ucontext_t. Forward declare struct __ucontext in <sys/signal.h> and
remove reliance on <sys/ucontext.h> being included.
While I'm here, also hide osigcontext types from userland; suggested
by bde.
Namespace pollution noticed by: Kevin Day <toasty@shell.dragondata.com>
for SMP in the plain profiling case. It seems to work too.
This error was not detected by LINT because LINT only compiles the
GUPROF profiling case, which is is a superset of the plain profiling
case for !SMP but which is so broken for SMP that the buggy code is
not compiled.
they make it through to userland. This should fix the p5-smp problem
without affecting the other cpus (eg: cyrix, see initcpu.c and the special
cache handling for these cpu types).
whether the machine context is valid and whether the FPU state is
valid (saved).
Mark the machine context valid before copying it out when sending a
signal.
Approved by: -arch
and it's associated state variables: icu_lock with the name "icu". This
renames the imen_mtx for x86 SMP, but also uses the lock to protect
access to the 8259 PIC on x86 UP. This also adds an appropriate lock to
the various Alpha chipsets which fixes problems with Alpha SMP machines
dropping interrupts with an SMP kernel.
- The MD functions critical_enter/exit are renamed to start with a cpu_
prefix.
- MI wrapper functions critical_enter/exit maintain a per-thread nesting
count and a per-thread critical section saved state set when entering
a critical section while at nesting level 0 and restored when exiting
to nesting level 0. This moves the saved state out of spin mutexes so
that interlocking spin mutexes works properly.
- Most low-level MD code that used critical_enter/exit now use
cpu_critical_enter/exit. MI code such as device drivers and spin
mutexes use the MI wrappers. Note that since the MI wrappers store
the state in the current thread, they do not have any return values or
arguments.
- mtx_intr_enable() is replaced with a constant CRITICAL_FORK which is
assigned to curthread->td_savecrit during fork_exit().
Tested on: i386, alpha
- Axe inlvtlb_ok as it was completely redundant with smp_active.
- Remove references to non-existent variable and non-existent file
in i386/include/smp.h.
- Don't perform initializations local to each CPU while holding the
ap boot lock on i386 while an AP bootstraps itself.
- Reorganize the AP startup code some to unify the latter half of the
functions to bring an AP up. Eventually this might be broken out into
a MI function in subr_smp.c.
- The MI portions of struct globaldata have been consolidated into a MI
struct pcpu. The MD per-CPU data are specified via a macro defined in
machine/pcpu.h. A macro was chosen over a struct mdpcpu so that the
interface would be cleaner (PCPU_GET(my_md_field) vs.
PCPU_GET(md.md_my_md_field)).
- All references to globaldata are changed to pcpu instead. In a UP kernel,
this data was stored as global variables which is where the original name
came from. In an SMP world this data is per-CPU and ideally private to each
CPU outside of the context of debuggers. This also included combining
machine/globaldata.h and machine/globals.h into machine/pcpu.h.
- The pointer to the thread using the FPU on i386 was renamed from
npxthread to fpcurthread to be identical with other architectures.
- Make the show pcpu ddb command MI with a MD callout to display MD
fields.
- The globaldata_register() function was renamed to pcpu_init() and now
init's MI fields of a struct pcpu in addition to registering it with
the internal array and list.
- A pcpu_destroy() function was added to remove a struct pcpu from the
internal array and list.
Tested on: alpha, i386
Reviewed by: peter, jake
alpha pmap. In particular -
- pd_entry_t and pt_entry_t are now u_int32_t instead of a pointer.
This is to enable cleaner PAE and x86-64 support down the track sor
that we can change the pd_entry_t/pt_entry_t types to 64 bit entities.
- Terminate "unsigned *ptep, pte" with extreme prejudice and use the
correct pt_entry_t/pd_entry_t types.
- Various other cosmetic changes to match cleanups elsewhere.
- This eliminates a boatload of casts.
- use VM_MAXUSER_ADDRESS in place of UPT_MIN_ADDRESS in a couple of places
where we're testing user address space limits. Assuming the page tables
start directly after the end of user space is not a safe assumption.
There is still more to go.
ill effects. This should fix problems threaded programs are having with
auto-detecting CPU type.
Reported by: Joe Clarke <marcus@marcuscom.com>
Tested by: Joe Clarke <marcus@marcuscom.com>
Reviewed by: jhb
MFC after: 1 week
o Make <stdint.h> a symbolic link to <sys/stdint.h>.
o Move most of <sys/inttypes.h> into <sys/stdint.h>, as per C99.
o Remove <sys/inttypes.h>.
o Adjust includes in sys/types.h and boot/efi/include/ia64/efibind.h
to reflect new location of integer types in <sys/stdint.h>.
o Remove previously symbolicly linked <inttypes.h>, instead create a
new file.
o Add MD headers <machine/_inttypes.h> from NetBSD.
o Include <sys/stdint.h> in <inttypes.h>, as required by C99; and
include <machine/_inttypes.h> in <inttypes.h>, to fill in the
remaining requirements for <inttypes.h>.
o Add additional integer types in <machine/ansi.h> and
<machine/limits.h> which are included via <sys/stdint.h>.
Partially obtain from: NetBSD
Tested on: alpha, i386
Discussed on: freebsd-standards@bostonradio.org
Reviewed by: bde, fenner, obrien, wollman
a temporary fix so that we can compile kernels. I waited 30 minutes
for a response from the person who would likely know, but any longer
is too long to wait with breakage at ToT.
by the profiler on a running system. This is not done sparsely, as
memory is cheaper than processor speed and each gprof mcount() and
mexitcount() operation is already very expensive.
Obtained from: NAI Labs CBOSS project
Funded by: DARPA
{set,fill}_{,fp,db}regs() fixup:
- Add dummy {set,fill}_dbregs() on architectures that don't have them.
- KSEfy the powerpc versions (struct proc -> struct thread).
- Some architectures had the prototypes in md_var.h, some in reg.h, and
some in both; for consistency, move them to reg.h on all platforms.
These functions aren't really MD (the implementation is MD, but the interface
is MI), so they should move to an MI header, but I haven't figured out which
one yet.
Run-tested on i386, build-tested on Alpha, untested on other platforms.
the size of the kernel virtual address space relatively painlessly.
