tcp6_usr_bind(), tcp_usr_connect(), and tcp6_usr_connect() before checking
to see whether the address is multicast so that the proper errno value
will be returned if sa_len is incorrect. The checks are identical to the
ones in in_pcbbind_setup(), in6_pcbbind(), and in6_pcbladdr(), which are
called after the multicast address check passes.
MFC after: 30 days
avoid relying on the minimum memory allocation size to avoid problems.
The check is somewhat redundant because the consumers of the returned
structure will check that sa_len is a protocol-specific larger size.
Submitted by: Matthew Dillon <dillon@apollo.backplane.com>
Reviewed by: nectar
MFC after: 30 days
allnodes multicast route if the routing table has not been initialized.
This avoids a panic during boot if an interface detaches before the
routing table is initialized.
Submitted by: sam
setting the new process' p_pgrp again before inserting it in the p_pglist.
Without it we can get the new process to be inserted in a different p_pglist
than the one p2->p_pgrp points to, and this is not something we want to happen.
This is not a fix, merely a bandaid, but it will work until someone finds a
better way to do it.
Discussed with: jhb (a long time ago)
at it, use the ANSI C generic pointer type for the second argument,
thus matching the documentation.
Remove the now extraneous (and now conflicting) function declarations
in various libc sources. Remove now unnecessary casts.
Reviewed by: bde
incorrectly when encountering `large' groups (many members and/or many
long member names). The reporter tracked this down to the glibc NSS
module compatibility code (nss_compat.c): it would prematurely record
that a NSS module was finished iterating through its database in some
cases.
Two aspects are corrected:
1. nss_compat.c recorded that a NSS module was finished iterating
whenever the module reported something other than SUCCESS. The
correct logic is to continue iteration when the module reports
either SUCCESS or RETURN. The __nss_compat_getgrent_r and
__nss_compat_getpwent_r routines are updated to reflect this.
2. An internal helper macro __nss_compat_result is used to map glibc
NSS status codes to BSD NSS status codes (e.g. NSS_STATUS_SUCCESS ->
NS_SUCCESS). It provided the obvious mapping.
When a NSS routine is called with a too-small buffer, the
convention in the BSD NSS code is to report RETURN. (This is used
to implement reentrant APIs such as getpwnam_r(3).) However, the
convention in glibc for this case is to set errno = ERANGE and
overload TRYAGAIN. __nss_compat_result is updated to handle this
case.
PR: bin/60287
Reported by: Lachlan O'Dea <odela01@ca.com>
which has two important flags in it: the 'allocated by NDIS' flag
and the 'media specific info present' flag. There are two Windows macros
for getting/setting media specific info fields within the ndis_packet
structure which can behave improperly if these flags are not initialized
correctly when a packet is allocated. It seems the correct thing
to do is always set the NDIS_PACKET_ALLOCATED_BY_NDIS flag on
all newly allocated packets.
This fixes the crashes with the Intel Centrino wireless driver.
My sample card now seems to work correctly.
Also, fix a potential LOR involving ndis_txeof() in if_ndis.c.
By default, we search for files in /compat/ndis. This can be changed with
a systcl. These routines are used by some drivers which need to download
firmware or microcode into their respective devices during initialization.
Also, remove extraneous newlines from the 'built-in' sysctl/registry
variables.
very useful .dot files of your netgraph(4) to quickly visualize the
nodes, hooks and edges. An example of this can be found here:
http://people.freebsd.org/~green/sample-netgraph-dot.ps
If anyone would like to refine the output further, please do so.
in slightly less usual states:
If the thread is on a run queue, display "running" if the thread is
actually running, otherwise, "runnable".
If the thread is sleeping, and it's on a sleep queue, display the
name of the queue, otherwise "unknown" -- previously, in this situation
we would display "iowait".
If the thread is waiting on a lock, display *lockname.
If the thread is suspended, display "suspended" -- previously, in
this situation we would display "iowait".
If the thread is waiting for an interrupt, display "intrwait" --
previously, in this situation we would display "iowait".
If the thread is in a state not handled by the above, display
"unknown" -- previously, we would print "iowait".
Among other things, this avoids displaying "iowait" when the foreground
process turns out to be suspended waiting for a debugger to properly
attach.