {0, 1, 2, 3};
assert_list(&list, val, ARR_SZ(val));
}
static void
remove_test_front(void)
{
ktest_begin("remove_test_front");
struct list_entry list;
struct test_list_node n0 = {.val = 0};
struct test_list_node n1 = {.val = 1};
struct test_list_node n2 = {.val = 2};
struct test_list_node n3 = {.val = 3};
list_init(&list);
list_insert(&list, &n0.lnode);
list_insert(&list, &n1.lnode);
list_insert(&list, &n2.lnode);
list_insert(&list, &n3.lnode);
list_remove_after(&list);
list_remove_after(&list);
int val[] = {1, 0};
assert_list(&list, val, ARR_SZ(val));
}
static void
remove_test_middle(void)
{
ktest_begin("remove_test_middle");
struct list_entry list;
struct test_list_node n0 = {.val = 0};
struct test_list_node n1 = {.val = 1};
struct test_list_node n2 = {.val = 2};
struct test_list_node n3 = {.val = 3};
list_init(&list);
list_insert(&list, &n0.lnode);
list_insert(&list, &n1.lnode);
list_insert(&list, &n2.lnode);
list_insert(&list, &n3.lnode);
list_remove(&n1.lnode);
list_remove(&n2.lnode);
int val[] = {3, 0};
assert_list(&list, val, ARR_SZ(val));
}
static void
remove_test_end(void)
{
ktest_begin("remove_test_middle");
struct list_entry list;
struct test_list_node n0 = {.val = 0};
struct test_list_node n1 = {.val = 1};
struct test_list_node n2 = {.val = 2};
struct test_list_node n3 = {.val = 3};
list_init(&list);
list_insert(&list, &n0.lnode);
list_insert(&list, &n1.lnode);
list_insert(&list, &n2.lnode);
list_insert(&list, &n3.lnode);
list_remove_before(&list);
list_remove_before(&list);
int val[] = {3, 2};
assert_list(&list, val, ARR_SZ(val));
}
static void
remove_test_all(void)
{
ktest_begin("remove_test_all");
struct list_entry list;
struct test_list_node n0 = {.val = 0};
struct test_list_node n1 = {.val = 1};
struct test_list_node n2 = {.val = 2};
struct test_list_node n3 = {.val = 3};
list_init(&list);
list_insert(&list, &n0.lnode);
list_insert(&list, &n1.lnode);
list_insert(&list, &n2.lnode);
list_insert(&list, &n3.lnode);
list_remove_after(&list);
list_remove_after(&list);
list_remove_after(&list);
list_remove_after(&list);
assert_list(&list, NULL, 0);
list_insert(&list, &n0.lnode);
list_insert(&list, &n1.lnode);
list_insert(&list, &n2.lnode);
list_insert(&list, &n3.lnode);
int val[] = {0, 1, 2, 3};
assert_list(&list, val, ARR_SZ(val));
}
static void
list_test(ATTR_UNUSED void *unused)
{
insert_test_front();
insert_test_before();
insert_test_middle();
insert_test_back();
remove_test_front();
remove_test_middle();
remove_test_end();
remove_test_all();
}
KTEST_DECL(list, KTEST_SUBSYS_LIST, list_test, NULL);

View File

@ -1,497 +0,0 @@
#include "test_main.h"
#include "test_case.h"
#include "lb/dlist.h"
#include "kern/clib.h"
#include <stdio.h>
struct test_list_node
{
struct llist_node lnode;
int32 val;
};
static bool
validate_list(struct dlist *list)
{
bool result = TRUE;
// list_head_test
if (list->head != NULL)
{
result = result && (list->head->prev == NULL);
}
else
{
result = result && (list->tail == NULL);