Userland will adapt via the exported kernbase symbol. Increasing
this causes the user part of address space to reduce.
will be private to each CPU.
- Re-style(9) the globaldata structures. There really needs to be a MI
struct pcpu that has a MD struct mdpcpu member at some point.
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.
Sorry john! (your next MFC will be a doosie!)
Reviewed by: peter@freebsd.org, dillon@freebsd.org
X-MFC after: ha ha ha ha
with system statistics monitoring tools (such as systat, vmstat...)
because of stopping RTC interrupts generation.
Restore all the timers (RTC and i8254) atomically.
Reviewed by: bde
MFC after: 1 week
level implementation stuff out of machine/globaldata.h to avoid exposing
UPAGES to lots more places. The end result is that we can double
the kernel stack size with 'options UPAGES=4' etc.
This is mainly being done for the benefit of a MFC to RELENG_4 at some
point. -current doesn't really need this so much since each interrupt
runs on its own kstack.
and such was just a bad idea and one that users should be forced to
enable if they want it. This patch introduces a hw.pci.enable_pcibios
tunable for those people. This does not impact the pcibios interrupt
routing at all.
Approved by: peter, msmith
some bios vendors took it apon themselves to "censor" the
host->pci bridges from PCIBIOS callers, even when the caller
explicitly asks for them. This includes certain Compaq machines
(eg: DL360) and some laptops.
If we detect this, shut down pcibios and revert to using IO
port bashing.
Under -current, apcica does a better job anyway.
the process of exiting the kernel. The ast() function now loops as long
as the PS_ASTPENDING or PS_NEEDRESCHED flags are set. It returns with
preemption disabled so that any further AST's that arrive via an
interrupt will be delayed until the low-level MD code returns to user
mode.
- Use u_int's to store the tick counts for profiling purposes so that we
do not need sched_lock just to read p_sticks. This also closes a
problem where the call to addupc_task() could screw up the arithmetic
due to non-atomic reads of p_sticks.
- Axe need_proftick(), aston(), astoff(), astpending(), need_resched(),
clear_resched(), and resched_wanted() in favor of direct bit operations
on p_sflag.
- Fix up locking with sched_lock some. In addupc_intr(), use sched_lock
to ensure pr_addr and pr_ticks are updated atomically with setting
PS_OWEUPC. In ast() we clear pr_ticks atomically with clearing
PS_OWEUPC. We also do not grab the lock just to test a flag.
- Simplify the handling of Giant in ast() slightly.
Reviewed by: bde (mostly)
are a really nasty interface that should have been killed long ago
when 'ptrace(PT_[SG]ETREGS' etc came along. The entity that they
operate on (struct user) will not be around much longer since it
is part-per-process and part-per-thread in a post-KSE world.
gdb does not actually use this except for the obscure 'info udot'
command which does a hexdump of as much of the child's 'struct user'
as it can get. It carries its own #defines so it doesn't break
compiles.
dynamic symbol table buckets and chains. The sparc64 toolchain uses 32
bit .hash entries, unlike other 64 bits architectures (alpha), which use
64 bit entries.
Discussed with: dfr, jdp
were indices in a dense array. The cpuids are a sparse set and treat
them as such, setting up containers only for CPUs activated during
mb_init().
- Fix netstat(1) and systat(1) to treat the per-CPU stats area as a sparse
map, in accordance with the above.
This allows us to properly boot with certain CPUs disactivated. However, if
we later decide to re-activate said CPUs, we will barf until we decide to
implement CPU spinon/spinoff callback hooks to allow for said CPUs' per-CPU
containers to get configured on their activation.
Reported by: mjacob
Partially (sys/ diffs) Submitted by: mjacob
we are required to do if we let user processes use the extra 128 bit
registers etc.
This is the base part of the diff I got from:
http://www.issei.org/issei/FreeBSD/sse.html
I believe this is by: Mr. SUZUKI Issei <issei@issei.org>
SMP support apparently by: Takekazu KATO <kato@chino.it.okayama-u.ac.jp>
Test code by: NAKAMURA Kazushi <kaz@kobe1995.net>, see
http://kobe1995.net/~kaz/FreeBSD/SSE.en.html
I have fixed a couple of style(9) deviations. I have some followup
commits to fix a couple of non-style things.
simpler for npx exceptions that start as traps (no assembly required...)
and works better for npx exceptions that start as interrupts (there is
no longer a problem for nested interrupts).
Submitted by: original (pre-SMPng) version by luoqi
safe from preemption and concurrent access to the LDT.
- Move the prototype for i386_extend_pcb() to <machine/pcb_ext.h>.
Reviewed by: silence on -hackers
other "system" header files.
Also help the deprecation of lockmgr.h by making it a sub-include of
sys/lock.h and removing sys/lockmgr.h form kernel .c files.
Sort sys/*.h includes where possible in affected files.
OK'ed by: bde (with reservations)
been made machine independent and various other adjustments have been made
to support Alpha SMP.
- It splits the per-process portions of hardclock() and statclock() off
into hardclock_process() and statclock_process() respectively. hardclock()
and statclock() call the *_process() functions for the current process so
that UP systems will run as before. For SMP systems, it is simply necessary
to ensure that all other processors execute the *_process() functions when the
main clock functions are triggered on one CPU by an interrupt. For the alpha
4100, clock interrupts are delievered in a staggered broadcast fashion, so
we simply call hardclock/statclock on the boot CPU and call the *_process()
functions on the secondaries. For x86, we call statclock and hardclock as
usual and then call forward_hardclock/statclock in the MD code to send an IPI
to cause the AP's to execute forwared_hardclock/statclock which then call the
*_process() functions.
- forward_signal() and forward_roundrobin() have been reworked to be MI and to
involve less hackery. Now the cpu doing the forward sets any flags, etc. and
sends a very simple IPI_AST to the other cpu(s). AST IPIs now just basically
return so that they can execute ast() and don't bother with setting the
astpending or needresched flags themselves. This also removes the loop in
forward_signal() as sched_lock closes the race condition that the loop worked
around.
- need_resched(), resched_wanted() and clear_resched() have been changed to take
a process to act on rather than assuming curproc so that they can be used to
implement forward_roundrobin() as described above.
