and increase flexibility to allow various different approaches to be tried
in the future.
- Split struct ithd up into two pieces. struct intr_event holds the list
of interrupt handlers associated with interrupt sources.
struct intr_thread contains the data relative to an interrupt thread.
Currently we still provide a 1:1 relationship of events to threads
with the exception that events only have an associated thread if there
is at least one threaded interrupt handler attached to the event. This
means that on x86 we no longer have 4 bazillion interrupt threads with
no handlers. It also means that interrupt events with only INTR_FAST
handlers no longer have an associated thread either.
- Renamed struct intrhand to struct intr_handler to follow the struct
intr_foo naming convention. This did require renaming the powerpc
MD struct intr_handler to struct ppc_intr_handler.
- INTR_FAST no longer implies INTR_EXCL on all architectures except for
powerpc. This means that multiple INTR_FAST handlers can attach to the
same interrupt and that INTR_FAST and non-INTR_FAST handlers can attach
to the same interrupt. Sharing INTR_FAST handlers may not always be
desirable, but having sio(4) and uhci(4) fight over an IRQ isn't fun
either. Drivers can always still use INTR_EXCL to ask for an interrupt
exclusively. The way this sharing works is that when an interrupt
comes in, all the INTR_FAST handlers are executed first, and if any
threaded handlers exist, the interrupt thread is scheduled afterwards.
This type of layout also makes it possible to investigate using interrupt
filters ala OS X where the filter determines whether or not its companion
threaded handler should run.
- Aside from the INTR_FAST changes above, the impact on MD interrupt code
is mostly just 's/ithread/intr_event/'.
- A new MI ddb command 'show intrs' walks the list of interrupt events
dumping their state. It also has a '/v' verbose switch which dumps
info about all of the handlers attached to each event.
- We currently don't destroy an interrupt thread when the last threaded
handler is removed because it would suck for things like ppbus(8)'s
braindead behavior. The code is present, though, it is just under
#if 0 for now.
- Move the code to actually execute the threaded handlers for an interrrupt
event into a separate function so that ithread_loop() becomes more
readable. Previously this code was all in the middle of ithread_loop()
and indented halfway across the screen.
- Made struct intr_thread private to kern_intr.c and replaced td_ithd
with a thread private flag TDP_ITHREAD.
- In statclock, check curthread against idlethread directly rather than
curthread's proc against idlethread's proc. (Not really related to intr
changes)
Tested on: alpha, amd64, i386, sparc64
Tested on: arm, ia64 (older version of patch by cognet and marcel)
uses the i8237 without trying to emulate the PC architecture move
the register definitions for the i8237 chip into the central include
file for the chip, except for the PC98 case which is magic.
Add new isa_dmatc() function which tells us as cheaply as possible
if the terminal count has been reached for a given channel.
and which takes a M_WAITOK/M_NOWAIT flag argument.
Add compatibility isa_dmainit() macro which whines loudly if
isa_dma_init() fails.
Problem uncovered by: tegge
Add two new arguments to bus_dma_tag_create(): lockfunc and lockfuncarg.
Lockfunc allows a driver to provide a function for managing its locking
semantics while using busdma. At the moment, this is used for the
asynchronous busdma_swi and callback mechanism. Two lockfunc implementations
are provided: busdma_lock_mutex() performs standard mutex operations on the
mutex that is specified from lockfuncarg. dftl_lock() is a panic
implementation and is defaulted to when NULL, NULL are passed to
bus_dma_tag_create(). The only time that NULL, NULL should ever be used is
when the driver ensures that bus_dmamap_load() will not be deferred.
Drivers that do not provide their own locking can pass
busdma_lock_mutex,&Giant args in order to preserve the former behaviour.
sparc64 and powerpc do not provide real busdma_swi functions, so this is
largely a noop on those platforms. The busdma_swi on is64 is not properly
locked yet, so warnings will be emitted on this platform when busdma
callback deferrals happen.
If anyone gets panics or warnings from dflt_lock() being called, please
let me know right away.