}
if (list->tail != NULL)
{
result = result && (list->tail->next == NULL);
}
else
{
result = result && (list->head == NULL);
}
return result;
}
static void
print_list(struct dlist *list)
{
#ifdef TDBG
struct llist_node *node = lb_dlist_first(list);
while (node != NULL)
{
struct test_list_node *enode = OBTAIN_STRUCT_ADDR(node, struct test_list_node, lnode);
printf("%d->", enode->val);
node = lb_dlist_next(node);
}
printf("[END]\n");
#endif
}
static bool
check_list_elements(struct dlist *list, int val[], int size)
{
struct llist_node *node = list->head;
bool ret = TRUE;
int i = 0;
while (node != NULL && i < size)
{
struct test_list_node *enode = OBTAIN_STRUCT_ADDR(node, struct test_list_node, lnode);
if (enode->val != val[i])
{
ret = FALSE;
break;
}
i++;
node = lb_dlist_next(node);
}
if(ret)
{
if (i != size)
{
ret = FALSE;
}
}
if(ret)
{
node = lb_dlist_last(list);
while (node != NULL && i >= 0)
{
struct test_list_node *enode = OBTAIN_STRUCT_ADDR(node, struct test_list_node, lnode);
if (enode->val != val[i - 1])
{
ret = FALSE;
break;
}
i--;
node = lb_dlist_prev(node);
}
}
if(ret)
{
ret = ret && (i == 0);
}
#ifdef TDBG
if (!ret)
{
printf("[LLIST ASSERT] Expected: ");
for (i = 0; i < size; i++)
{
printf("%d-", val[i]);
}
printf("\n Got:");
print_list(list);
printf("\n");
fflush(stdout);
}
#endif
return ret;
}
static bool
assert_list(struct dlist *list, int val[], int size)
{
struct llist_node *node = lb_dlist_first(list);
int i = 0;
if (!validate_list(list))
{
return FALSE;
}
return check_list_elements(list, val, size);
}
static void
insert_val(struct dlist *list, int index, int val)
{
struct test_list_node *a = (struct test_list_node *) talloc(sizeof(struct test_list_node));
a->val = val;
lb_llist_insert_by_idx(list, index, &a->lnode);
}
static void
push_back_val(struct dlist *list, int val)
{
struct test_list_node *a = (struct test_list_node *) talloc(sizeof(struct test_list_node));
a->val = val;
lb_llist_push_back(list, &a->lnode);
}
static void
push_front_val(struct dlist *list, int val)
{
struct test_list_node *a = (struct test_list_node *) talloc(sizeof(struct test_list_node));
a->val = val;
lb_llist_push_front(list, &a->lnode);
}
static bool
insert_test_beginning(void)
{
struct dlist list;
lb_dlist_init(&list);
insert_val(&list, 0, 0);
insert_val(&list, 0, 1);
insert_val(&list, 0, 2);
insert_val(&list, 0, 3);
// 3210==0123
int val[4] = {3, 2, 1, 0};
return assert_list(&list, val, 4);
}
static bool
insert_test_middle(void)
{
struct dlist list;
lb_dlist_init(&list);
insert_val(&list, 0, 0);
insert_val(&list, 0, 1);
insert_val(&list, 0, 2);
insert_val(&list, 1, 4);
insert_val(&list, 1, 5);
insert_val(&list, 2, 6);
int val[] = {2, 5, 6, 4, 1, 0};
return assert_list(&list, val, 6);
}
static bool
insert_test_end(void)
{
struct dlist list;
lb_dlist_init(&list);
insert_val(&list, 0, 0);
insert_val(&list, 1, 1);
insert_val(&list, 2, 2);
insert_val(&list, 3, 3);
int val[] = {0, 1, 2, 3};