- Various other SMP variables have been moved to a MI subr_smp.c and a new
header sys/smp.h declares MI SMP variables and API's. The IPI API's from
machine/ipl.h have moved to machine/smp.h which is included by sys/smp.h.
- The globaldata_register() and globaldata_find() functions as well as the
SLIST of globaldata structures has become MI and moved into subr_smp.c.
Also, the globaldata list is only available if SMP support is compiled in.
Reviewed by: jake, peter
Looked over by: eivind
panic_cpu shared variable. I used a simple atomic operation here instead
of a spin lock as it seemed to be excessive overhead. Also, this can avoid
recursive panics if, for example, witness is broken.
because:
- it used a better namespace (smp_ipi_* rather than *_ipi),
- it used better constant names for the IPI's (IPI_* rather than
X*_OFFSET), and
- this API also somewhat exists for both alpha and ia64 already.
stylistic.
# Yes, this break K&R, but this file already used so many gcc extensions
# keeping K&R support seemed too anachronistic for me.
Didn't fix the bug where functions that can only be used in the kernel
are exported to userland.
that people use from userland in C++ programs. I've had this in my
tree for ages and just got bit by it not being in the real tree again.
This is a MFC candidate.
- Introduce lock classes and lock objects. Each lock class specifies a
name and set of flags (or properties) shared by all locks of a given
type. Currently there are three lock classes: spin mutexes, sleep
mutexes, and sx locks. A lock object specifies properties of an
additional lock along with a lock name and all of the extra stuff needed
to make witness work with a given lock. This abstract lock stuff is
defined in sys/lock.h. The lockmgr constants, types, and prototypes have
been moved to sys/lockmgr.h. For temporary backwards compatability,
sys/lock.h includes sys/lockmgr.h.
- Replace proc->p_spinlocks with a per-CPU list, PCPU(spinlocks), of spin
locks held. By making this per-cpu, we do not have to jump through
magic hoops to deal with sched_lock changing ownership during context
switches.
- Replace proc->p_heldmtx, formerly a list of held sleep mutexes, with
proc->p_sleeplocks, which is a list of held sleep locks including sleep
mutexes and sx locks.
- Add helper macros for logging lock events via the KTR_LOCK KTR logging
level so that the log messages are consistent.
- Add some new flags that can be passed to mtx_init():
- MTX_NOWITNESS - specifies that this lock should be ignored by witness.
This is used for the mutex that blocks a sx lock for example.
- MTX_QUIET - this is not new, but you can pass this to mtx_init() now
and no events will be logged for this lock, so that one doesn't have
to change all the individual mtx_lock/unlock() operations.
- All lock objects maintain an initialized flag. Use this flag to export
a mtx_initialized() macro that can be safely called from drivers. Also,
we on longer walk the all_mtx list if MUTEX_DEBUG is defined as witness
performs the corresponding checks using the initialized flag.
- The lock order reversal messages have been improved to output slightly
more accurate file and line numbers.
and change the u_int mtx_saveintr member of struct mtx to a critical_t
mtx_savecrit.
- On the alpha we no longer need a custom _get_spin_lock() macro to avoid
an extra PAL call, so remove it.
- Partially fix using mutexes with WITNESS in modules. Change all the
_mtx_{un,}lock_{spin,}_flags() macros to accept explicit file and line
parameters and rename them to use a prefix of two underscores. Inside
of kern_mutex.c, generate wrapper functions for
_mtx_{un,}lock_{spin,}_flags() (only using a prefix of one underscore)
that are called from modules. The macros mtx_{un,}lock_{spin,}_flags()
are mapped to the __mtx_* macros inside of the kernel to inline the
usual case of mutex operations and map to the internal _mtx_* functions
in the module case so that modules will use WITNESS and KTR logging if
the kernel is compiled with support for it.
sections.
- Add implementations of the critical_enter() and critical_exit() functions
and remove restore_intr() and save_intr().
- Remove the somewhat bogus disable_intr() and enable_intr() functions on
the alpha as the alpha actually uses a priority level and not simple bit
flag on the CPU.
For UP, we were using $tmp_stk as a stack from the data section. If the
kernel text section grew beyond ~3MB, the data section would be pushed
beyond the temporary 4MB P==V mapping. This would cause the trampoline
up to high memory to fault. The hack workaround I did was to use all of
the page table pages that we already have while preparing the initial
P==V mapping, instead of just the first one.
For SMP, the AP bootstrap process suffered the same sort of problem and
got the same treatment.
MFC candidate - this breaks on 4.x just the same..
Thanks to: Richard Todd <rmtodd@ichotolot.servalan.com>
if we hold a spin mutex, since we can trivially get into deadlocks if we
start switching out of processes that hold spinlocks. Checking to see if
interrupts were disabled was a sort of cheap way of doing this since most
of the time interrupts were only disabled when holding a spin lock. At
least on the i386. To fix this properly, use a per-process counter
p_spinlocks that counts the number of spin locks currently held, and
instead of checking to see if interrupts are disabled in the witness code,
check to see if we hold any spin locks. Since child processes always
start up with the sched lock magically held in fork_exit(), we initialize
p_spinlocks to 1 for child processes. Note that proc0 doesn't go through
fork_exit(), so it starts with no spin locks held.
Consulting from: cp
with egcs-1.1.1. bus_space_write_multi_2() had an extra operation that
should have been removed.
Remove it.
This fixes the panic when bus_space_write_multi_2() is used.
Obtained from: jake
and used in C or vice versa. The elf compiler uses the same names
for both. Remove asnames.h with great prejudice; it has served its
purpose.
Note that this does not affect the ability to generate an aout kernel
due to gcc's -mno-underscores option.
moral support from: peter, jhb
depend on this. The linux ABI emulator tries to use it for some linux
binaries too. VM86 had a bigger cost than this and it was made default
a while ago.
Reviewed by: jhb, imp
in mi_switch() just before calling cpu_switch() so that the first switch
after a resched request will satisfy the request.
- While I'm at it, move a few things into mi_switch() and out of
cpu_switch(), specifically set the p_oncpu and p_lastcpu members of
proc in mi_switch(), and handle the sched_lock state change across a
context switch in mi_switch().
- Since cpu_switch() no longer handles the sched_lock state change, we
have to setup an initial state for sched_lock in fork_exit() before we
release it.
always on curproc. This is needed to implement signal delivery properly
(see a future log message for kern_sig.c).
