1993-06-12 14:58:17 +00:00
|
|
|
/*-
|
|
|
|
* Copyright (c) 1991 The Regents of the University of California.
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* This code is derived from software contributed to Berkeley by
|
|
|
|
* William Jolitz.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
|
|
* must display the following acknowledgement:
|
|
|
|
* This product includes software developed by the University of
|
|
|
|
* California, Berkeley and its contributors.
|
|
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
|
|
* may be used to endorse or promote products derived from this software
|
|
|
|
* without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
1993-10-16 13:48:52 +00:00
|
|
|
* from: @(#)wdreg.h 7.1 (Berkeley) 5/9/91
|
1999-06-15 23:13:09 +00:00
|
|
|
* $Id: wdreg.h,v 1.26 1999/04/13 20:22:32 peter Exp $
|
1996-11-02 10:41:28 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* modified for PC9801 by F.Ukai
|
|
|
|
* Kyoto University Microcomputer Club (KMC)
|
1993-06-12 14:58:17 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Disk Controller register definitions.
|
|
|
|
*/
|
1996-11-02 10:41:28 +00:00
|
|
|
#ifdef PC98
|
|
|
|
#define wd_data 0x0 /* data register (R/W - 16 bits) */
|
|
|
|
#define wd_error 0x2 /* error register (R) */
|
|
|
|
#define wd_precomp wd_error /* write precompensation (W) */
|
|
|
|
#define wd_features wd_error /* features register (W) */
|
|
|
|
#define wd_seccnt 0x4 /* sector count (R/W) */
|
|
|
|
#define wd_sector 0x6 /* first sector number (R/W) */
|
|
|
|
#define wd_cyl_lo 0x8 /* cylinder address, low byte (R/W) */
|
|
|
|
#define wd_cyl_hi 0xa /* cylinder address, high byte (R/W)*/
|
|
|
|
#define wd_sdh 0xc /* sector size/drive/head (R/W)*/
|
|
|
|
#define wd_command 0xe /* command register (W) */
|
|
|
|
#define wd_status wd_command /* immediate status (R) */
|
|
|
|
|
|
|
|
#define wd_altsts_nec 0x10c /*alternate fixed disk status(via 1015) (R)*/
|
|
|
|
#define wd_ctlr_nec 0x10c /*fixed disk controller control(via 1015) (W)*/
|
|
|
|
#define wd_altsts_epson 0x3 /*alternate fixed disk status(via 1015) (R)*/
|
|
|
|
#define wd_ctlr_epson 0x3 /*fixed disk controller control(via 1015) (W)*/
|
1998-01-14 08:08:42 +00:00
|
|
|
#define wd_altsts wd_altsts_nec
|
1996-11-02 10:41:28 +00:00
|
|
|
|
|
|
|
#define WDCTL_4BIT 0x8 /* use four head bits (wd1003) */
|
|
|
|
#define WDCTL_RST 0x4 /* reset the controller */
|
|
|
|
#define WDCTL_IDS 0x2 /* disable controller interrupts */
|
|
|
|
#define wd_digin 0x10e /* disk controller input(via 1015) (R)*/
|
|
|
|
#else /* IBM-PC */
|
1993-06-12 14:58:17 +00:00
|
|
|
#define wd_data 0x0 /* data register (R/W - 16 bits) */
|
|
|
|
#define wd_error 0x1 /* error register (R) */
|
|
|
|
#define wd_precomp wd_error /* write precompensation (W) */
|
1995-03-22 05:23:01 +00:00
|
|
|
#define wd_features wd_error /* features register (W) */
|
1993-06-12 14:58:17 +00:00
|
|
|
#define wd_seccnt 0x2 /* sector count (R/W) */
|
|
|
|
#define wd_sector 0x3 /* first sector number (R/W) */
|
|
|
|
#define wd_cyl_lo 0x4 /* cylinder address, low byte (R/W) */
|
|
|
|
#define wd_cyl_hi 0x5 /* cylinder address, high byte (R/W)*/
|
|
|
|
#define wd_sdh 0x6 /* sector size/drive/head (R/W)*/
|
|
|
|
#define wd_command 0x7 /* command register (W) */
|
|
|
|
#define wd_status wd_command /* immediate status (R) */
|
|
|
|
|
|
|
|
#define wd_altsts 0x206 /*alternate fixed disk status(via 1015) (R)*/
|
|
|
|
#define wd_ctlr 0x206 /*fixed disk controller control(via 1015) (W)*/
|
|
|
|
#define WDCTL_4BIT 0x8 /* use four head bits (wd1003) */
|
|
|
|
#define WDCTL_RST 0x4 /* reset the controller */
|
|
|
|
#define WDCTL_IDS 0x2 /* disable controller interrupts */
|
|
|
|
#define wd_digin 0x207 /* disk controller input(via 1015) (R)*/
|
1996-11-02 10:41:28 +00:00
|
|
|
#endif /* PC98 */
|
1993-06-12 14:58:17 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Status Bits.
|
|
|
|
*/
|
|
|
|
#define WDCS_BUSY 0x80 /* Controller busy bit. */
|
|
|
|
#define WDCS_READY 0x40 /* Selected drive is ready */
|
|
|
|
#define WDCS_WRTFLT 0x20 /* Write fault */
|
|
|
|
#define WDCS_SEEKCMPLT 0x10 /* Seek complete */
|
|
|
|
#define WDCS_DRQ 0x08 /* Data request bit. */
|
|
|
|
#define WDCS_ECCCOR 0x04 /* ECC correction made in data */
|
|
|
|
#define WDCS_INDEX 0x02 /* Index pulse from selected drive */
|
|
|
|
#define WDCS_ERR 0x01 /* Error detect bit. */
|
|
|
|
|
1996-06-08 10:03:38 +00:00
|
|
|
#define WDCS_BITS "\020\010busy\007rdy\006wrtflt\005seekdone\004drq\003ecc_cor\002index\001err"
|
1995-03-22 05:23:01 +00:00
|
|
|
#define WDERR_ABORT 0x04
|
1993-06-12 14:58:17 +00:00
|
|
|
|
|
|
|
#define WDERR_BITS "\020\010badblk\007uncorr\006id_crc\005no_id\003abort\002tr000\001no_dam"
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Commands for Disk Controller.
|
|
|
|
*/
|
|
|
|
#define WDCC_RESTORE 0x10 /* disk restore code -- resets cntlr */
|
|
|
|
|
|
|
|
#define WDCC_READ 0x20 /* disk read code */
|
|
|
|
#define WDCC_WRITE 0x30 /* disk write code */
|
|
|
|
#define WDCC__LONG 0x02 /* modifier -- access ecc bytes */
|
|
|
|
#define WDCC__NORETRY 0x01 /* modifier -- no retrys */
|
|
|
|
|
|
|
|
#define WDCC_FORMAT 0x50 /* disk format code */
|
|
|
|
#define WDCC_DIAGNOSE 0x90 /* controller diagnostic */
|
|
|
|
#define WDCC_IDC 0x91 /* initialize drive command */
|
1995-03-22 05:23:01 +00:00
|
|
|
#define WDCC_READ_MULTI 0xC4 /* read multiple */
|
|
|
|
#define WDCC_WRITE_MULTI 0xC5 /* write multiple */
|
|
|
|
#define WDCC_SET_MULTI 0xC6 /* set multiple count */
|
Add support for busmaster DMA on some PCI IDE chipsets.
I changed a few bits here and there, mainly renaming wd82371.c
to ide_pci.c now that it's supposed to handle different chipsets.
It runs on my P6 natoma board with two Maxtor drives, and also
on a Fujitsu machine I have at work with an Opti chipset and
a Quantum drive.
Submitted by:cgull@smoke.marlboro.vt.us <John Hood>
Original readme:
*** WARNING ***
This code has so far been tested on exactly one motherboard with two
identical drives known for their good DMA support.