return assert_list(&list, val, 4);
}
static bool
insert_test_invalid(void)
{
struct dlist list;
lb_dlist_init(&list);
insert_val(&list, 0, 3);
insert_val(&list, 0, 2);
insert_val(&list, 0, 1);
insert_val(&list, 0, 0);
// large index
insert_val(&list, 5, 9);
insert_val(&list, 6, 9);
insert_val(&list, 999, 9);
// small index
insert_val(&list, -1, 8);
insert_val(&list, -2, 8);
insert_val(&list, -999, 8);
/**
* Since it's kernel library
* Don't test NULL
*/
/*
insert_val(NULL, 1, 4);
lb_llist_insert_by_ref(NULL, list.head, list.tail);
lb_llist_insert_by_ref(&list, list.head, NULL);
*/
int val[] = {0, 1, 2, 3};
return assert_list(&list, val, 4);
}
static bool
remove_test_beginning(void)
{
struct dlist list;
lb_dlist_init(&list);
insert_val(&list, 0, 0);
insert_val(&list, 0, 1);
insert_val(&list, 0, 2);
insert_val(&list, 0, 3);
lb_llist_remove_by_idx(&list, 0);
lb_llist_remove_by_idx(&list, 0);
// 10==01
int val[] = {1, 0};
return assert_list(&list, val, 2);
}
static bool
remove_test_middle(void)
{
struct dlist list;
lb_dlist_init(&list);
insert_val(&list, 0, 0);
insert_val(&list, 0, 1);
insert_val(&list, 0, 2);
insert_val(&list, 0, 3);
insert_val(&list, 0, 4);
insert_val(&list, 0, 5);
lb_llist_remove_by_idx(&list, 1);
lb_llist_remove_by_idx(&list, 2);
// 5310=====0135
int val[] = {5, 3, 1, 0};
return assert_list(&list, val, 4);
}
static bool
remove_test_end(void)
{
struct dlist list;
lb_dlist_init(&list);
insert_val(&list, 0, 0);
insert_val(&list, 1, 1);
insert_val(&list, 2, 2);
insert_val(&list, 3, 3);
lb_llist_remove_by_idx(&list, 3);
lb_llist_remove_by_idx(&list, 2);
int val[] = {0, 1};
return assert_list(&list, val, 2);
}
static bool
remove_test_all(void)
{
bool result = TRUE;
struct dlist list;
lb_dlist_init(&list);
insert_val(&list, 0, 0);
insert_val(&list, 1, 1);
insert_val(&list, 2, 2);
insert_val(&list, 3, 3);
lb_llist_remove_by_idx(&list, 0);
lb_llist_remove_by_idx(&list, 0);
lb_llist_remove_by_idx(&list, 0);
lb_llist_remove_by_idx(&list, 0);
result = result && assert_list(&list, NULL, 0);
insert_val(&list, 0, 0);
insert_val(&list, 1, 1);
insert_val(&list, 2, 2);
insert_val(&list, 3, 3);
lb_llist_remove_by_idx(&list, 3);
lb_llist_remove_by_idx(&list, 2);
lb_llist_remove_by_idx(&list, 1);
lb_llist_remove_by_idx(&list, 0);
result = result && assert_list(&list, NULL, 0);
insert_val(&list, 0, 0);
insert_val(&list, 1, 1);
insert_val(&list, 2, 2);
insert_val(&list, 3, 3);
lb_llist_remove_by_idx(&list, 1);
lb_llist_remove_by_idx(&list, 1);
lb_llist_remove_by_idx(&list, 1);
lb_llist_remove_by_idx(&list, 0);
result = result && assert_list(&list, NULL, 0);
return result;
}
static bool
remove_test_invalid(void)
{
struct dlist list;
lb_dlist_init(&list);
insert_val(&list, 0, 3);
insert_val(&list, 0, 2);
insert_val(&list, 0, 1);
insert_val(&list, 0, 0);
// large index
lb_llist_remove_by_idx(&list, 5);
lb_llist_remove_by_idx(&list, 6);
lb_llist_remove_by_idx(&list, 999);
// small index
lb_llist_remove_by_idx(&list, -1);