Debogotified the definition of aston(). aston() was defined in terms
of signotify() (perhaps because only the latter already operated on
a specified process), but aston() is the primitive.
Similar changes are needed in the ia64 versions of cpu.h and trap.c.
I didn't make them because the ia64 is missing the prerequisite changes
to make astpending and need_resched per-process and those changes are
too large to make without testing.
tsc_present in the right places (together with other variables of the
same linkage), and don't use messy ifdefs just to avoid exporting it in
some cases.
Some things needed bits of <i386/include/lock.h> - cy.c now has its
own (only) copy of the COM_(UN)LOCK() macros, and IMASK_(UN)LOCK()
has been moved to <i386/include/apic.h> (AKA <machine/apic.h>).
Reviewed by: jhb
attributes. This is needed for AST's to be properly posted in a preemptive
kernel. They are backed by two new flags in p_sflag: PS_ASTPENDING and
PS_NEEDRESCHED. They are still accesssed by their old macros:
aston(), astoff(), etc. For completeness, an astpending() macro has been
added to check for a pending AST, and clear_resched() has been added to
clear need_resched().
- Rename syscall2() on the x86 back to syscall() to be consistent with
other architectures.
mtx_enter(lock, type) becomes:
mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks)
mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized)
similarily, for releasing a lock, we now have:
mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN.
We change the caller interface for the two different types of locks
because the semantics are entirely different for each case, and this
makes it explicitly clear and, at the same time, it rids us of the
extra `type' argument.
The enter->lock and exit->unlock change has been made with the idea
that we're "locking data" and not "entering locked code" in mind.
Further, remove all additional "flags" previously passed to the
lock acquire/release routines with the exception of two:
MTX_QUIET and MTX_NOSWITCH
The functionality of these flags is preserved and they can be passed
to the lock/unlock routines by calling the corresponding wrappers:
mtx_{lock, unlock}_flags(lock, flag(s)) and
mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN
locks, respectively.
Re-inline some lock acq/rel code; in the sleep lock case, we only
inline the _obtain_lock()s in order to ensure that the inlined code
fits into a cache line. In the spin lock case, we inline recursion and
actually only perform a function call if we need to spin. This change
has been made with the idea that we generally tend to avoid spin locks
and that also the spin locks that we do have and are heavily used
(i.e. sched_lock) do recurse, and therefore in an effort to reduce
function call overhead for some architectures (such as alpha), we
inline recursion for this case.
Create a new malloc type for the witness code and retire from using
the M_DEV type. The new type is called M_WITNESS and is only declared
if WITNESS is enabled.
Begin cleaning up some machdep/mutex.h code - specifically updated the
"optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN
and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently
need those.
Finally, caught up to the interface changes in all sys code.
Contributors: jake, jhb, jasone (in no particular order)
problem is that a mutex lock, prior to this change, is acquired before
the curproc is set to idleproc, so we mess ourselves up by calling
the mutex lock routine with curproc == NULL.
Moving it up after the aps_ready spin-wait has us hopefully setting it
after idleproc is setup.
Solved by: jake (the allmighty) :-)
the alpha mp_machdep.c.
- Proc locking.
- Catch up to the P_FOO -> PS_FOO proc flags changes.
- Stick ap_init()'s prototype with the other prototypes.
- Remove the Xforwardirq IPI.
- Remove unused simplelocks.
- Don't try to psignal() from forward_statclock(), but set the appropriate
signal pending flag in p_sflag instead.
- Add in KTR_SMP tracepoints for various SMP functions. (Brought over
from the alpha port)
inline functions non-inlined. Hide parts of the mutex implementation that
should not be exposed.
Make sure that WITNESS code is not executed during boot until the mutexes
are fully initialized by SI_SUB_MUTEX (the original motivation for this
commit).
Submitted by: peter
interrupt threads to run with it always >= 1, so that malloc can
detect M_WAITOK from "interrupt" context. This is also necessary
in order to context switch from sched_ithd() directly.
Reviewed By: peter
for SMP; just use the same ones as UP. These weren't used without
holding Giant anyway, and the routines that use them would have to
be protected from pre-emption to avoid migrating cpus.
appropriate function, rather than doing a horse-and-buggy
acquire. They now take the mutex type as an arg and can be
used with sleep as well as spin mutexes.
non-386 atomic_load_acq(). %eax is an input since its value is used in
the cmpxchg instruction, but we don't care what value it is, so setting
it to a specific value is just wasteful. Thus, it is being used without
being initialized as the warning stated, but it is ok for it to be used
because its value isn't important. Thus, we are only sort of lying when
we say it is an output only operand.
- Add "cc" to the clobber list for atomic_load_acq() since the cmpxchgl
changes ZF.
compiling errors where gcc would run out of registers.
- Add "cc" to the list of clobbers for micro-ops where we perform
instructions that alter %eflags.
- Use xchgl instead of cmpxchgl to release a spin lock. This could allow
for more efficient register allocation as we no longer mandate that %eax
be used.
- Reenable the optimized mutex micro-ops in the non-i386 case.
that modules can call.
- Remove the old gcc <= 2.8 versions of the atomic ops.
- Resort the order of some things in the file so that there is only
one #ifdef for KLD_MODULE, and so that all WANT_FUNCTIONS stuff is
moved to the bottom of the file.
- Remove ATOMIC_ACQ_REL() and just use explicit macros instead.
implement memory fences for the 486+. The 386 still uses versions w/o
memory fences as all operations on the 386 are not program ordered.
The 386 versions are not MP safe.
symbols in globals.s.
PCPU_GET(name) returns the value of the per-cpu variable
PCPU_PTR(name) returns a pointer to the per-cpu variable
PCPU_SET(name, val) sets the value of the per-cpu variable
In general these are not yet used, compatibility macros remain.
Unifdef SMP struct globaldata, this makes variables such as cpuid
available for UP as well.
Rebuilding modules is probably a good idea, but I believe old
modules will still work, as most of the old infrastructure
remains.
as multi-processor kernels. The old way made it difficult for kernel
modules to be portable between uni-processor and multi-processor
kernels. It is no longer necessary to jump through hoops.