This code, in the right circumstances, could corrupt data subtly,
silently, and invisibly, in much the same way that older PCI IDE
controllers do. It's ALPHA-quality code; there's one or two major
gaps in my understanding of PCI IDE still. Don't use this code on any
system with data that you care about; it's only good for hack boxes.
Expect that any data may be silently and randomly corrupted at any
moment. It's a disk driver. It has bugs. Disk drivers with bugs
munch data. It's a fact of life.
I also *STRONGLY* recommend getting a copy of your chipset's manual
and the ATA-2 or ATA-3 spec and making sure that timing modes on your
disk drives and IDE controller are being setup correctly by the BIOS--
because the driver makes only the lamest of attempts to do this just
now.
*** END WARNING ***
that said, i happen to think the code is working pretty well...
WHAT IT DOES:
this code adds support to the wd driver for bus mastering PCI IDE
controllers that follow the SFF-8038 standard. (all the bus mastering
PCI IDE controllers i've seen so far do follow this standard.) it
should provide busmastering on nearly any current P5 or P6 chipset,
specifically including any Intel chipset using one of the PIIX south
bridges-- this includes the '430FX, '430VX, '430HX, '430TX, '440LX,
and (i think) the Orion '450GX chipsets. specific support is also
included for the VIA Apollo VP-1 chipset, as it appears in the
relabeled "HXPro" incarnation seen on cheap US$70 taiwanese
motherboards (that's what's in my development machine). it works out
of the box on controllers that do DMA mode2; if my understanding is
correct, it'll probably work on Ultra-DMA33 controllers as well.
it'll probably work on busmastering IDE controllers in PCI slots, too,
but this is an area i am less sure about.
it cuts CPU usage considerably and improves drive performance
slightly. usable numbers are difficult to come by with existing
benchmark tools, but experimentation on my K5-P90 system, with VIA
VP-1 chipset and Quantum Fireball 1080 drives, shows that disk i/o on
raw partitions imposes perhaps 5% cpu load. cpu load during
filesystem i/o drops a lot, from near 100% to anywhere between 30% and
70%. (the improvement may not be as large on an Intel chipset; from
what i can tell, the VIA VP-1 may not be very efficient with PCI I/O.)
disk performance improves by 5% or 10% with these drives.
real, visible, end-user performance improvement on a single user
machine is about nil. :) a kernel compile was sped up by a whole three
seconds. it *does* feel a bit better-behaved when the system is
swapping heavily, but a better disk driver is not the fix for *that*
problem.
THE CODE:
this code is a patch to wd.c and wd82371.c, and associated header
files. it should be considered alpha code; more work needs to be
done.
wd.c has fairly clean patches to add calls to busmaster code, as
implemented in wd82371.c and potentially elsewhere (one could imagine,
say, a Mac having a different DMA controller).
wd82371.c has been considerably reworked: the wddma interface that it
presents has been changed (expect more changes), many bugs have been
fixed, a new internal interface has been added for supporting
different chipsets, and the PCI probe has been considerably extended.
the interface between wd82371.c and wd.c is still fairly clean, but
i'm not sure it's in the right place. there's a mess of issues around
ATA/ATAPI that need to be sorted out, including ATAPI support, CD-ROM
support, tape support, LS-120/Zip support, SFF-8038i DMA, UltraDMA,
PCI IDE controllers, bus probes, buggy controllers, controller timing
setup, drive timing setup, world peace and kitchen sinks. whatever
happens with all this and however it gets partitioned, it is fairly
clear that wd.c needs some significant rework-- probably a complete
rewrite.
timing setup on disk controllers is something i've entirely punted on.
on my development machine, it appears that the BIOS does at least some
of the necessary timing setup. i chose to restrict operation to
drives that are already configured for Mode4 PIO and Mode2 multiword
DMA, since the timing is essentially the same and many if not most
chipsets use the same control registers for DMA and PIO timing.
does anybody *know* whether BIOSes are required to do timing setup for
DMA modes on drives under their care?
error recovery is probably weak. early on in development, i was
getting drive errors induced by bugs in the driver; i used these to
flush out the worst of the bugs in the driver's error handling, but
problems may remain. i haven't got a drive with bad sectors i can
watch the driver flail on.
complaints about how wd82371.c has been reindented will be ignored
until the FreeBSD project has a real style policy, there is a
mechanism for individual authors to match it (indent flags or an emacs
c-mode or whatever), and it is enforced. if i'm going to use a source
style i don't like, it would help if i could figure out what it *is*
(style(9) is about half of a policy), and a way to reasonably
duplicate it. i ended up wasting a while trying to figure out what
the right thing to do was before deciding reformatting the whole thing
was the worst possible thing to do, except for all the other
possibilities.
i have maintained wd.c's indentation; that was not too hard,
fortunately.
TO INSTALL:
my dev box is freebsd 2.2.2 release. fortunately, wd.c is a living
fossil, and has diverged very little recently. included in this
tarball is a patch file, 'otherdiffs', for all files except wd82371.c,
my edited wd82371.c, a patch file, 'wd82371.c-diff-exact', against the
2.2.2 dist of 82371.c, and another patch file,
'wd82371.c-diff-whitespace', generated with diff -b (ignore
whitespace). most of you not using 2.2.2 will probably have to use
this last patchfile with 'patch --ignore-whitespace'. apply from the
kernel source tree root. as far as i can tell, this should apply
cleanly on anything from -current back to 2.2.2 and probably back to
2.2.0. you, the kernel hacker, can figure out what to do from here.
if you need more specific directions, you probably should not be
experimenting with this code yet.
to enable DMA support, set flag 0x2000 for that drive in your config
file or in userconfig, as you would the 32-bit-PIO flag. the driver
will then turn on DMA support if your drive and controller pass its
tests. it's a bit picky, probably. on discovering DMA mode failures
or disk errors or transfers that the DMA controller can't deal with,
the driver will fall back to PIO, so it is wise to setup the flags as
if PIO were still important.
'controller wdc0 at isa? port "IO_WD1" bio irq 14 flags 0xa0ffa0ff
vector wdintr' should work with nearly any PCI IDE controller.
i would *strongly* suggest booting single-user at first, and thrashing
the drive a bit while it's still mounted read-only. this should be
fairly safe, even if the driver goes completely out to lunch. it
might save you a reinstall.
one way to tell whether the driver is really using DMA is to check the
interrupt count during disk i/o with vmstat; DMA mode will add an
extremely low number of interrupts, as compared to even multi-sector
PIO.
boot -v will give you a copious register dump of timing-related info
on Intel and VIAtech chipsets, as well as PIO/DMA mode information on
all hard drives. refer to your ATA and chipset documentation to
interpret these.
WHAT I'D LIKE FROM YOU and THINGS TO TEST:
reports. success reports, failure reports, any kind of reports. :)
send them to cgull+ide@smoke.marlboro.vt.us.
i'd also like to see the kernel messages from various BIOSes (boot -v;
dmesg), along with info on the motherboard and BIOS on that machine.
i'm especially interested in reports on how this code works on the
various Intel chipsets, and whether the register dump works
correctly. i'm also interested in hearing about other chipsets.
i'm especially interested in hearing success/failure reports for PCI
IDE controllers on cards, such as CMD's or Promise's new busmastering
IDE controllers.
UltraDMA-33 reports.
interoperation with ATAPI peripherals-- FreeBSD doesn't work with my
old Hitachi IDE CDROM, so i can't tell if I've broken anything. :)
i'd especially like to hear how the drive copes in DMA operation on
drives with bad sectors. i haven't been able to find any such yet.
success/failure reports on older IDE drives with early support for DMA
modes-- those introduced between 1.5 and 3 years ago, typically
ranging from perhaps 400MB to 1.6GB.
failure reports on operation with more than one drive would be
appreciated. the driver was developed with two drives on one
controller, the worst-case situation, and has been tested with one
drive on each controller, but you never know...
any reports of messages from the driver during normal operation,
especially "reverting to PIO mode", or "dmaverify odd vaddr or length"
(the DMA controller is strongly halfword oriented, and i'm curious to
know if any FreeBSD usage actually needs misaligned transfers).
performance reports. beware that bonnie's CPU usage reporting is
useless for IDE drives; the best test i've found has been to run a
program that runs a spin loop at an idle priority and reports how many
iterations it manages, and even that sometimes produces numbers i
don't believe. performance reports of multi-drive operation are
especially interesting; my system cannot sustain full throughput on
two drives on separate controllers, but that may just be a lame
motherboard.