lb_llist_remove_by_idx(&list, -2);
lb_llist_remove_by_idx(&list, -999);
/**
* Since it's kernel library
* Don't test NULL
*/
/*
lb_llist_remove_by_idx(NULL, 1);
lb_llist_remove_by_ref(NULL, list.head);
lb_llist_remove_by_ref(&list, NULL); */
// 0123=====3210
int val[] = {0, 1, 2, 3};
return assert_list(&list, val, 4);
}
static bool
size_test(void)
{
bool result = TRUE;
struct dlist list;
lb_dlist_init(&list);
struct dlist list2;
lb_dlist_init(&list2);
insert_val(&list, 0, 0);
insert_val(&list, 1, 1);
insert_val(&list, 2, 2);
insert_val(&list, 3, 3);
/**
* Since it's kernel library
* Don't test NULL
*/
/*
* lb_llist_size(NULL) == -1
*/
result = result && (lb_llist_size(&list) == 4 && lb_llist_size(&list2) == 0);
lb_llist_remove_by_idx(&list, 0);
result = result && (lb_llist_size(&list) == 3);
insert_val(&list, 0, 0);
int val[] = {0, 1, 2, 3};
result = result && assert_list(&list, val, 4);
return result;
}
static bool
push_pop_front_test(void)
{
struct llist_node *node;
bool result = TRUE;
struct dlist list;
lb_dlist_init(&list);
push_front_val(&list, 1);
push_front_val(&list, 2);
push_front_val(&list, 3);
push_front_val(&list, 4);
//4321==1234
int val1[] = {4, 3, 2, 1};
result = result && assert_list(&list, val1, 4);
node = lb_llist_pop_front(&list);
//321==123
int val2[] = {3, 2, 1};
result = result && assert_list(&list, val2, 3) && OBTAIN_STRUCT_ADDR(node, struct test_list_node, lnode)->val == 4;
lb_llist_pop_front(&list);
lb_llist_pop_front(&list);
node = lb_llist_pop_front(&list);
result = result && assert_list(&list, NULL, 0) && OBTAIN_STRUCT_ADDR(node, struct test_list_node, lnode)->val == 1;
return result;
}
static bool
push_pop_back_test(void)
{
bool result = TRUE;
struct dlist list;
lb_dlist_init(&list);
struct llist_node *node;
push_back_val(&list, 1);
push_back_val(&list, 2);
push_back_val(&list, 3);
push_back_val(&list, 4);
//1234==4321
int val1[] = {1, 2, 3, 4};
result = result && assert_list(&list, val1, 4);
node = lb_llist_pop_back(&list);
//123==321
int val2[] = {1, 2, 3};
result = result && assert_list(&list, val2, 3) && OBTAIN_STRUCT_ADDR(node, struct test_list_node, lnode)->val == 4;
lb_llist_pop_back(&list);
node = lb_llist_pop_back(&list);
lb_llist_pop_back(&list);
result = result && assert_list(&list, NULL, 0) && OBTAIN_STRUCT_ADDR(node, struct test_list_node, lnode)->val == 2;
return result;
}
void
linked_list_test(void)
{
test_begin("Linked list test");
run_case("insert_test_beginning", insert_test_beginning());
run_case("insert_test_middle", insert_test_middle());
run_case("insert_test_end", insert_test_end());
run_case("insert_test_invalid", insert_test_invalid());
run_case("remove_test_beginning", remove_test_beginning());
run_case("remove_test_middle", remove_test_middle());
run_case("remove_test_end", remove_test_end());
run_case("remove_test_invalid", remove_test_invalid());
run_case("size_test", size_test());
run_case("remove_test_all", remove_test_all());