- always load %fs with the private segment on entry to the kernel
- change the type of the self referntial pointer from struct privatespace
to struct globaldata
- make the globaldata symbol have value 0 in all cases, so the symbols
in globals.s are always offsets, not aliases for fields in globaldata
- define the globaldata space used for uniprocessor kernels in C, rather
than assembler
- change the assmebly language accessors to use %fs, add a macro
PCPU_ADDR(member, reg), which loads the register reg with the address
of the per-cpu variable member
variables from i386 assembly language. The syntax is PCPU(member)
where member is the capitalized name of the per-cpu variable, without
the gd_ prefix. Example: movl %eax,PCPU(CURPROC). The capitalization
is due to using the offsets generated by genassym rather than the symbols
provided by linking with globals.o. asmacros.h is the wrong place for
this but it seemed as good a place as any for now. The old implementation
in asnames.h has not been removed because it is still used to de-mangle
the symbols used by the C variables for the UP case.
the witness code is compiled in. Without this, the witness code doesn't
notice that sched_lock is released by fork_trampoline() and thus gets all
confused about spin lock order later on.
calling the C functions mtx_enter_hard() and mtx_exit_hard() clobbers them.
Note that %eax is also not call safe, but it is already clobbered due to
cmpxchg. However, now we are back to not compiling again, so these macros
are still left disabled for now.
that of MTX_EXIT. Don't assume that the reg parameter to MTX_ENTER
holds curproc, load it explicitly. Put semi-colons at the end of
the macros to be more consistent and so its harder to forget them
when these change.
SMP problem. Compaq, in their infinite wisdom, forgot to put the IO apic
intpin #0 connection to the 8259 PIC into the mptable. This hack is to
look and see if intpin #0 has *no* table entry and adds a fake ExtInt
entry for the remap routines to use. isa/clock.c will still test the
interrupts. This entry is only ever used on an already broken system.
mpapic.c. This gives us the benefit of C type checking. These functions
are not called in any critical paths and are not used by the interrupt
routines.
spending, which was unused now that all software interrupts have
their own thread. Make the legacy schednetisr use an atomic op
for setting bits in the netisr mask.
Reviewed by: jhb
Also, while here, run up to 32 interrupt sources on APIC systems.
Normalize INTREN/INTRDIS so they are the same on both UP and SMP systems
rather than sometimes a macro, and sometimes a function.
Reviewed by: jhb, jakeb
MPLOCKED macro
(2) Use decimal 12 rather than hex 0xc in an addl
(3) Implement MTX_ENTER for the I386_CPU case
(4) Use semi-colons between instructions to allow MTX_ENTER
and MTX_ENTER_WITH_RECURSION to be assembled
(5) Use incl instead of incw to increment the recusion count
(6) 10 is not a valid label, use 7, 8 and 9 rather than 8, 9 and 10
(7) Sort numeric labels
Submitted by: bde (2, 4, and 5)
process is on the alternate stack or not. For compatibility
with sigstack(2) state is being updated if such is needed.
We now determine whether the process is on the alternate
stack by looking at its stack pointer. This allows a process
to siglongjmp from a signal handler on the alternate stack
to the place of the sigsetjmp on the normal stack. When
maintaining state, this would have invalidated the state
information and causing a subsequent signal to be delivered
on the normal stack instead of the alternate stack.
PR: 22286
-current and RELENG_4 with GENERIC.
NKPT is the number of initial bootstrap page table pages we create for
the kernel during startup. Once VM is up, we resize it as needed, but
with 4G ram, the size of the vm_page_t structures was pushing it over
the limit. The fact that trimmed down kernels boot on 4G ram machines
suggests that we were pretty close to the edge.
The "30" is arbitary, but smaller than the 'nkpt' variable on all
machines that I checked.
timeout. If DIAGNOSTIC is turned on, then display a message to the console
with a map of which CPUs failed to stop or restart. This gives an SMP box
at least a fighting chance of getting into DDB if one of the other CPUs has
interrupts disabled.
counter register in-CPU.
This is to be used as a fast "timer", where linearity is more important
than time, and multiple lines in the linearity caused by multiple CPUs
in an SMP machine is not a problem.
This adds no code whatsoever to the FreeBSD kernel until it is actually
used, and then as a single-instruction inline routine (except for the
80386 and 80486 where it is some more inline code around nanotime(9).
Reviewed by: bde, kris, jhb
syscall compare against a variable sv_minsigstksz in struct
sysentvec as to properly take the size of the machine- and
ABI dependent struct sigframe into account.
The SVR4 and iBCS2 modules continue to have a minsigstksz of
8192 to preserve behavior. The real values (if different) are
not known at this time. Other ABI modules use the real
values.
The native MINSIGSTKSZ is now defined as follows:
Arch MINSIGSTKSZ
---- -----------
alpha 4096
i386 2048
ia64 12288
Reviewed by: mjacob
Suggested by: bde
type of software interrupt. Roughly, what used to be a bit in spending
now maps to a swi thread. Each thread can have multiple handlers, just
like a hardware interrupt thread.
- Instead of using a bitmask of pending interrupts, we schedule the specific
software interrupt thread to run, so spending, NSWI, and the shandlers
array are no longer needed. We can now have an arbitrary number of
software interrupt threads. When you register a software interrupt
thread via sinthand_add(), you get back a struct intrhand that you pass
to sched_swi() when you wish to schedule your swi thread to run.
- Convert the name of 'struct intrec' to 'struct intrhand' as it is a bit
more intuitive. Also, prefix all the members of struct intrhand with
'ih_'.
- Make swi_net() a MI function since there is now no point in it being
MD.
Submitted by: cp
reducues the maintenance load for the mutex code. The only MD portions
of the mutex code are in machine/mutex.h now, which include the assembly
macros for handling mutexes as well as optionally overriding the mutex
micro-operations. For example, we use optimized micro-ops on the x86
platform #ifndef I386_CPU.
- Change the behavior of the SMP_DEBUG kernel option. In the new code,
mtx_assert() only depends on INVARIANTS, allowing other kernel developers
to have working mutex assertiions without having to include all of the
mutex debugging code. The SMP_DEBUG kernel option has been renamed to
MUTEX_DEBUG and now just controls extra mutex debugging code.