THINGS I'M STILL MISSING CLUE ON:
* who's responsible for configuring DMA timing modes on IDE drives?
the BIOS or the driver?
* is there a spec for dealing with Ultra-DMA extensions?
* are there any chipsets or with bugs relating to DMA transfer that
should be blacklisted?
* are there any ATA interfaces that use some other kind of DMA
controller in conjunction with standard ATA protocol?
FINAL NOTE:
after having looked at the ATA-3 spec, all i can say is, "it's ugly".
*especially* electrically. the IDE bus is best modeled as an
unterminated transmission line, these days.
for maximum reliability, keep your IDE cables as short as possible and
as few as possible. from what i can tell, most current chipsets have
both IDE ports wired into a single buss, to a greater or lesser
degree. using two cables means you double the length of this bus.
SCSI may have its warts, but at least the basic analog design of the
bus is still somewhat reasonable. IDE passed beyond the veil two
years ago.
--John Hood, cgull@smoke.marlboro.vt.us
1997-07-29 12:57:25 +00:00
|
|
|
#define WDCC_READ_DMA 0xC8 /* read using DMA */
|
|
|
|
#define WDCC_WRITE_DMA 0xCA /* write using DMA */
|
1995-03-22 05:23:01 +00:00
|
|
|
|
1993-06-12 14:58:17 +00:00
|
|
|
|
|
|
|
#define WDCC_EXTDCMD 0xE0 /* send extended command */
|
|
|
|
#define WDCC_READP 0xEC /* read parameters from controller */
|
1995-03-22 05:23:01 +00:00
|
|
|
#define WDCC_FEATURES 0xEF /* features control */
|
|
|
|
|
1999-06-15 23:13:09 +00:00
|
|
|
#define WDCC_DEFECT 0xF0 /* read defect list */
|
|
|
|
|
|
|
|
#define WDFEA_NORCACHE 0x55 /* read cache disable */
|
1995-03-22 05:23:01 +00:00
|
|
|
#define WDFEA_RCACHE 0xAA /* read cache enable */
|
1999-06-15 23:13:09 +00:00
|
|
|
#define WDFEA_NOWCACHE 0x82 /* write cache disable */
|
1995-03-22 05:23:01 +00:00
|
|
|
#define WDFEA_WCACHE 0x02 /* write cache enable */
|
Add support for busmaster DMA on some PCI IDE chipsets.
I changed a few bits here and there, mainly renaming wd82371.c
to ide_pci.c now that it's supposed to handle different chipsets.
It runs on my P6 natoma board with two Maxtor drives, and also
on a Fujitsu machine I have at work with an Opti chipset and
a Quantum drive.
Submitted by:cgull@smoke.marlboro.vt.us <John Hood>
Original readme:
*** WARNING ***
This code has so far been tested on exactly one motherboard with two
identical drives known for their good DMA support.
This code, in the right circumstances, could corrupt data subtly,
silently, and invisibly, in much the same way that older PCI IDE
controllers do. It's ALPHA-quality code; there's one or two major
gaps in my understanding of PCI IDE still. Don't use this code on any
system with data that you care about; it's only good for hack boxes.
Expect that any data may be silently and randomly corrupted at any
moment. It's a disk driver. It has bugs. Disk drivers with bugs
munch data. It's a fact of life.
I also *STRONGLY* recommend getting a copy of your chipset's manual
and the ATA-2 or ATA-3 spec and making sure that timing modes on your
disk drives and IDE controller are being setup correctly by the BIOS--
because the driver makes only the lamest of attempts to do this just
now.
*** END WARNING ***
that said, i happen to think the code is working pretty well...
WHAT IT DOES:
this code adds support to the wd driver for bus mastering PCI IDE
controllers that follow the SFF-8038 standard. (all the bus mastering
PCI IDE controllers i've seen so far do follow this standard.) it
should provide busmastering on nearly any current P5 or P6 chipset,
specifically including any Intel chipset using one of the PIIX south
bridges-- this includes the '430FX, '430VX, '430HX, '430TX, '440LX,
and (i think) the Orion '450GX chipsets. specific support is also
included for the VIA Apollo VP-1 chipset, as it appears in the
relabeled "HXPro" incarnation seen on cheap US$70 taiwanese
motherboards (that's what's in my development machine). it works out
of the box on controllers that do DMA mode2; if my understanding is
correct, it'll probably work on Ultra-DMA33 controllers as well.
it'll probably work on busmastering IDE controllers in PCI slots, too,
but this is an area i am less sure about.
it cuts CPU usage considerably and improves drive performance
slightly. usable numbers are difficult to come by with existing
benchmark tools, but experimentation on my K5-P90 system, with VIA
VP-1 chipset and Quantum Fireball 1080 drives, shows that disk i/o on
raw partitions imposes perhaps 5% cpu load. cpu load during
filesystem i/o drops a lot, from near 100% to anywhere between 30% and
70%. (the improvement may not be as large on an Intel chipset; from
what i can tell, the VIA VP-1 may not be very efficient with PCI I/O.)
disk performance improves by 5% or 10% with these drives.
real, visible, end-user performance improvement on a single user
machine is about nil. :) a kernel compile was sped up by a whole three
seconds. it *does* feel a bit better-behaved when the system is
swapping heavily, but a better disk driver is not the fix for *that*
problem.
THE CODE:
this code is a patch to wd.c and wd82371.c, and associated header
files. it should be considered alpha code; more work needs to be
done.
wd.c has fairly clean patches to add calls to busmaster code, as
implemented in wd82371.c and potentially elsewhere (one could imagine,
say, a Mac having a different DMA controller).
wd82371.c has been considerably reworked: the wddma interface that it
presents has been changed (expect more changes), many bugs have been
fixed, a new internal interface has been added for supporting
different chipsets, and the PCI probe has been considerably extended.
the interface between wd82371.c and wd.c is still fairly clean, but
i'm not sure it's in the right place. there's a mess of issues around
ATA/ATAPI that need to be sorted out, including ATAPI support, CD-ROM
support, tape support, LS-120/Zip support, SFF-8038i DMA, UltraDMA,
PCI IDE controllers, bus probes, buggy controllers, controller timing
setup, drive timing setup, world peace and kitchen sinks. whatever
happens with all this and however it gets partitioned, it is fairly
clear that wd.c needs some significant rework-- probably a complete
rewrite.
timing setup on disk controllers is something i've entirely punted on.
on my development machine, it appears that the BIOS does at least some
of the necessary timing setup. i chose to restrict operation to
drives that are already configured for Mode4 PIO and Mode2 multiword
DMA, since the timing is essentially the same and many if not most
chipsets use the same control registers for DMA and PIO timing.
does anybody *know* whether BIOSes are required to do timing setup for
DMA modes on drives under their care?
error recovery is probably weak. early on in development, i was
getting drive errors induced by bugs in the driver; i used these to
flush out the worst of the bugs in the driver's error handling, but
problems may remain. i haven't got a drive with bad sectors i can
watch the driver flail on.
complaints about how wd82371.c has been reindented will be ignored
until the FreeBSD project has a real style policy, there is a
mechanism for individual authors to match it (indent flags or an emacs
c-mode or whatever), and it is enforced. if i'm going to use a source
style i don't like, it would help if i could figure out what it *is*
(style(9) is about half of a policy), and a way to reasonably
duplicate it. i ended up wasting a while trying to figure out what
the right thing to do was before deciding reformatting the whole thing
was the worst possible thing to do, except for all the other
possibilities.
i have maintained wd.c's indentation; that was not too hard,
fortunately.