run_case("push_pop_front_test", push_pop_front_test());
run_case("push_pop_back_test", push_pop_back_test());
test_end();
}

56
test/qsort_test.c Normal file
View File

@ -0,0 +1,56 @@
#include <kern/cdef.h>
#include <kern/libkern.h>
#include <kern/brute.h>
#include <test/ktest.h>
#define MAX_ELE (10)
static int
int_cmp(const void* a, const void* b)
{
return *(const int*)a - *(const int*)b;
}
static void
arr_assert(const int* a, const int *b, usize sz)
{
for(usize i = 0; i < sz; i++) {
KASSERT(a[i] == b[i], "element at %d not equal: %d != %d",(int)i, a[i], b[i]);
}
}
static void
test_permutation(int *arr, int *exp, int *buf, usize start, usize sz)
{
if (start == sz) {
memcpy(buf, arr, sz * sizeof(int));
qsort(buf, sz, sizeof(int), int_cmp);
arr_assert(exp, buf, sz);
} else {
for (usize i = start; i < sz; i++) {
memswp(&arr[start], &arr[i], sizeof(int));
test_permutation(arr, exp, buf, start + 1, sz);
memswp(&arr[start], &arr[i], sizeof(int));
}
}
}
static void
qsort_test(ATTR_UNUSED void *unused)
{
int arr[MAX_ELE];
int exp[MAX_ELE];
int buf[MAX_ELE];
for(int i = 0; i < MAX_ELE; i++) {
arr[i] = i;
exp[i] = i;
}
for(int i = 0; i <= MAX_ELE; i++) {
test_permutation(arr, exp, buf, 0, i);
memcpy(arr, exp, sizeof(int) * MAX_ELE);
}
}
KTEST_DECL(qsort, KTEST_SUBSYS_QSORT, qsort_test, NULL);

View File

@ -1,282 +0,0 @@
#include "test_main.h"
#include "lb/salloc.h"
#include "test_case.h"
typedef union
{
uint32 size;
uint32 flags;
} salloc_header;
static const uint32 salloc_header_size = sizeof(salloc_header);
static char buffer[1024];
static bool salloc_init_test(void)
{
lb_salloc_init(buffer, 1024);
uint32 blk_size[] = {1024};
bool blk_free[] = {TRUE};
return lb_salloc_assert(buffer, blk_size, blk_free, 1);
}
static bool salloc_basic_alloc(void)
{
bool result = TRUE;
lb_salloc_init(buffer, 1024);
result = result && (lb_salloc(buffer, 10) != NULL);
uint32 blk_size[] = {10 + salloc_header_size, 1024 - 10 - salloc_header_size};
bool blk_free[] = {FALSE, TRUE};
result = result && lb_salloc_assert(buffer, blk_size, blk_free, 2);
return result;
}
static bool salloc_full_alloc(void)
{
bool result = TRUE;
lb_salloc_init(buffer, 1024);
result = result && (lb_salloc(buffer, 1024 - salloc_header_size) != NULL);
uint32 blk_size[] = {1024};
bool blk_free[] = {FALSE};
result = result && lb_salloc_assert(buffer, blk_size, blk_free, 1);
return result;
}
static bool salloc_overflow_alloc(void)
{
bool result = TRUE;
lb_salloc_init(buffer, 1024);
result = result && (lb_salloc(buffer, 1024 - salloc_header_size + 1) == NULL);
uint32 blk_size[] = {1024};
bool blk_free[] = {TRUE};
result = result && lb_salloc_assert(buffer, blk_size, blk_free, 1);
return result;
}
static bool salloc_multiple_alloc(void)
{
bool result = TRUE;
lb_salloc_init(buffer, 1024);
result = result && (lb_salloc(buffer, 10) != NULL);
result = result && (lb_salloc(buffer, 10) != NULL);
result = result && (lb_salloc(buffer, 10) != NULL);
uint32 blk_size[] = {10 + salloc_header_size,