- Abolish the ugly mtx_f hack. Instead, we dynamically allocate
seperate mtx_debug structures on the fly in mtx_init, except for mutexes
that are initiated very early in the boot process. These mutexes
are declared using a special MUTEX_DECLARE() macro, and use a new
flag MTX_COLD when calling mtx_init. This is still somewhat hackish,
but it is less evil than the mtx_f filler struct, and the mtx struct is
now the same size with and without mutex debugging code.
- Add some micro-micro-operation macros for doing the actual atomic
operations on the mutex mtx_lock field to make it easier for other archs
to override/optimize mutex ops if needed. These new tiny ops also clean
up the code in some places by replacing long atomic operation function
calls that spanned 2-3 lines with a short 1-line macro call.
- Don't call mi_switch() from mtx_enter_hard() when we block while trying
to obtain a sleep mutex. Calling mi_switch() would bogusly release
Giant before switching to the next process. Instead, inline most of the
code from mi_switch() in the mtx_enter_hard() function. Note that when
we finally kill Giant we can back this out and go back to calling
mi_switch().
in most of the atomic operations. Now for these operations, you can
use the normal atomic operation, you can use the operation with a read
barrier, or you can use the operation with a write barrier. The function
names follow the same semantics used in the ia64 instruction set. An
atomic operation with a read barrier has the extra suffix 'acq', due to
it having "acquire" semantics. An atomic operation with a write barrier
has the extra suffix 'rel'. These suffixes are inserted between the
name of the operation to perform and the typename. For example, the
atomic_add_int() function now has 3 variants:
- atomic_add_int() - this is the same as the previous function
- atomic_add_acq_int() - this function combines the add operation with a
read memory barrier
- atomic_add_rel_int() - this function combines the add operation with a
write memory barrier
- Add 'ptr' to the list of types that we can perform atomic operations
on. This allows one to do atomic operations on uintptr_t's. This is
useful in the mutex code, for example, because the actual mutex lock is
a pointer.
- Add two new operations for doing loads and stores with memory barriers.
The new load operations use a read barrier before the load, and the
new store operations use a write barrier after the load. For example,
atomic_load_acq_int() will atomically load an integer as well as
enforcing a read barrier.
check in the [basic.link] section of the C++ standard wrong. gcc-2.7.2.3
apparently doesn't do the check, so the bug doesn't affect RELENG_3.
PR: 16170, 21427
Submitted by: Max Khon <fjoe@lark.websci.ru> (i386 version)
Discussed with: jdp
return through doreti to handle ast's. This is necessary for the
clock interrupts to work properly.
- Change the clock interrupts on the x86 to be fast instead of threaded.
This is needed because both hardclock() and statclock() need to run in
the context of the current process, not in a separate thread context.
- Kill the prevproc hack as it is no longer needed.
- We really need Giant when we call psignal(), but we don't want to block
during the clock interrupt. Instead, use two p_flag's in the proc struct
to mark the current process as having a pending SIGVTALRM or a SIGPROF
and let them be delivered during ast() when hardclock() has finished
running.
- Remove CLKF_BASEPRI, which was #ifdef'd out on the x86 anyways. It was
broken on the x86 if it was turned on since cpl is gone. It's only use
was to bogusly run softclock() directly during hardclock() rather than
scheduling an SWI.
- Remove the COM_LOCK simplelock and replace it with a clock_lock spin
mutex. Since the spin mutex already handles disabling/restoring
interrupts appropriately, this also lets us axe all the *_intr() fu.
- Back out the hacks in the APIC_IO x86 cpu_initclocks() code to use
temporary fast interrupts for the APIC trial.
- Add two new process flags P_ALRMPEND and P_PROFPEND to mark the pending
signals in hardclock() that are to be delivered in ast().
Submitted by: jakeb (making statclock safe in a fast interrupt)
Submitted by: cp (concept of delaying signals until ast())
- Make softinterrupts (SWI's) almost completely MI, and divorce them
completely from the x86 hardware interrupt code.
- The ihandlers array is now gone. Instead, there is a MI shandlers array
that just contains SWI handlers.
- Most of the former machine/ipl.h files have moved to a new sys/ipl.h.
- Stub out all the spl*() functions on all architectures.
Submitted by: dfr
- Move all register I/O into acpi_io.c
- Move event handling into acpi_event.c
- Reorganise headers into acpivar/acpireg/acpiio
- Move find-RSDT and find-ACPI-owned-memory into acpi_machdep
- Allocate all resources (except those detailed only by AML)
as real resources. Add infrastructure that will make adding
resource support to AML code easy.
- Remove all ACPI #ifdefs in non-ACPI code
- Removed unnecessary includes
- Minor style and commenting fixes
Reviewed by: iwasaki
not work on any real hardware (or fully work on any simulator). Much more
needs to happen before this is actually functional but its nice to see
the FreeBSD copyright message appear in the ia64 simulator.
i386/isa/pcibus.c. This gets -current running again on multiple host->pci
machines after the most recent nexus commits. I had discussed this with
Mike Smith, but ended up doing it slightly differently to what we
discussed as it turned out cleaner this way. Mike was suggesting creating
a new resource (SYS_RES_PCIBUS) or something and using *_[gs]et_resource(),
but IMHO that wasn't ideal as SYS_RES_* is meant to be a global platform
property, not a quirk of a given implementation. This does use the ivar
methods but does so properly. It also now prints the physical pci bus that
a host->pci bridge (pcib) corresponds to.
macros that expand to pass filename and line number information. This is
necessary since we're using inline functions instead of macros now.
Add const to the filename pointers passed througout the mtx and witness
code.
include:
* Mutual exclusion is used instead of spl*(). See mutex(9). (Note: The
alpha port is still in transition and currently uses both.)
* Per-CPU idle processes.
* Interrupts are run in their own separate kernel threads and can be
preempted (i386 only).
Partially contributed by: BSDi (BSD/OS)
Submissions by (at least): cp, dfr, dillon, grog, jake, jhb, sheldonh
suggested fix in PR 12378.
Keep track of all existing pmaps independent of existing processes.
This allows for a process to temporarily connect to a different address
space without the risk of missing an update of the original address space if
the kernel grows.
pmap_pinit2() is no longer needed on the i386 platform but is left as a
stub until the alpha pmap code is updated.