TO INSTALL:
my dev box is freebsd 2.2.2 release. fortunately, wd.c is a living
fossil, and has diverged very little recently. included in this
tarball is a patch file, 'otherdiffs', for all files except wd82371.c,
my edited wd82371.c, a patch file, 'wd82371.c-diff-exact', against the
2.2.2 dist of 82371.c, and another patch file,
'wd82371.c-diff-whitespace', generated with diff -b (ignore
whitespace). most of you not using 2.2.2 will probably have to use
this last patchfile with 'patch --ignore-whitespace'. apply from the
kernel source tree root. as far as i can tell, this should apply
cleanly on anything from -current back to 2.2.2 and probably back to
2.2.0. you, the kernel hacker, can figure out what to do from here.
if you need more specific directions, you probably should not be
experimenting with this code yet.
to enable DMA support, set flag 0x2000 for that drive in your config
file or in userconfig, as you would the 32-bit-PIO flag. the driver
will then turn on DMA support if your drive and controller pass its
tests. it's a bit picky, probably. on discovering DMA mode failures
or disk errors or transfers that the DMA controller can't deal with,
the driver will fall back to PIO, so it is wise to setup the flags as
if PIO were still important.
'controller wdc0 at isa? port "IO_WD1" bio irq 14 flags 0xa0ffa0ff
vector wdintr' should work with nearly any PCI IDE controller.
i would *strongly* suggest booting single-user at first, and thrashing
the drive a bit while it's still mounted read-only. this should be
fairly safe, even if the driver goes completely out to lunch. it
might save you a reinstall.
one way to tell whether the driver is really using DMA is to check the
interrupt count during disk i/o with vmstat; DMA mode will add an
extremely low number of interrupts, as compared to even multi-sector
PIO.
boot -v will give you a copious register dump of timing-related info
on Intel and VIAtech chipsets, as well as PIO/DMA mode information on
all hard drives. refer to your ATA and chipset documentation to
interpret these.
WHAT I'D LIKE FROM YOU and THINGS TO TEST:
reports. success reports, failure reports, any kind of reports. :)
send them to cgull+ide@smoke.marlboro.vt.us.
i'd also like to see the kernel messages from various BIOSes (boot -v;
dmesg), along with info on the motherboard and BIOS on that machine.
i'm especially interested in reports on how this code works on the
various Intel chipsets, and whether the register dump works
correctly. i'm also interested in hearing about other chipsets.
i'm especially interested in hearing success/failure reports for PCI
IDE controllers on cards, such as CMD's or Promise's new busmastering
IDE controllers.
UltraDMA-33 reports.
interoperation with ATAPI peripherals-- FreeBSD doesn't work with my
old Hitachi IDE CDROM, so i can't tell if I've broken anything. :)
i'd especially like to hear how the drive copes in DMA operation on
drives with bad sectors. i haven't been able to find any such yet.
success/failure reports on older IDE drives with early support for DMA
modes-- those introduced between 1.5 and 3 years ago, typically
ranging from perhaps 400MB to 1.6GB.
failure reports on operation with more than one drive would be
appreciated. the driver was developed with two drives on one
controller, the worst-case situation, and has been tested with one
drive on each controller, but you never know...
any reports of messages from the driver during normal operation,
especially "reverting to PIO mode", or "dmaverify odd vaddr or length"
(the DMA controller is strongly halfword oriented, and i'm curious to
know if any FreeBSD usage actually needs misaligned transfers).
performance reports. beware that bonnie's CPU usage reporting is
useless for IDE drives; the best test i've found has been to run a
program that runs a spin loop at an idle priority and reports how many
iterations it manages, and even that sometimes produces numbers i
don't believe. performance reports of multi-drive operation are
especially interesting; my system cannot sustain full throughput on
two drives on separate controllers, but that may just be a lame
motherboard.
THINGS I'M STILL MISSING CLUE ON:
* who's responsible for configuring DMA timing modes on IDE drives?
the BIOS or the driver?
* is there a spec for dealing with Ultra-DMA extensions?
* are there any chipsets or with bugs relating to DMA transfer that
should be blacklisted?
* are there any ATA interfaces that use some other kind of DMA
controller in conjunction with standard ATA protocol?
FINAL NOTE:
after having looked at the ATA-3 spec, all i can say is, "it's ugly".
*especially* electrically. the IDE bus is best modeled as an
unterminated transmission line, these days.
for maximum reliability, keep your IDE cables as short as possible and
as few as possible. from what i can tell, most current chipsets have
both IDE ports wired into a single buss, to a greater or lesser
degree. using two cables means you double the length of this bus.
SCSI may have its warts, but at least the basic analog design of the
bus is still somewhat reasonable. IDE passed beyond the veil two
years ago.
--John Hood, cgull@smoke.marlboro.vt.us
1997-07-29 12:57:25 +00:00
|
|
|
#define WDFEA_SETXFER 0x03 /* set transfer mode */
|
1993-06-12 14:58:17 +00:00
|
|
|
|
|
|
|
#define WD_STEP 0 /* winchester- default 35us step */
|
|
|
|
|
|
|
|
#define WDSD_IBM 0xa0 /* forced to 512 byte sector, ecc */
|
1998-04-08 20:04:39 +00:00
|
|
|
#define WDSD_LBA 0x40 /* use Logical Block Adressing */
|
1993-06-12 14:58:17 +00:00
|
|
|
|
|
|
|
#ifdef KERNEL
|
|
|
|
/*
|
|
|
|
* read parameters command returns this:
|
|
|
|
*/
|
|
|
|
struct wdparams {
|
Add support for busmaster DMA on some PCI IDE chipsets.
I changed a few bits here and there, mainly renaming wd82371.c
to ide_pci.c now that it's supposed to handle different chipsets.
It runs on my P6 natoma board with two Maxtor drives, and also
on a Fujitsu machine I have at work with an Opti chipset and
a Quantum drive.
Submitted by:cgull@smoke.marlboro.vt.us <John Hood>
Original readme:
*** WARNING ***
This code has so far been tested on exactly one motherboard with two
identical drives known for their good DMA support.
This code, in the right circumstances, could corrupt data subtly,
silently, and invisibly, in much the same way that older PCI IDE
controllers do. It's ALPHA-quality code; there's one or two major
gaps in my understanding of PCI IDE still. Don't use this code on any
system with data that you care about; it's only good for hack boxes.
Expect that any data may be silently and randomly corrupted at any
moment. It's a disk driver. It has bugs. Disk drivers with bugs
munch data. It's a fact of life.
I also *STRONGLY* recommend getting a copy of your chipset's manual
and the ATA-2 or ATA-3 spec and making sure that timing modes on your
disk drives and IDE controller are being setup correctly by the BIOS--
because the driver makes only the lamest of attempts to do this just
now.
*** END WARNING ***
that said, i happen to think the code is working pretty well...
WHAT IT DOES:
this code adds support to the wd driver for bus mastering PCI IDE
controllers that follow the SFF-8038 standard. (all the bus mastering
PCI IDE controllers i've seen so far do follow this standard.) it
should provide busmastering on nearly any current P5 or P6 chipset,
specifically including any Intel chipset using one of the PIIX south
bridges-- this includes the '430FX, '430VX, '430HX, '430TX, '440LX,
and (i think) the Orion '450GX chipsets. specific support is also
included for the VIA Apollo VP-1 chipset, as it appears in the
relabeled "HXPro" incarnation seen on cheap US$70 taiwanese
motherboards (that's what's in my development machine). it works out
of the box on controllers that do DMA mode2; if my understanding is
correct, it'll probably work on Ultra-DMA33 controllers as well.
it'll probably work on busmastering IDE controllers in PCI slots, too,
but this is an area i am less sure about.
it cuts CPU usage considerably and improves drive performance
slightly. usable numbers are difficult to come by with existing
benchmark tools, but experimentation on my K5-P90 system, with VIA
VP-1 chipset and Quantum Fireball 1080 drives, shows that disk i/o on
raw partitions imposes perhaps 5% cpu load. cpu load during
filesystem i/o drops a lot, from near 100% to anywhere between 30% and
70%. (the improvement may not be as large on an Intel chipset; from
what i can tell, the VIA VP-1 may not be very efficient with PCI I/O.)
disk performance improves by 5% or 10% with these drives.
real, visible, end-user performance improvement on a single user
machine is about nil. :) a kernel compile was sped up by a whole three
seconds. it *does* feel a bit better-behaved when the system is
swapping heavily, but a better disk driver is not the fix for *that*
problem.