10 + salloc_header_size,
10 + salloc_header_size,
1024 - 3 * (10 + salloc_header_size)};
bool blk_free[] = {FALSE, FALSE, FALSE, TRUE};
result = result && lb_salloc_assert(buffer, blk_size, blk_free, 4);
return result;
}
static bool salloc_alloc_not_enough(void)
{
void *ptr;
bool result = TRUE;
lb_salloc_init(buffer, salloc_header_size + salloc_header_size + salloc_header_size - 1);
ptr = lb_salloc(buffer, salloc_header_size);
result = result && (ptr != NULL);
uint32 blk_size[] = {salloc_header_size + salloc_header_size + salloc_header_size - 1};
bool blk_free[] = {FALSE};
result = result && lb_salloc_assert(buffer, blk_size, blk_free, 1);
return result;
}
static bool salloc_basic_free(void)
{
void *ptr;
bool result = TRUE;
lb_salloc_init(buffer, 1024);
ptr = lb_salloc(buffer, 10);
result = result && (ptr != NULL);
lb_sfree(buffer, ptr);
uint32 blk_size[] = {1024};
bool blk_free[] = {TRUE};
result = result && lb_salloc_assert(buffer, blk_size, blk_free, 1);
return result;
}
static bool salloc_full_free(void)
{
void *ptr;
bool result = TRUE;
lb_salloc_init(buffer, 1024);
ptr = lb_salloc(buffer, 1024 - salloc_header_size);
result = result && (ptr != NULL);
lb_sfree(buffer, ptr);
uint32 blk_size[] = {1024};
bool blk_free[] = {TRUE};
result = result && lb_salloc_assert(buffer, blk_size, blk_free, 1);
return result;
}
static bool salloc_multiple_free(void)
{
void *ptr1, *ptr2, *ptr3, *ptr4;
bool result = TRUE;
lb_salloc_init(buffer, 1024);
ptr1 = lb_salloc(buffer, 10);
ptr2 = lb_salloc(buffer, 10);
ptr3 = lb_salloc(buffer, 10);
ptr4 = lb_salloc(buffer, 10);
result = result && (ptr1 != NULL) && (ptr2 != NULL) && (ptr3 != NULL) && (ptr4 != NULL);
lb_sfree(buffer, ptr1);
lb_sfree(buffer, ptr3);
uint32 blk_size[] = {10 + salloc_header_size,
10 + salloc_header_size,
10 + salloc_header_size,
10 + salloc_header_size,
1024 - 4 * (10 + salloc_header_size)};
bool blk_free[] = {TRUE, FALSE, TRUE, FALSE, TRUE};
result = result && lb_salloc_assert(buffer, blk_size, blk_free, 5);
return result;
}
static bool salloc_free_join_tail(void)
{
void *ptr1, *ptr2, *ptr3, *ptr4;
bool result = TRUE;
lb_salloc_init(buffer, 1024);
ptr1 = lb_salloc(buffer, 10);
ptr2 = lb_salloc(buffer, 10);
ptr3 = lb_salloc(buffer, 10);
ptr4 = lb_salloc(buffer, 10);
result = result && (ptr1 != NULL) && (ptr2 != NULL) && (ptr3 != NULL) && (ptr4 != NULL);
lb_sfree(buffer, ptr4);
uint32 blk_size[] = {10 + salloc_header_size,
10 + salloc_header_size,
10 + salloc_header_size,
1024 - 3 * (10 + salloc_header_size)};
bool blk_free[] = {FALSE, FALSE, FALSE, TRUE};
result = result && lb_salloc_assert(buffer, blk_size, blk_free, 4);
return result;
}
static bool salloc_free_join_head(void)
{
void *ptr1, *ptr2, *ptr3, *ptr4;
bool result = TRUE;
lb_salloc_init(buffer, 1024);
ptr1 = lb_salloc(buffer, 10);
ptr2 = lb_salloc(buffer, 10);
ptr3 = lb_salloc(buffer, 10);
ptr4 = lb_salloc(buffer, 10);
result = result && (ptr1 != NULL) && (ptr2 != NULL) && (ptr3 != NULL) && (ptr4 != NULL);