PR: 12378
- stop using the evil 'struct trapframe' argument for mi_startup()
(formerly main()). There are much better ways of doing it.
- do not use prepare_usermode() - setregs() in execve() will do it
all for us as long as the p_md.md_regs pointer is set. (which is
now done in machdep.c rather than init_main.c. The Alpha port did it
this way all along and is much cleaner).
- collect all the magic %cr0 etc register settings into one place and
have the AP's call that instead of using magic numbers (!!) that keep
changing over and over again.
- Make it safe to call kthread_create() earlier, including during the
device probe sequence. It doesn't need the callback mechanism that
NetBSD's version uses.
- kthreads created this way are root-less as they exist before the root
filesystem is mounted. init(1) is set up so that it aquires the root
pointers prior to running. If other kthreads want filesystem acccess
we can make this code more generic.
- set all threads start times once we have decided what time it is.
- init uses a trampoline rather than the evil prepare_usermode() hack.
- kern_descrip.c has a couple of tweaks to deal with forking when there
is no rootdir or cwd etc.
- adjust the early SYSINIT() sequence so that a few prereqisites are in
place. eg: make sure the run queue is initialized before doing forks.
With this, the USB code can easily create a kthread to do the device
tree discovery. (I have tested it, it works nicely).
There are still some open issues before this is truely useful.
- tsleep() does not like working before the clock is running. It
sort-of tries to spin wait, but it can do more useful things now.
- stopping a kthread in kld code at unload time is "interesting" but
we have a solution for that.
The Alpha code needs no changes for this. It already uses pretty much the
same strategies, but a little cleaner.
Don't allow cpu entries in the MP table to contain APIC IDs out of range.
Don't write outside array boundaries if an IO APIC entry in the MP table
contains an APIC ID out of range.
Assign APIC IDs for all IO APICs according to section 3.6.6 in the
Intel MP spec:
- If the current APIC ID on an IO APIC doesn't conflict with other
IO APICs or CPUs, that APIC ID should be used. The copy of the MP
table must be updated if the corresponding APIC ID in the MP table
is different.
- If the current APIC ID was in conflict with other units, the
corresponding APIC ID specified in the MP table is checked for conflict.
- If a conflict is still found then fall back to using a new unique ID.
The copy of the MP table must be updated.
- IDs out of range is considered to be in conflict.
During these operations, the IO_TO_ID array cannot be used, since any
conflict would have caused information loss. The array is then corrected,
since all APIC ID conflicts should have been resolved.
PR: 20312, 18919
errors were normally harmless because they were in unreachable code
and gcc apparently doesn't check the syntax inside asm statements
that it optimizes away.
Further experimentation showed that some Dell 2450 machines with the
prevention kludge installed still got T_RESERVED traps. CPU interrupt
vector 0x7A was observed to be triggered. This might have been the
bitwise OR of two different vectors sent from each of the IOAPICs at
the same time.
IOAPIC #0: 0x68 --> irq 8: RTC timer interrupt
IOAPIC #1: 0x32 --> irq 18: scsi host adapter or network interface
----
0x7a --> T_RESERVED
Both IOAPICs had ID 0.
Appendix B.3 in the MP spec indicates that the operating system is
responsible for assigning unique IDs to the IOAPICs.
The enclosed patch programs the IOAPIC IDs according to the IOAPIC
entries in the MP table.
Submitted by: tegge
to various pmap_*() functions instead of looking up the physical address
and passing that. In many cases, the first thing the pmap code was doing
was going to a lot of trouble to get back the original vm_page_t, or
it's shadow pv_table entry.
Inspired by: John Dyson's 1998 patches.
Also:
Eliminate pv_table as a seperate thing and build it into a machine
dependent part of vm_page_t. This eliminates having a seperate set of
structions that shadow each other in a 1:1 fashion that we often went to
a lot of trouble to translate from one to the other. (see above)
This happens to save 4 bytes of physical memory for each page in the
system. (8 bytes on the Alpha).
Eliminate the use of the phys_avail[] array to determine if a page is
managed (ie: it has pv_entries etc). Store this information in a flag.
Things like device_pager set it because they create vm_page_t's on the
fly that do not have pv_entries. This makes it easier to "unmanage" a
page of physical memory (this will be taken advantage of in subsequent
commits).
Add a function to add a new page to the freelist. This could be used
for reclaiming the previously wasted pages left over from preloaded
loader(8) files.
Reviewed by: dillon
specifies the instruction's operation size. GCC will default to 32-bit
operands reguardless of the prototype (ie, formal parameters' type)
of an inline function.
- Add support for using the PCI BIOS functions for configuration space
accesses, and make this the default.
- Make PNPBIOS the default (obsoletes the PNPBIOS config option).
- Add two new boot-time tunables to disable each of the above.
via sysctl. It's done pretty simply but it should be quite adequate.
Also move SHMMAXPGS from $machine/include/vmparam.h as the comments that
went with it were wrong... we don't allocate KVM space for the pages so
that comment is bogus.. The only practical limit is how much physical
ram you want to lock up as this stuff isn't paged out or swap backed.
includes one of bus_at386.h and bus_pc98.h. Becuase only bus_pc98.h
supports indirect pio and bus_at386.h is identical to old bus.h, there
is no functional change in PC-AT's kernels. That is, it cannot cause
performance loss.
Submitted by: nyan
Reviewed by: imp
bde and luoqi provided useful comments for earlier version.
syscall path inward. A system call may select whether it needs the MP
lock or not (the default being that it does need it).
A great deal of conditional SMP code for various deadended experiments
has been removed. 'cil' and 'cml' have been removed entirely, and the
locking around the cpl has been removed. The conditional
separately-locked fast-interrupt code has been removed, meaning that
interrupts must hold the CPL now (but they pretty much had to anyway).
Another reason for doing this is that the original separate-lock for
interrupts just doesn't apply to the interrupt thread mechanism being
contemplated.
Modifications to the cpl may now ONLY occur while holding the MP
lock. For example, if an otherwise MP safe syscall needs to mess with
the cpl, it must hold the MP lock for the duration and must (as usual)
save/restore the cpl in a nested fashion.
This is precursor work for the real meat coming later: avoiding having
to hold the MP lock for common syscalls and I/O's and interrupt threads.