THE CODE:
this code is a patch to wd.c and wd82371.c, and associated header
files. it should be considered alpha code; more work needs to be
done.
wd.c has fairly clean patches to add calls to busmaster code, as
implemented in wd82371.c and potentially elsewhere (one could imagine,
say, a Mac having a different DMA controller).
wd82371.c has been considerably reworked: the wddma interface that it
presents has been changed (expect more changes), many bugs have been
fixed, a new internal interface has been added for supporting
different chipsets, and the PCI probe has been considerably extended.
the interface between wd82371.c and wd.c is still fairly clean, but
i'm not sure it's in the right place. there's a mess of issues around
ATA/ATAPI that need to be sorted out, including ATAPI support, CD-ROM
support, tape support, LS-120/Zip support, SFF-8038i DMA, UltraDMA,
PCI IDE controllers, bus probes, buggy controllers, controller timing
setup, drive timing setup, world peace and kitchen sinks. whatever
happens with all this and however it gets partitioned, it is fairly
clear that wd.c needs some significant rework-- probably a complete
rewrite.
timing setup on disk controllers is something i've entirely punted on.
on my development machine, it appears that the BIOS does at least some
of the necessary timing setup. i chose to restrict operation to
drives that are already configured for Mode4 PIO and Mode2 multiword
DMA, since the timing is essentially the same and many if not most
chipsets use the same control registers for DMA and PIO timing.
does anybody *know* whether BIOSes are required to do timing setup for
DMA modes on drives under their care?
error recovery is probably weak. early on in development, i was
getting drive errors induced by bugs in the driver; i used these to
flush out the worst of the bugs in the driver's error handling, but
problems may remain. i haven't got a drive with bad sectors i can
watch the driver flail on.
complaints about how wd82371.c has been reindented will be ignored
until the FreeBSD project has a real style policy, there is a
mechanism for individual authors to match it (indent flags or an emacs
c-mode or whatever), and it is enforced. if i'm going to use a source
style i don't like, it would help if i could figure out what it *is*
(style(9) is about half of a policy), and a way to reasonably
duplicate it. i ended up wasting a while trying to figure out what
the right thing to do was before deciding reformatting the whole thing
was the worst possible thing to do, except for all the other
possibilities.
i have maintained wd.c's indentation; that was not too hard,
fortunately.
TO INSTALL:
my dev box is freebsd 2.2.2 release. fortunately, wd.c is a living
fossil, and has diverged very little recently. included in this
tarball is a patch file, 'otherdiffs', for all files except wd82371.c,
my edited wd82371.c, a patch file, 'wd82371.c-diff-exact', against the
2.2.2 dist of 82371.c, and another patch file,
'wd82371.c-diff-whitespace', generated with diff -b (ignore
whitespace). most of you not using 2.2.2 will probably have to use
this last patchfile with 'patch --ignore-whitespace'. apply from the
kernel source tree root. as far as i can tell, this should apply
cleanly on anything from -current back to 2.2.2 and probably back to
2.2.0. you, the kernel hacker, can figure out what to do from here.
if you need more specific directions, you probably should not be
experimenting with this code yet.
to enable DMA support, set flag 0x2000 for that drive in your config
file or in userconfig, as you would the 32-bit-PIO flag. the driver
will then turn on DMA support if your drive and controller pass its
tests. it's a bit picky, probably. on discovering DMA mode failures
or disk errors or transfers that the DMA controller can't deal with,
the driver will fall back to PIO, so it is wise to setup the flags as
if PIO were still important.
'controller wdc0 at isa? port "IO_WD1" bio irq 14 flags 0xa0ffa0ff
vector wdintr' should work with nearly any PCI IDE controller.
i would *strongly* suggest booting single-user at first, and thrashing
the drive a bit while it's still mounted read-only. this should be
fairly safe, even if the driver goes completely out to lunch. it
might save you a reinstall.
one way to tell whether the driver is really using DMA is to check the
interrupt count during disk i/o with vmstat; DMA mode will add an
extremely low number of interrupts, as compared to even multi-sector
PIO.
boot -v will give you a copious register dump of timing-related info
on Intel and VIAtech chipsets, as well as PIO/DMA mode information on
all hard drives. refer to your ATA and chipset documentation to
interpret these.
WHAT I'D LIKE FROM YOU and THINGS TO TEST:
reports. success reports, failure reports, any kind of reports. :)
send them to cgull+ide@smoke.marlboro.vt.us.
i'd also like to see the kernel messages from various BIOSes (boot -v;
dmesg), along with info on the motherboard and BIOS on that machine.
i'm especially interested in reports on how this code works on the
various Intel chipsets, and whether the register dump works
correctly. i'm also interested in hearing about other chipsets.
i'm especially interested in hearing success/failure reports for PCI
IDE controllers on cards, such as CMD's or Promise's new busmastering
IDE controllers.
UltraDMA-33 reports.
interoperation with ATAPI peripherals-- FreeBSD doesn't work with my
old Hitachi IDE CDROM, so i can't tell if I've broken anything. :)
i'd especially like to hear how the drive copes in DMA operation on
drives with bad sectors. i haven't been able to find any such yet.
success/failure reports on older IDE drives with early support for DMA
modes-- those introduced between 1.5 and 3 years ago, typically
ranging from perhaps 400MB to 1.6GB.
failure reports on operation with more than one drive would be
appreciated. the driver was developed with two drives on one
controller, the worst-case situation, and has been tested with one
drive on each controller, but you never know...
any reports of messages from the driver during normal operation,
especially "reverting to PIO mode", or "dmaverify odd vaddr or length"
(the DMA controller is strongly halfword oriented, and i'm curious to
know if any FreeBSD usage actually needs misaligned transfers).
performance reports. beware that bonnie's CPU usage reporting is
useless for IDE drives; the best test i've found has been to run a
program that runs a spin loop at an idle priority and reports how many
iterations it manages, and even that sometimes produces numbers i
don't believe. performance reports of multi-drive operation are
especially interesting; my system cannot sustain full throughput on
two drives on separate controllers, but that may just be a lame
motherboard.
THINGS I'M STILL MISSING CLUE ON:
* who's responsible for configuring DMA timing modes on IDE drives?
the BIOS or the driver?
* is there a spec for dealing with Ultra-DMA extensions?
* are there any chipsets or with bugs relating to DMA transfer that
should be blacklisted?
* are there any ATA interfaces that use some other kind of DMA
controller in conjunction with standard ATA protocol?
FINAL NOTE:
after having looked at the ATA-3 spec, all i can say is, "it's ugly".
*especially* electrically. the IDE bus is best modeled as an
unterminated transmission line, these days.
for maximum reliability, keep your IDE cables as short as possible and
as few as possible. from what i can tell, most current chipsets have
both IDE ports wired into a single buss, to a greater or lesser
degree. using two cables means you double the length of this bus.
SCSI may have its warts, but at least the basic analog design of the
bus is still somewhat reasonable. IDE passed beyond the veil two
years ago.
