these days, so de-generalize the acquire_timer/release_timer api
to just deal with speakers.
The new (optional) MD functions are:
timer_spkr_acquire()
timer_spkr_release()
and
timer_spkr_setfreq()
the last of which configures the timer to generate a tone of a given
frequency, in Hz instead of 1/1193182th of seconds.
Drop entirely timer2 on pc98, it is not used anywhere at all.
Move sysbeep() to kern/tty_cons.c and use the timer_spkr*() if
they exist, and do nothing otherwise.
Remove prototypes and empty acquire-/release-timer() and sysbeep()
functions from the non-beeping archs.
This eliminate the need for the speaker driver to know about
i8254frequency at all. In theory this makes the speaker driver MI,
contingent on the timer_spkr_*() functions existing but the driver
does not know this yet and still attaches to the ISA bus.
Syscons is more tricky, in one function, sc_tone(), it knows the hz
and things are just fine.
In the other function, sc_bell() it seems to get the period from
the KDMKTONE ioctl in terms if 1/1193182th second, so we hardcode
the 1193182 and leave it at that. It's probably not important.
Change a few other sysbeep() uses which obviously knew that the
argument was in terms of i8254 frequency, and leave alone those
that look like people thought sysbeep() took frequency in hertz.
This eliminates the knowledge of i8254_freq from all but the actual
clock.c code and the prof_machdep.c on amd64 and i386, where I think
it would be smart to ask for help from the timecounters anyway [TBD].
user-mode lock manager, build a kernel with the NFSLOCKD option and
add '-k' to 'rpc_lockd_flags' in rc.conf.
Highlights include:
* Thread-safe kernel RPC client - many threads can use the same RPC
client handle safely with replies being de-multiplexed at the socket
upcall (typically driven directly by the NIC interrupt) and handed
off to whichever thread matches the reply. For UDP sockets, many RPC
clients can share the same socket. This allows the use of a single
privileged UDP port number to talk to an arbitrary number of remote
hosts.
* Single-threaded kernel RPC server. Adding support for multi-threaded
server would be relatively straightforward and would follow
approximately the Solaris KPI. A single thread should be sufficient
for the NLM since it should rarely block in normal operation.
* Kernel mode NLM server supporting cancel requests and granted
callbacks. I've tested the NLM server reasonably extensively - it
passes both my own tests and the NFS Connectathon locking tests
running on Solaris, Mac OS X and Ubuntu Linux.
* Userland NLM client supported. While the NLM server doesn't have
support for the local NFS client's locking needs, it does have to
field async replies and granted callbacks from remote NLMs that the
local client has contacted. We relay these replies to the userland
rpc.lockd over a local domain RPC socket.
* Robust deadlock detection for the local lock manager. In particular
it will detect deadlocks caused by a lock request that covers more
than one blocking request. As required by the NLM protocol, all
deadlock detection happens synchronously - a user is guaranteed that
if a lock request isn't rejected immediately, the lock will
eventually be granted. The old system allowed for a 'deferred
deadlock' condition where a blocked lock request could wake up and
find that some other deadlock-causing lock owner had beaten them to
the lock.
* Since both local and remote locks are managed by the same kernel
locking code, local and remote processes can safely use file locks
for mutual exclusion. Local processes have no fairness advantage
compared to remote processes when contending to lock a region that
has just been unlocked - the local lock manager enforces a strict
first-come first-served model for both local and remote lockers.
Sponsored by: Isilon Systems
PR: 95247 107555 115524 116679
MFC after: 2 weeks
sort the entry into it's correct place (behind 200407XX before
200406XX because we have an explicit date here).
PR: misc/122098
Submitted by: "John Hein" <jhein@timing.com>
MFC after: 3 days
the owner of a queue to block and unblock execution of the tasks in the
queue while allowing tasks to continue to be added queue. Combining this
with taskqueue_drain() allows a queue to be safely disabled. The unblock
function may run (or schedule to run) the queue when it is called, just as
calling taskqueue_enqueue() would.
Reviewed by: jhb, sam
modifications merged. I had initially expected that people would
put any local changes into /boot/loader.conf, but it turns out that
editing /boot/device.hints is something many people do.
Suggested by: Jaakko Heinonen
MFC after: 1 week
shared libraries.
This fixes a problem which resulted in 6.x->7.x upgrades having the
/usr/lib/libpthread.so -> libthr.so symlink missing; what happened was
that the old libpthread.so symlink pointed to /lib/libpthread.so.2 --
which matched the "/lib/*\.so\.[0-9]+" regex -- but the new symlink
didn't, so FreeBSD Update got confused and deleted the symlink as part
of its "remove old shared libraries" step.
To recreate the symlink (which I understand is necessary for ports like
KDE to build) on a 7.x system which FreeBSD Update upgraded from 6.x:
# ln -s libthr.so /usr/lib/libpthread.so
Reported by: Dmitry RCL Rekman
Help diagnosing bug from: kris
MFC after: 7 days
Removed dead code that assumed that M_TRYWAIT can return NULL; it's not true
since the advent of MBUMA.
Reviewed by: arch
There are ongoing disputes as to whether we want to switch to directly using
UMA flags M_WAITOK/M_NOWAIT for mbuf(9) allocation.
bpf_canfreebuf() in order to avoid potentially calling a non-inlinable
but trivial function in zero-copy buffer mode for every packet
received when we couldn't free the buffer anyway.
MFC after: 4 months
of pptpgre and ksocket nodes for all calls between two peers. This patch
modifies node's API by adding new "session_%04x" hook names support, while
keeping backward compatibility.
Together with appropriate user-level support (by latest mpd5) it gives
huge performance benefits for case of multiple active calls between
two peers because of avoiding data duplication and extra socket processing.
On my benchmarks I have got more then 10 times speedup for the 200
simultaneous PPTP calls between two peers.
In conclusion, it allows now to build effective "clients <=> PAC <=> PNS"
setups.