lb_sfree(buffer, ptr1);
lb_sfree(buffer, ptr2);
uint32 blk_size[] = {2 * (10 + salloc_header_size),
10 + salloc_header_size,
10 + salloc_header_size,
1024 - 4 * (10 + salloc_header_size)};
bool blk_free[] = {TRUE, FALSE, FALSE, TRUE};
result = result && lb_salloc_assert(buffer, blk_size, blk_free, 4);
return result;
}
static bool salloc_free_join_mid(void)
{
void *ptr1, *ptr2, *ptr3, *ptr4;
bool result = TRUE;
lb_salloc_init(buffer, 1024);
ptr1 = lb_salloc(buffer, 10);
ptr2 = lb_salloc(buffer, 10);
ptr3 = lb_salloc(buffer, 10);
ptr4 = lb_salloc(buffer, 10);
result = result && (ptr1 != NULL) && (ptr2 != NULL) && (ptr3 != NULL) && (ptr4 != NULL);
lb_sfree(buffer, ptr2);
lb_sfree(buffer, ptr3);
uint32 blk_size[] = {10 + salloc_header_size,
2 * (10 + salloc_header_size),
10 + salloc_header_size,
1024 - 4 * (10 + salloc_header_size)};
bool blk_free[] = {FALSE, TRUE, FALSE, TRUE};
result = result && lb_salloc_assert(buffer, blk_size, blk_free, 4);
return result;
}
static bool salloc_free_join_consecutive(void)
{
void *ptr1, *ptr2, *ptr3, *ptr4, *ptr5;
bool result = TRUE;
lb_salloc_init(buffer, 1024);
ptr1 = lb_salloc(buffer, 10);
ptr2 = lb_salloc(buffer, 10);
ptr3 = lb_salloc(buffer, 10);
ptr4 = lb_salloc(buffer, 10);
ptr5 = lb_salloc(buffer, 10);
result = result && (ptr1 != NULL) && (ptr2 != NULL) && (ptr3 != NULL) && (ptr4 != NULL) && (ptr5 != NULL);
lb_sfree(buffer, ptr2);
lb_sfree(buffer, ptr4);
uint32 blk_size[] = {10 + salloc_header_size,
10 + salloc_header_size,
10 + salloc_header_size,
10 + salloc_header_size,
10 + salloc_header_size,
1024 - 5 * (10 + salloc_header_size)};
bool blk_free[] = {FALSE, TRUE, FALSE, TRUE, FALSE, TRUE};
result = result && lb_salloc_assert(buffer, blk_size, blk_free, 6);
lb_sfree(buffer, ptr3);
uint32 blk_size2[] = {10 + salloc_header_size,
3 * (10 + salloc_header_size),
10 + salloc_header_size,
1024 - 5 * (10 + salloc_header_size)};
bool blk_free2[] = {FALSE, TRUE, FALSE, TRUE};
result = result && lb_salloc_assert(buffer, blk_size2, blk_free2, 4);
return result;
}
static bool salloc_free_all(void)
{
void *ptr1, *ptr2, *ptr3, *ptr4;
bool result = TRUE;
lb_salloc_init(buffer, 1024);
ptr1 = lb_salloc(buffer, 10);
ptr2 = lb_salloc(buffer, 10);
ptr3 = lb_salloc(buffer, 10);
ptr4 = lb_salloc(buffer, 10);
result = result && (ptr1 != NULL) && (ptr2 != NULL) && (ptr3 != NULL) && (ptr4 != NULL);
lb_sfree(buffer, ptr1);
lb_sfree(buffer, ptr2);
lb_sfree(buffer, ptr3);
lb_sfree(buffer, ptr4);
uint32 blk_size[] = {1024};
bool blk_free[] = {TRUE};
result = result && lb_salloc_assert(buffer, blk_size, blk_free, 1);
return result;
}
void salloc_test(void)
{
test_begin("salloc test");
run_case("salloc_init_test", salloc_init_test());
run_case("salloc_basic_alloc", salloc_basic_alloc());
run_case("salloc_full_alloc", salloc_full_alloc());
run_case("salloc_overflow_alloc", salloc_overflow_alloc());
run_case("salloc_multiple_alloc", salloc_multiple_alloc());