--John Hood, cgull@smoke.marlboro.vt.us
1997-07-29 12:57:25 +00:00
|
|
|
/*
|
|
|
|
* XXX partly based on DRAFT X3T13/1153D rev 14.
|
|
|
|
* by the time you read this it will have changed.
|
1999-06-15 23:13:09 +00:00
|
|
|
* Offsets in words
|
|
|
|
* (as that's how they are usually presented in tables
|
|
|
|
* e.g. QUANTUM Product manuals)
|
Add support for busmaster DMA on some PCI IDE chipsets.
I changed a few bits here and there, mainly renaming wd82371.c
to ide_pci.c now that it's supposed to handle different chipsets.
It runs on my P6 natoma board with two Maxtor drives, and also
on a Fujitsu machine I have at work with an Opti chipset and
a Quantum drive.
Submitted by:cgull@smoke.marlboro.vt.us <John Hood>
Original readme:
*** WARNING ***
This code has so far been tested on exactly one motherboard with two
identical drives known for their good DMA support.
This code, in the right circumstances, could corrupt data subtly,
silently, and invisibly, in much the same way that older PCI IDE
controllers do. It's ALPHA-quality code; there's one or two major
gaps in my understanding of PCI IDE still. Don't use this code on any
system with data that you care about; it's only good for hack boxes.
Expect that any data may be silently and randomly corrupted at any
moment. It's a disk driver. It has bugs. Disk drivers with bugs
munch data. It's a fact of life.
I also *STRONGLY* recommend getting a copy of your chipset's manual
and the ATA-2 or ATA-3 spec and making sure that timing modes on your
disk drives and IDE controller are being setup correctly by the BIOS--
because the driver makes only the lamest of attempts to do this just
now.
*** END WARNING ***
that said, i happen to think the code is working pretty well...
WHAT IT DOES:
this code adds support to the wd driver for bus mastering PCI IDE
controllers that follow the SFF-8038 standard. (all the bus mastering
PCI IDE controllers i've seen so far do follow this standard.) it
should provide busmastering on nearly any current P5 or P6 chipset,
specifically including any Intel chipset using one of the PIIX south
bridges-- this includes the '430FX, '430VX, '430HX, '430TX, '440LX,
and (i think) the Orion '450GX chipsets. specific support is also
included for the VIA Apollo VP-1 chipset, as it appears in the
relabeled "HXPro" incarnation seen on cheap US$70 taiwanese
motherboards (that's what's in my development machine). it works out
of the box on controllers that do DMA mode2; if my understanding is
correct, it'll probably work on Ultra-DMA33 controllers as well.
it'll probably work on busmastering IDE controllers in PCI slots, too,
but this is an area i am less sure about.
it cuts CPU usage considerably and improves drive performance
slightly. usable numbers are difficult to come by with existing
benchmark tools, but experimentation on my K5-P90 system, with VIA
VP-1 chipset and Quantum Fireball 1080 drives, shows that disk i/o on
raw partitions imposes perhaps 5% cpu load. cpu load during
filesystem i/o drops a lot, from near 100% to anywhere between 30% and
70%. (the improvement may not be as large on an Intel chipset; from
what i can tell, the VIA VP-1 may not be very efficient with PCI I/O.)
disk performance improves by 5% or 10% with these drives.
real, visible, end-user performance improvement on a single user
machine is about nil. :) a kernel compile was sped up by a whole three
seconds. it *does* feel a bit better-behaved when the system is
swapping heavily, but a better disk driver is not the fix for *that*
problem.
THE CODE:
this code is a patch to wd.c and wd82371.c, and associated header
files. it should be considered alpha code; more work needs to be
done.
wd.c has fairly clean patches to add calls to busmaster code, as
implemented in wd82371.c and potentially elsewhere (one could imagine,
say, a Mac having a different DMA controller).
wd82371.c has been considerably reworked: the wddma interface that it
presents has been changed (expect more changes), many bugs have been
fixed, a new internal interface has been added for supporting
different chipsets, and the PCI probe has been considerably extended.
the interface between wd82371.c and wd.c is still fairly clean, but
i'm not sure it's in the right place. there's a mess of issues around
ATA/ATAPI that need to be sorted out, including ATAPI support, CD-ROM
support, tape support, LS-120/Zip support, SFF-8038i DMA, UltraDMA,
PCI IDE controllers, bus probes, buggy controllers, controller timing
setup, drive timing setup, world peace and kitchen sinks. whatever
happens with all this and however it gets partitioned, it is fairly
clear that wd.c needs some significant rework-- probably a complete
rewrite.
timing setup on disk controllers is something i've entirely punted on.
on my development machine, it appears that the BIOS does at least some
of the necessary timing setup. i chose to restrict operation to
drives that are already configured for Mode4 PIO and Mode2 multiword
DMA, since the timing is essentially the same and many if not most
chipsets use the same control registers for DMA and PIO timing.
does anybody *know* whether BIOSes are required to do timing setup for
DMA modes on drives under their care?
error recovery is probably weak. early on in development, i was
getting drive errors induced by bugs in the driver; i used these to
flush out the worst of the bugs in the driver's error handling, but
problems may remain. i haven't got a drive with bad sectors i can
watch the driver flail on.
complaints about how wd82371.c has been reindented will be ignored
until the FreeBSD project has a real style policy, there is a
mechanism for individual authors to match it (indent flags or an emacs
c-mode or whatever), and it is enforced. if i'm going to use a source
style i don't like, it would help if i could figure out what it *is*
(style(9) is about half of a policy), and a way to reasonably
duplicate it. i ended up wasting a while trying to figure out what
the right thing to do was before deciding reformatting the whole thing
was the worst possible thing to do, except for all the other
possibilities.
i have maintained wd.c's indentation; that was not too hard,
fortunately.
TO INSTALL:
my dev box is freebsd 2.2.2 release. fortunately, wd.c is a living
fossil, and has diverged very little recently. included in this
tarball is a patch file, 'otherdiffs', for all files except wd82371.c,
my edited wd82371.c, a patch file, 'wd82371.c-diff-exact', against the
2.2.2 dist of 82371.c, and another patch file,
'wd82371.c-diff-whitespace', generated with diff -b (ignore
whitespace). most of you not using 2.2.2 will probably have to use
this last patchfile with 'patch --ignore-whitespace'. apply from the
kernel source tree root. as far as i can tell, this should apply
cleanly on anything from -current back to 2.2.2 and probably back to
2.2.0. you, the kernel hacker, can figure out what to do from here.
if you need more specific directions, you probably should not be
experimenting with this code yet.
to enable DMA support, set flag 0x2000 for that drive in your config
file or in userconfig, as you would the 32-bit-PIO flag. the driver
will then turn on DMA support if your drive and controller pass its
tests. it's a bit picky, probably. on discovering DMA mode failures
or disk errors or transfers that the DMA controller can't deal with,
the driver will fall back to PIO, so it is wise to setup the flags as
if PIO were still important.
'controller wdc0 at isa? port "IO_WD1" bio irq 14 flags 0xa0ffa0ff
vector wdintr' should work with nearly any PCI IDE controller.
i would *strongly* suggest booting single-user at first, and thrashing
the drive a bit while it's still mounted read-only. this should be
fairly safe, even if the driver goes completely out to lunch. it
might save you a reinstall.
one way to tell whether the driver is really using DMA is to check the
interrupt count during disk i/o with vmstat; DMA mode will add an
extremely low number of interrupts, as compared to even multi-sector
PIO.
boot -v will give you a copious register dump of timing-related info
on Intel and VIAtech chipsets, as well as PIO/DMA mode information on
all hard drives. refer to your ATA and chipset documentation to
interpret these.
WHAT I'D LIKE FROM YOU and THINGS TO TEST:
reports. success reports, failure reports, any kind of reports. :)
send them to cgull+ide@smoke.marlboro.vt.us.
i'd also like to see the kernel messages from various BIOSes (boot -v;
dmesg), along with info on the motherboard and BIOS on that machine.
i'm especially interested in reports on how this code works on the
various Intel chipsets, and whether the register dump works
correctly. i'm also interested in hearing about other chipsets.
i'm especially interested in hearing success/failure reports for PCI
IDE controllers on cards, such as CMD's or Promise's new busmastering
IDE controllers.