Reviewed by: tmm, gibbs
i386/ia64/alpha - catch up to sparc64/ppc:
- replace pmap_kernel() with refs to kernel_pmap
- change kernel_pmap pointer to (&kernel_pmap_store)
(this is a speedup since ld can set these at compile/link time)
all platforms (as suggested by jake):
- gc unused pmap_reference
- gc unused pmap_destroy
- gc unused struct pmap.pm_count
(we never used pm_count - we track address space sharing at the vmspace)
and it's associated state variables: icu_lock with the name "icu". This
renames the imen_mtx for x86 SMP, but also uses the lock to protect
access to the 8259 PIC on x86 UP. This also adds an appropriate lock to
the various Alpha chipsets which fixes problems with Alpha SMP machines
dropping interrupts with an SMP kernel.
EOI after the ithread runs, send the EOI when we get the interrupt and
disable the source. After the ithread is run, the source is renabled.
Also, add isa_handle_fast_intr() which handles fast interrupts by sending
an EOI after the handler is run.
This fixes the chronic missing interrupt problems under heavy NFS load
on my UP1000 and should result in greater stability for alphas which
route all irqs through an isa pic.
Discussed with: jhb, bde (sending non-specific EOIs early was bde's idea)
- Make softinterrupts (SWI's) almost completely MI, and divorce them
completely from the x86 hardware interrupt code.
- The ihandlers array is now gone. Instead, there is a MI shandlers array
that just contains SWI handlers.
- Most of the former machine/ipl.h files have moved to a new sys/ipl.h.
- Stub out all the spl*() functions on all architectures.
Submitted by: dfr
irongate chipset (used in the UP1000) which does not support scatter/gather
DMA. We'll still use scatter gather if the core logic chipset supports it.
Reviewed by: dfr
chipsets. An example of this is the USB controller on these chipsets.
With this, I can now use USB devices on the test Alpha I am borrowing at
the moment.
Reviewed by: dfr, obrien
resource_list_release. This removes the dependancy on the
layout of ivars.
* Move set_resource, get_resource and delete_resource from
isa_if.m to bus_if.m.
* Simplify driver code by providing wrappers to those methods:
bus_set_resource(dev, type, rid, start, count);
bus_get_resource(dev, type, rid, startp, countp);
bus_get_resource_start(dev, type, rid);
bus_get_resource_count(dev, type, rid);
bus_delete_resource(dev, type, rid);
* Delete isa_get_rsrc and use bus_get_resource_start instead.
* Fix a stupid typo in isa_alloc_resource reported by Takahashi
Yoshihiro <nyan@FreeBSD.org>.
* Print a diagnostic message if we can't assign resources to a PnP
device.
* Change device_print_prettyname() so that it doesn't print
"(no driver assigned)-1" for anonymous devices.
* Re-work the resource allocation code to use helper functions in subr_bus.c.
* Add simple isa interface for manipulating the resource ranges which can be
allocated and remove the code from isa_write_ivar() which was previously
used for this purpose.
instances to a parent bus.
* Define a new method BUS_ADD_CHILD which can be called from DEVICE_IDENTIFY
to add new instances.
* Add a generic implementation of DEVICE_PROBE which calls DEVICE_IDENTIFY
for each driver attached to the parent's devclass.
* Move the hint-based isa probe from the isa driver to a new isahint driver
which can be shared between i386 and alpha.
Interrupts under the new scheme are managed by the i386 nexus with the
awareness of the resource manager. There is further room for optimizing
the interfaces still. All the users of register_intr()/intr_create()
should be gone, with the exception of pcic and i386/isa/clock.c.
i386 platform boots, it is no longer ISA-centric, and is fully dynamic.
Most old drivers compile and run without modification via 'compatability
shims' to enable a smoother transition. eisa, isapnp and pccard* are
not yet using the new resource manager. Once fully converted, all drivers
will be loadable, including PCI and ISA.
(Some other changes appear to have snuck in, including a port of Soren's
ATA driver to the Alpha. Soren, back this out if you need to.)
This is a checkpoint of work-in-progress, but is quite functional.
The bulk of the work was done over the last few years by Doug Rabson and
Garrett Wollman.
Approved by: core
* Update drivers to the latest version of the bus interface.
The ISA drivers' use of the new resource api is minimal. Garrett has
some much cleaner drivers which should be more easily shared between
i386 and alpha. This has only been tested on cia based machines. It
should work on lca and apecs but I might have broken something.