run_case("salloc_alloc_not_enough", salloc_alloc_not_enough());
run_case("salloc_basic_free", salloc_basic_free());
run_case("salloc_full_free", salloc_full_free());
run_case("salloc_multiple_free", salloc_multiple_free());
run_case("salloc_free_join_tail", salloc_free_join_tail());
run_case("salloc_free_join_head", salloc_free_join_head());
run_case("salloc_free_join_mid", salloc_free_join_mid());
run_case("salloc_free_join_consecutive", salloc_free_join_consecutive());
run_case("salloc_free_all", salloc_free_all());
test_end();
}

View File

@ -1,172 +0,0 @@
#include "test_main.h"
#include "test_case.h"
#include <stdio.h>
#include <stdlib.h>
#define GAT_SIZE 256
#define CASE_NUM 32
typedef struct
{
char *case_name;
bool success;
bool used;
} case_info;
static case_info ginfo[CASE_NUM];
static void *gat[GAT_SIZE];
static char *test_name;
static void test_info(void)
{
printf("[TD-INFO][%s] - ", test_name);
fflush(stdout);
}
static void test_warning(void)
{
printf("[TD-WARN][%s] - ", test_name);
fflush(stdout);
}
static void test_error(void)
{
printf("[TD-ERR][%s] - ", test_name);
fflush(stdout);
}
static void gat_push(void *ptr)
{
for (int i = 0; i < GAT_SIZE; i++)
{
if (gat[i] == NULL)
{
gat[i] = ptr;
return;
}
}
}
static bool gat_full(void)
{
for (int i = 0; i < GAT_SIZE; i++)
{
if (gat[i] == NULL)
{
return FALSE;
}
}
return TRUE;
}
static void gat_free(void)
{
for (int i = 0; i < GAT_SIZE; i++)
{
if (gat[i] != NULL)
{
free(gat[i]);
gat[i] = NULL;
}
}
}
static void ginfo_push(char *case_name, bool success)
{
char *r_case_name = (case_name == NULL ? "Anonymous Case" : case_name);
for (int i = 0; i < CASE_NUM; i++)
{
if (!ginfo[i].used)
{
ginfo[i].case_name = r_case_name;
ginfo[i].success = success;
ginfo[i].used = TRUE;
return;
}
}
test_warning();
printf("GINFO full, [%s] result not recorded.\n", r_case_name);
}
void test_begin(char *name)
{
test_name = (name == NULL ? "Anonymous Test" : name);
for (int i = 0; i < GAT_SIZE; i++)
{
gat[i] = NULL;
}
for (int i = 0; i < CASE_NUM; i++)
{
ginfo[i].used = FALSE;
}
}
void test_end(void)
{
gat_free();
int32 total = 0, failed = 0, success = 0;
for (int i = 0; i < CASE_NUM; i++)
{
if (ginfo[i].used)
{
total++;
if (ginfo[i].success)
{
success++;
}
else
{
failed++;
}
}
}
test_info();
printf("%s\n", failed > 0 ? "FAIL" : "PASS");
printf(" %d cases executed. S: %d. F: %d.\n", total, success, failed);
if (failed > 0)
{
for (int i = 0; i < CASE_NUM; i++)
{
if (ginfo[i].used && !ginfo[i].success)
{
printf(" %s FAILED\n", ginfo[i].case_name);
}
}
}
for (int i = 0; i < CASE_NUM; i++)
{
ginfo[i].used = FALSE;
}
}
void *talloc(uint32 size)
{
if (!gat_full())
{
void *result = malloc(size);
gat_push(result);
return result;
}
else
{
test_error();
printf("GAT full, rejecting further allocations.\n");
}
return NULL;
}
void run_case(char *name, bool result)
{
ginfo_push(name, result);
}
int main(void)
{
linked_list_test();
salloc_test();
avl_tree_test();
return 0;
}