UltraDMA-33 reports.
interoperation with ATAPI peripherals-- FreeBSD doesn't work with my
old Hitachi IDE CDROM, so i can't tell if I've broken anything. :)
i'd especially like to hear how the drive copes in DMA operation on
drives with bad sectors. i haven't been able to find any such yet.
success/failure reports on older IDE drives with early support for DMA
modes-- those introduced between 1.5 and 3 years ago, typically
ranging from perhaps 400MB to 1.6GB.
failure reports on operation with more than one drive would be
appreciated. the driver was developed with two drives on one
controller, the worst-case situation, and has been tested with one
drive on each controller, but you never know...
any reports of messages from the driver during normal operation,
especially "reverting to PIO mode", or "dmaverify odd vaddr or length"
(the DMA controller is strongly halfword oriented, and i'm curious to
know if any FreeBSD usage actually needs misaligned transfers).
performance reports. beware that bonnie's CPU usage reporting is
useless for IDE drives; the best test i've found has been to run a
program that runs a spin loop at an idle priority and reports how many
iterations it manages, and even that sometimes produces numbers i
don't believe. performance reports of multi-drive operation are
especially interesting; my system cannot sustain full throughput on
two drives on separate controllers, but that may just be a lame
motherboard.
THINGS I'M STILL MISSING CLUE ON:
* who's responsible for configuring DMA timing modes on IDE drives?
the BIOS or the driver?
* is there a spec for dealing with Ultra-DMA extensions?
* are there any chipsets or with bugs relating to DMA transfer that
should be blacklisted?
* are there any ATA interfaces that use some other kind of DMA
controller in conjunction with standard ATA protocol?
FINAL NOTE:
after having looked at the ATA-3 spec, all i can say is, "it's ugly".
*especially* electrically. the IDE bus is best modeled as an
unterminated transmission line, these days.
for maximum reliability, keep your IDE cables as short as possible and
as few as possible. from what i can tell, most current chipsets have
both IDE ports wired into a single buss, to a greater or lesser
degree. using two cables means you double the length of this bus.
SCSI may have its warts, but at least the basic analog design of the
bus is still somewhat reasonable. IDE passed beyond the veil two
years ago.
--John Hood, cgull@smoke.marlboro.vt.us
1997-07-29 12:57:25 +00:00
|
|
|
*/
|
1993-06-12 14:58:17 +00:00
|
|
|
/* drive info */
|
1999-06-15 23:13:09 +00:00
|
|
|
short wdp_config; /*0 general configuration bits */
|
|
|
|
u_short wdp_cylinders; /*1 number of cylinders */
|
|
|
|
short wdp_reserved2; /*2*/
|
|
|
|
u_short wdp_heads; /*3 number of heads */
|
|
|
|
short wdp_unfbytespertrk; /*4 number of unformatted bytes/track */
|
|
|
|
short wdp_unfbytes; /*5 number of unformatted bytes/sec */
|
|
|
|
u_short wdp_sectors; /*6 number of sectors per track */
|
|
|
|
short wdp_vendorunique[3]; /*7,8,9*/
|
1993-06-12 14:58:17 +00:00
|
|
|
/* controller info */
|
1999-06-15 23:13:09 +00:00
|
|
|
char wdp_serial[20]; /*10-19 serial number */
|
|
|
|
short wdp_buffertype; /*20 buffer type */
|
1993-06-12 14:58:17 +00:00
|
|
|
#define WDTYPE_SINGLEPORTSECTOR 1 /* single port, single sector buffer */
|
|
|
|
#define WDTYPE_DUALPORTMULTI 2 /* dual port, multiple sector buffer */
|
|
|
|
#define WDTYPE_DUALPORTMULTICACHE 3 /* above plus track cache */
|
1999-06-15 23:13:09 +00:00
|
|
|
short wdp_buffersize; /*21 buffer size, in 512-byte units */
|
|
|
|
short wdp_necc; /*22 ecc bytes appended */
|
|
|
|
char wdp_rev[8]; /*23-26 firmware revision */
|
|
|
|
char wdp_model[40]; /*27-46 model name */
|
|
|
|
char wdp_nsecperint; /*47L sectors per interrupt */
|
|
|
|
char wdp_vendorunique1; /*47H*/
|
|
|
|
short wdp_usedmovsd; /*48 can use double word read/write? */
|
|
|
|
char wdp_vendorunique2; /*49L*/
|
|
|
|
char wdp_capability; /*49H various capability bits */
|
|
|
|
short wdp_cap_validate; /*50 validation for above */
|
|
|
|
char wdp_vendorunique3; /*51L*/
|
|
|
|
char wdp_opiomode; /*51H PIO modes 0-2 */
|
|
|
|
char wdp_vendorunique4; /*52*/
|
|
|
|
char wdp_odmamode; /*52 old DMA modes, not in ATA-3 */
|
|
|
|
short wdp_atavalid; /*53 validation for newer fields */
|
|
|
|
short wdp_currcyls; /*54 */
|
|
|
|
short wdp_currheads; /*55 */
|
|
|
|
short wdp_currsectors; /*56 */
|
|
|
|
short wdp_currsize0; /*57 CHS size*/
|
|
|
|
short wdp_currsize1; /*58 CHS size*/
|
|
|
|
char wdp_currmultsect; /*59L */
|
|
|
|
char wdp_multsectvalid; /*59H */
|
|
|
|
int wdp_lbasize; /*60,61*/
|
|
|
|
short wdp_dmasword; /*62 obsolete in ATA-3 */
|
|
|
|
short wdp_dmamword; /*63 multiword DMA modes */
|
|
|
|
short wdp_eidepiomodes; /*64 advanced PIO modes */
|
|
|
|
short wdp_eidedmamin; /*65 fastest possible DMA timing */
|
|
|
|
short wdp_eidedmanorm; /*66 recommended DMA timing */
|
|
|
|
short wdp_eidepioblind; /*67 fastest possible blind PIO */
|
|
|
|
short wdp_eidepioacked; /*68 fastest possible IORDY PIO */
|
|
|
|
short wdp_reserved69; /*69*/
|
|
|
|
short wdp_reserved70; /*70*/
|
|
|
|
short wdp_reserved71; /*71*/
|
|
|
|
short wdp_reserved72; /*72*/
|
|
|
|
short wdp_reserved73; /*73*/
|
|
|
|
short wdp_reserved74; /*74*/
|
|
|
|
short wdp_queuelen; /*75*/
|
|
|
|
short wdp_reserved76; /*76*/
|
|
|
|
short wdp_reserved77; /*77*/
|
|
|
|
short wdp_reserved78; /*78*/
|
|
|
|
short wdp_reserved79; /*79*/
|
|
|
|
short wdp_versmaj; /*80*/
|
|
|
|
short wdp_versmin; /*81*/
|
|
|
|
short wdp_featsupp1; /*82*/
|
|
|
|
short wdp_featsupp2; /*83*/
|
|
|
|
short wdp_featsupp3; /*84*/
|
|
|
|
short wdp_featenab1; /*85*/
|
|
|
|
short wdp_featenab2; /*86*/
|
|
|
|
short wdp_featenab3; /*87*/
|
|
|
|
short wdp_udmamode; /*88 UltraDMA modes */
|
|
|
|
short wdp_erasetime; /*89*/
|
|
|
|
short wdp_enherasetime; /*90*/
|
|
|
|
short wdp_apmlevel; /*91*/
|
|
|
|
short wdp_reserved92[34]; /*92*/
|
|
|
|
short wdp_rmvcap; /*93*/
|
|
|
|
short wdp_securelevel; /*94*/
|
1993-06-12 14:58:17 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* wd driver entry points
|
|
|
|
*/
|
1994-01-04 20:05:26 +00:00
|
|
|
#ifdef B_FORMAT
|
|
|
|
int wdformat(struct buf *bp);
|
|
|
|
#endif
|
1993-06-12 14:58:17 +00:00
|
|
|
|
1996-01-28 22:16:20 +00:00
|
|
|
/*
|
|
|
|
* IDE DMA support.
|
|
|
|
* This is based on what is needed for the IDE DMA function of the Intel
|
|
|
|
* Triton chipset; hopefully it's general enough to be used for other
|
|
|
|
* chipsets as well.
|
|
|
|
*
|
|
|
|
* To use this:
|
|
|
|
* For each drive which you might want to do DMA on, call wdd_candma()
|
|
|
|
* to get a cookie. If it returns a null pointer, then the drive
|
Add support for busmaster DMA on some PCI IDE chipsets.
