the TLBs in order to get rid of the user mappings but instead traverse
them an flush only the latter like we also do for the Spitfire-class.
Also flushing the unlocked kernel entries can cause instant faults which
when called from within cpu_switch() are handled with the scheduler lock
held which in turn can cause timeouts on the acquisition of the lock by
other CPUs. This was easily seen with a 16-core V890 but occasionally
also happened with 2-way machines.
While at it, move the SPARC64-V support code entirely to zeus.c. This
causes a little bit of duplication but is less confusing than partially
using Cheetah-class bits for these.
- For SPARC64-V ensure that 4-Mbyte page entries are stored in the 1024-
entry, 2-way set associative TLB.
- In {d,i}tlb_get_data_sun4u() turn off the interrupts in order to ensure
that ASI_{D,I}TLB_DATA_ACCESS_REG actually are read twice back-to-back.
Tested by: Peter Jeremy (16-core US-IV), Michael Moll (2-way SPARC64-V)
by UltraSparc-IV and -IV+ as well as SPARC64 V, VI, VII and VIIIfx CPUs.
- Replace TLB_PCXR_PGSZ_MASK and TLB_SCXR_PGSZ_MASK with TLB_CXR_PGSZ_MASK
which just is the complement of TLB_CXR_CTX_MASK instead of trying to
assemble it from the page size bits which vary across CPUs.
- Add macros for the remainder of the SFSR bits, which are useful for at
least debugging purposes.
whole KVA space using one locked 4MB dTLB entry per GB of physical
memory. On Cheetah-class machines only the dt16 can hold locked
entries though, which would be completely consumed for the kernel
TSB on machines with >= 16GB. Therefore limit the KVA space to use
no more than half of the lockable dTLB slots, given that we need
them also for other things.
- Add sanity checks which ensure that we don't exhaust the (lockable)
TLB slots.
for all three contexts and configure the dt512_1 to hold 4MB pages for
them (e.g. for direct mappings).
This might allow for additional optimization by using the faulting
page sizes provided by AA_DMMU_TAG_ACCESS_EXT for bypassing the page
size walker for the dt512 in the superpage support code.
Submitted by: nwhitehorn (initial patch)
the cpu dependent files. It will need to be done differently for USIII.
- Simplify the logic for detecting context rollovers. Instead of dealing
with it when the next context switch would cause the context numbers to
rollover, deal with it when they actually do rollover.
- Move some things around in cpu_switch so that we only do 1 membar #Sync
when switching address space, instead of 2.
- Detect kernel threads by comparing the new vm space to vmspace0, instead
if checking if the tlb context is 0.
- Removed some debug code.
useful for accessing more than 1 page of contiguous physical memory, and
to use 4mb tlb entries instead of 8k. This requires that the system only
use the direct mapped addresses when they have the same virtual colour as
all other mappings of the same page, instead of being able to choose the
colour and cachability of the mapping.
- Adapt the physical page copying and zeroing functions to account for not
being able to choose the colour or cachability of the direct mapped
address. This adds a lot more cases to handle. Basically when a page has
a different colour than its direct mapped address we have a choice between
bypassing the data cache and using physical addresses directly, which
requires a cache flush, or mapping it at the right colour, which requires
a tlb flush. For now we choose to map the page and do the tlb flush.
This will allows the direct mapped addresses to be used for more things
that don't require normal pmap handling, including mapping the vm_page
structures, the message buffer, temporary mappings for crash dumps, and will
provide greater benefit for implementing uma_small_alloc, due to the much
greater tlb coverage.
Check if the trapped pc is inside of the demarked sections to implement
fault recovery for copyin etc, instead of pcb_onfault. Handle recovery
from data access exceptions as well as page faults.
Inspired by: bde's sys.dif
basically maps all of physical memory 1:1 to a range of virtual addresses
outside of normal kva. The advantage of doing this instead of accessing
phsyical addresses directly is that memory accesses will go through the
data cache, and will participate in the normal cache coherency algorithm
for invalidating lines in our own and in other cpus' data caches. So
we don't have to flush the cache manually or send IPIs to do so on other
cpus. Also, since the mappings never change, we don't have to flush them
from the tlb manually.
This makes pmap_copy_page and pmap_zero_page MP safe, allowing the idle
zero proc to run outside of giant.
Inspired by: ia64
in their tlb which the prom doesn't clear out, so we have to do so manually
before mapping the kernel page table or the cpu can hang due various
conditions which cause undefined behaviour from the tlb.
value of the tag or data field.
Add macros for getting the page shift, size and mask for the physical page
that a tte maps (which may be one of several sizes).
Use the new cache functions for invalidating single pages.
hold the kernel text, data and loader metadata by not using a fixed slot
to store the TSB page(s) into. Enter fake 8k page entries into the kernel
TSB that cover the 4M kernel page(s), sot that pmap_kenter() will work
without having to treat these pages as a special case.
Problem reported by: mjacob, obrien
Problem spotted and 4M page handling proposed by: jake
not blocked by raising the pil, a reciever may be interrupted while holding
a spinlock. If the sender does not defer interrupts throughout the entire
operation it may be interrupted and try to acquire a spinlock held by a
reciever, leading to a deadlock due to the synchronization used by the
ipi handlers themselves.
Submitted by: tmm
than the other implementations; we have complete control over the tlb, so we
only demap specific pages. We take advantage of the ranged tlb flush api
to send one ipi for a range of pages, and due to the pm_active optimization
we rarely send ipis for demaps from user pmaps.
Remove now unused routines to load the tlb; this is only done once outside
of the tlb fault handlers.
Minor cleanups to the smp startup code.
This boots multi user with both cpus active on a dual ultra 60 and on a
dual ultra 2.
Due to allocating tlb contexts on the fly, we only ever need to demap the
primary context, non-primary contexts have already been implicitly flushed
by context switching. All we really need to tell is if its a kernel demap
or not, and its easier just to compare against the kernel_pmap which is a
constant.
with pmaps. When the context numbers wrap around we flush all user mappings
from the tlb. This makes use of the array indexed by cpuid to allow a pmap
to have a different context number on a different cpu. If the context numbers
are then divided evenly among cpus such that none are shared, we can avoid
sending tlb shootdown ipis in an smp system for non-shared pmaps. This also
removes a limit of 8192 processes (pmaps) that could be active at any given
time due to running out of tlb contexts.
Inspired by: the brown book
Crucial bugfix from: tmm
virtual page number in a much more convenient way; all in one piece. This
greatly simplifies the comparison for a matching tte, and allows the fault
handlers to be much simpler due to not having to load wierd masks.
Rewrite the tlb fault handlers to account for the new format. These are also
written to allow faults on the user tsb inside of the fault handlers; the
kernel fault handler must be aware of this and not clobber the other's
registers. The faults do not yet occur due to other support that is needed
(and still under my desk).
Bug fixes from: tmm
will be used to reduce the number of tlb shootdown ipis in an smp system
by sending one ipi for a whole range of pages, instead of one per page.
Munge the context demap operations slightly to support demapping a non-primary
context.
their duration. This is still only effective as long as they are
only used in the static kernel. Code in modules may cause instruction
faults which makes these break in different ways anyway.
2. Add a load bearing membar #Sync.
3. Add an inline for demapping an entire context.
Submitted by: tmm (1, 2)
- mostly complete kernel pmap support, and tested but currently turned
off userland pmap support
- low level assembly language trap, context switching and support code
- fully implemented atomic.h and supporting cpufunc.h
- some support for kernel debugging with ddb
- various header tweaks and filling out of machine dependent structures