It is expected that the spl mechanisms and new interrupt threading
mechanisms will be able to run in tandem, allowing a slow piecemeal
transition to occur.
This patch should result in a moderate performance improvement due to
the considerable amount of code that has been removed from the critical
path, especially the simplification of the spl*() calls. The real
performance gains will come later.
Approved by: jkh
Reviewed by: current, bde (exception.s)
Some work taken from: luoqi's patch
was using them exits.
Don't allow a user process to cause the kernel to take a TRCTRAP on a
user space address.
Reviewed by: jlemon, sef
Approved by: jkh
the low level interrupt handler number should be used. Change
setup_apic_irq_mapping() to allocate low level interrupt handler X (Xintr${X})
for any ISA interrupt X mentioned in the MP table.
Remove an assumption in the driver for the system clock (clock.c) that
interrupts mentioned in the MP table as delivered to IOAPIC #0 intpin Y
is handled by low level interrupt handler Y (Xintr${Y}) but don't assume
that low level interrupt handler 0 (Xintr0) is used.
Don't allocate two low level interrupt handlers for the system clock.
Reviewed by: NOKUBI Hirotaka <hnokubi@yyy.or.jp>
is an application space macro and the applications are supposed to be free
to use it as they please (but cannot). This is consistant with the other
BSD's who made this change quite some time ago. More commits to come.
The UPAGES have not been there since Jan '96, but the hole was preserved
for BSD/OS binary compatability. This has been fixed other ways (%ebx
now has a pointer to PS_STRINGS), and the stack is nowhere near where
it used to be so this hack isn't required anymore.
and extend. The new function containing the code is named schedclock()
as in NetBSD, but it has slightly different semantics (it already handles
incrementation of p->p_cpticks, and it should handle any calling frequency).
Agreed with in principle by: dufault
to use a locked cmpexg when unlocking a lock that we already hold, since
nobody else can touch the lock while we hold it. Second, it is not
necessary to use a locked cmpexg when locking a lock that we already
hold, for the same reason. These changes will allow MP locks to be used
recursively without impacting performance.
Modify two procedures that are called only by assembly and are already
NOPROF entries to pass a critical argument in %edx instead of on the
stack, removing a significant amount of code from the critical path
as a consequence.
Reviewed by: Alfred Perlstein <bright@wintelcom.net>, Peter Wemm <peter@netplex.com.au>
Historically, the documentation of extended asm was lacking, namely you
should NOT specify the same register as an input, and a clobber.
If the register is clobbered, it should be specified as an output as well,
e.g., by linking input and output through the "number" notation.
(Beware of lvalues, some local variables needed...)
URL:http://egcs.cygnus.com/faq.html
In versions up to egcs-1.1.1, the compiler did not even warn about it,
but it was liable to output bad code. Newer egcs are pickier and simply
refuse to swallow such code.
Note, since *addr changes, it needs to be an output operand.
We might be excessive in saying that all memory has changed.
Obtained from: OpenBSD
w/extra thanks to Marc Espie <Marc.Espie@liafa.jussieu.fr>
the countdown register.
this should not be necessary but there are broken laptops that
do not restore the countdown register on resume.
when it happnes, it messes up the hardclock interval and system clock,
which leads to the infamous "calcru: negative time" problem.
Submitted by: kjc, iwasaki
Reviewed by: Steve O'Hara-Smith <steveo@eircom.net> and committers.
Obtained from: PAO3
* Change the hack used on the alpha for mapping devices into DENSE or
BWX memory spaces to a simpler one. Its still a hack and should be
a seperate api to explicitly map the resource.
* Add $FreeBSD$ as necessary.
can provide the correct context to each signal handler.
Fix broken sigsuspend(): don't use p_oldsigmask as a flag, use SAS_OLDMASK
as we did before the linuxthreads support merge (submitted by bde).
Move ps_sigstk from to p_sigacts to the main proc structure since signal
stack should not be shared among threads.
Move SAS_OLDMASK and SAS_ALTSTACK flags from sigacts::ps_flags to proc::p_flag.
Move PS_NOCLDSTOP and PS_NOCLDWAIT flags from proc::p_flag to procsig::ps_flag.
Reviewed by: marcel, jdp, bde
o Remove unused defines from genassym.c that were needed
by the trampoline.
o Add load_gs_param function to support.s that catches
a fault when %gs is loaded with an invalid descriptor.
The function returns EFAULT in that case.
o Remove struct trapframe from mcontext_t and replace it
with the list of registers.
o Modify sendsig and sigreturn accordingly.
This commit contains a patch by bde.
Reviewed by: luoqi, jdp
struct sigcontext and ucontext_t/mcontext_t are defined in such
a way that both (ie struct sigcontext and ucontext_t) can be
passed on to sigreturn. The signal handler is still given a
ucontext_t for maximum flexibility.
For backward compatibility sigreturn restores the state for the
alternate signal stack from sigcontext.sc_onstack and not from
ucontext_t.uc_stack. A good way to determine which value the
application has set and thus which value to use, is still open
for discussion.
NOTE: This change should only affect those binaries that use
sigcontext and/or ucontext_t. In the source tree itself
this is only doscmd. Recompilation is required for those
applications.
This commit also fixes a lot of style bugs without hopefully
adding new ones.
NOTE: struct sigaltstack.ss_size now has type size_t again. For
some reason I changed that into unsigned int.
Parts submitted by: bde
sigaltstack bug found by: bde
-----------------------------
By introducing a new sigframe so that the signal handler operates
on the new siginfo_t and on ucontext_t instead of sigcontext, we
now need two version of sendsig and sigreturn.
A flag in struct proc determines whether the process expects an
old sigframe or a new sigframe. The signal trampoline handles
which sigreturn to call. It does this by testing for a magic
cookie in the frame.
The alpha uses osigreturn to implement longjmp. This means that
osigreturn is not only used for compatibility with existing
binaries. To handle the new sigset_t, setjmp saves it in
sc_reserved (see NOTE).
the struct sigframe has been moved from frame.h to sigframe.h
to handle the complex header dependencies that was caused by
the new sigframe.
NOTE: For the i386, the size of jmp_buf has been increased to hold
the new sigset_t. On the alpha this has been prevented by
using sc_reserved in sigcontext.