This is a nice small outdoor/indoor AP from Ubiquity Networks.
The device has:
AR7241 CPU SoC
AR9287 Wifi
8MB flash
32MB RAM
wifi has been tested to work along with leds.
Submitted by: loos
Approved by: sbruno (mentor, implicit)
Tested by: hiren
form xx:xx:xx:xx:xx:xx complete with ":" characters taking of 18 bytes
instead of 6 integers. Expose a "readascii" tuneable to handle this case.
Remove restriction on eepromac assignement for the first dev instance only.
Add eepromac address for DIR-825 to hints file.
Add readascii hint for DIR-825
Reviewed by: adrian@
* Make Yarrow an optional kernel component -- enabled by "YARROW_RNG" option.
The files sha2.c, hash.c, randomdev_soft.c and yarrow.c comprise yarrow.
* random(4) device doesn't really depend on rijndael-*. Yarrow, however, does.
* Add random_adaptors.[ch] which is basically a store of random_adaptor's.
random_adaptor is basically an adapter that plugs in to random(4).
random_adaptor can only be plugged in to random(4) very early in bootup.
Unplugging random_adaptor from random(4) is not supported, and is probably a
bad idea anyway, due to potential loss of entropy pools.
We currently have 3 random_adaptors:
+ yarrow
+ rdrand (ivy.c)
+ nehemeiah
* Remove platform dependent logic from probe.c, and move it into
corresponding registration routines of each random_adaptor provider.
probe.c doesn't do anything other than picking a specific random_adaptor
from a list of registered ones.
* If the kernel doesn't have any random_adaptor adapters present then the
creation of /dev/random is postponed until next random_adaptor is kldload'ed.
* Fix randomdev_soft.c to refer to its own random_adaptor, instead of a
system wide one.
Submitted by: arthurmesh@gmail.com, obrien
Obtained from: Juniper Networks
Reviewed by: obrien
DB120 development board.
The AR934x SoCs are a MIPS74k based system with increased RAM addressing
space, some scratch-pad RAM, an improved gige switch PHY and 2x2 or 3x3
on-board dual-band wifi.
This support isn't complete by any stretch; it's just enough to bring
the board up for others to tinker with. Notably, the MIPS74k support
is broken. However it boots enough to echo some basic probe/attach
messages, before dying somewhere in the TLB code.
Thankyou to Qualcomm Atheros for their continued support of me doing
open source work with their hardware.
Tested:
* AR9344, mips74k
This is an AR7240 based device with an AR9285 on-board.
I've tested the initial boot and wifi support; however at the moment
the ethernet switch driver doesn't seem to be picking up carrier on the
active ethernet port. Basic flood pinging works however, so I think
we're on the right track.
Thank you to Adrian Woodley <adrian@diskworld.com.au> for purchasing me
one of these devices to bootstrap FreeBSD-HEAD on.
This is based on the AR933x (Hornet) SoC from Qualcomm Atheros.
It's a much nicer board to do development on - 64MB RAM, 16MB flash.
The development board breaks out the GPIO pins, ethernet, serial (via
a USB<->RS232 chip), USB host and of course a small wifi antenna.
Everything but the wifi works thus far.
Until an ADM6996 driver shows up, this allows for the two switch
ports to be used.
Submitted by: Luiz Otavio O Souza <loos.br@gmail.com>
Reviewed by: ray
* arge0 is MII
* arge1 is GMII
* the MDIO bus is on arge1, not arge0
* the default switch config is to have ports 0-3 as the switch group,
with port 4 being an external PHY dedicated to arge0 (ie, 'cpu' port.)
Whilst I'm here, remove unused bits and pieces from the config.
Tested:
* AP121, ping on both arge0 and arge1
* Tested switch port detection using etherswitchcfg
This implements the bus transmit/receive/sigchg/ipend methods with
a polled interrupt handler (ipend) rather than enabling hardware
interrupts.
The FIFO is faked at 16 bytes deep for now, just so the transmit
IO side doesn't suck too bad (the callout frequency limits how quickly
IO is flushed to the sender, rather than scheduling the callout more
frequently whilst there's active TX. But I digress.)
Tested:
* Atheros AP121 (AR9330) reference board, booting to multi-user interactive
mode.
most kernels before FreeBSD 9.0. Remove such modules and respective kernel
options: atadisk, ataraid, atapicd, atapifd, atapist, atapicam. Remove the
atacontrol utility and some man pages. Remove useless now options ATA_CAM.
No objections: current@, stable@
MFC after: never
reducing the number of runtime checks done by the SDK code.
o) Group board/CPU information at early startup by subject matter, so that e.g.
CPU information is adjacent to CPU information and board information is
adjacent to board information.
* add cam as a module to build - but build in scbus/da for now, as
"cam" as a module includes all cam devices. Hardly space saving.
* Don't build FFS snapshot support.
This has an AR7240 SoC with an AR9285 wireless NIC on-board.
Since the kernel partition on the 4MiB flash is 960KiB, quite a bit
is disabled to try and squeeze the build into that. Even lzma'ed,
it's still quite large.
802.11n router.
The flash layout defaults to a 1 MiB section for the kernel so I'm trying
very hard to squeeze a minimialistic (LZMA compressde) kernel image into
that.
I've verified that it boots through to single user mode fine.
Issues:
* USB doesn't yet work as a module - I need to add something else to the
USB AR71xx build before that will work.
* There's no switch PHY support - but for now it quite happily behaves
as a useful dumb switch out of the box. Phew.
* Since a previous flash attempt trashed my radio configuration block,
I haven't yet verified whether the wireless works correctly.
I'll test that out shortly (read: once I re-calibrate the board somehow.)
Thanks to ray@ and the zrouter project for doing some of the initial
hard work in figuring out how to bring this board up.