I changed a few bits here and there, mainly renaming wd82371.c
to ide_pci.c now that it's supposed to handle different chipsets.
It runs on my P6 natoma board with two Maxtor drives, and also
on a Fujitsu machine I have at work with an Opti chipset and
a Quantum drive.
Submitted by:cgull@smoke.marlboro.vt.us <John Hood>
Original readme:
*** WARNING ***
This code has so far been tested on exactly one motherboard with two
identical drives known for their good DMA support.
This code, in the right circumstances, could corrupt data subtly,
silently, and invisibly, in much the same way that older PCI IDE
controllers do. It's ALPHA-quality code; there's one or two major
gaps in my understanding of PCI IDE still. Don't use this code on any
system with data that you care about; it's only good for hack boxes.
Expect that any data may be silently and randomly corrupted at any
moment. It's a disk driver. It has bugs. Disk drivers with bugs
munch data. It's a fact of life.
I also *STRONGLY* recommend getting a copy of your chipset's manual
and the ATA-2 or ATA-3 spec and making sure that timing modes on your
disk drives and IDE controller are being setup correctly by the BIOS--
because the driver makes only the lamest of attempts to do this just
now.
*** END WARNING ***
that said, i happen to think the code is working pretty well...
WHAT IT DOES:
this code adds support to the wd driver for bus mastering PCI IDE
controllers that follow the SFF-8038 standard. (all the bus mastering
PCI IDE controllers i've seen so far do follow this standard.) it
should provide busmastering on nearly any current P5 or P6 chipset,
specifically including any Intel chipset using one of the PIIX south
bridges-- this includes the '430FX, '430VX, '430HX, '430TX, '440LX,
and (i think) the Orion '450GX chipsets. specific support is also
included for the VIA Apollo VP-1 chipset, as it appears in the
relabeled "HXPro" incarnation seen on cheap US$70 taiwanese
motherboards (that's what's in my development machine). it works out
of the box on controllers that do DMA mode2; if my understanding is
correct, it'll probably work on Ultra-DMA33 controllers as well.
it'll probably work on busmastering IDE controllers in PCI slots, too,
but this is an area i am less sure about.
it cuts CPU usage considerably and improves drive performance
slightly. usable numbers are difficult to come by with existing
benchmark tools, but experimentation on my K5-P90 system, with VIA
VP-1 chipset and Quantum Fireball 1080 drives, shows that disk i/o on
raw partitions imposes perhaps 5% cpu load. cpu load during
filesystem i/o drops a lot, from near 100% to anywhere between 30% and
70%. (the improvement may not be as large on an Intel chipset; from
what i can tell, the VIA VP-1 may not be very efficient with PCI I/O.)
disk performance improves by 5% or 10% with these drives.
real, visible, end-user performance improvement on a single user
machine is about nil. :) a kernel compile was sped up by a whole three
seconds. it *does* feel a bit better-behaved when the system is
swapping heavily, but a better disk driver is not the fix for *that*
problem.
THE CODE:
this code is a patch to wd.c and wd82371.c, and associated header
files. it should be considered alpha code; more work needs to be
done.
wd.c has fairly clean patches to add calls to busmaster code, as
implemented in wd82371.c and potentially elsewhere (one could imagine,
say, a Mac having a different DMA controller).
wd82371.c has been considerably reworked: the wddma interface that it
presents has been changed (expect more changes), many bugs have been
fixed, a new internal interface has been added for supporting
different chipsets, and the PCI probe has been considerably extended.
the interface between wd82371.c and wd.c is still fairly clean, but
i'm not sure it's in the right place. there's a mess of issues around
ATA/ATAPI that need to be sorted out, including ATAPI support, CD-ROM
support, tape support, LS-120/Zip support, SFF-8038i DMA, UltraDMA,
PCI IDE controllers, bus probes, buggy controllers, controller timing
setup, drive timing setup, world peace and kitchen sinks. whatever
happens with all this and however it gets partitioned, it is fairly
clear that wd.c needs some significant rework-- probably a complete
rewrite.
timing setup on disk controllers is something i've entirely punted on.
on my development machine, it appears that the BIOS does at least some
of the necessary timing setup. i chose to restrict operation to
drives that are already configured for Mode4 PIO and Mode2 multiword
DMA, since the timing is essentially the same and many if not most
chipsets use the same control registers for DMA and PIO timing.
does anybody *know* whether BIOSes are required to do timing setup for
DMA modes on drives under their care?
error recovery is probably weak. early on in development, i was
getting drive errors induced by bugs in the driver; i used these to
flush out the worst of the bugs in the driver's error handling, but
problems may remain. i haven't got a drive with bad sectors i can
watch the driver flail on.
complaints about how wd82371.c has been reindented will be ignored
until the FreeBSD project has a real style policy, there is a
mechanism for individual authors to match it (indent flags or an emacs
c-mode or whatever), and it is enforced. if i'm going to use a source
style i don't like, it would help if i could figure out what it *is*
(style(9) is about half of a policy), and a way to reasonably
duplicate it. i ended up wasting a while trying to figure out what
the right thing to do was before deciding reformatting the whole thing
was the worst possible thing to do, except for all the other
possibilities.
i have maintained wd.c's indentation; that was not too hard,
fortunately.
TO INSTALL:
my dev box is freebsd 2.2.2 release. fortunately, wd.c is a living
fossil, and has diverged very little recently. included in this
tarball is a patch file, 'otherdiffs', for all files except wd82371.c,
my edited wd82371.c, a patch file, 'wd82371.c-diff-exact', against the
2.2.2 dist of 82371.c, and another patch file,
'wd82371.c-diff-whitespace', generated with diff -b (ignore
whitespace). most of you not using 2.2.2 will probably have to use
this last patchfile with 'patch --ignore-whitespace'. apply from the
kernel source tree root. as far as i can tell, this should apply
cleanly on anything from -current back to 2.2.2 and probably back to
2.2.0. you, the kernel hacker, can figure out what to do from here.
if you need more specific directions, you probably should not be
experimenting with this code yet.
to enable DMA support, set flag 0x2000 for that drive in your config
file or in userconfig, as you would the 32-bit-PIO flag. the driver
will then turn on DMA support if your drive and controller pass its
tests. it's a bit picky, probably. on discovering DMA mode failures
or disk errors or transfers that the DMA controller can't deal with,
the driver will fall back to PIO, so it is wise to setup the flags as
if PIO were still important.
'controller wdc0 at isa? port "IO_WD1" bio irq 14 flags 0xa0ffa0ff
vector wdintr' should work with nearly any PCI IDE controller.
i would *strongly* suggest booting single-user at first, and thrashing
the drive a bit while it's still mounted read-only. this should be
fairly safe, even if the driver goes completely out to lunch. it
might save you a reinstall.
one way to tell whether the driver is really using DMA is to check the
interrupt count during disk i/o with vmstat; DMA mode will add an
extremely low number of interrupts, as compared to even multi-sector
PIO.
boot -v will give you a copious register dump of timing-related info
on Intel and VIAtech chipsets, as well as PIO/DMA mode information on
all hard drives. refer to your ATA and chipset documentation to
interpret these.
WHAT I'D LIKE FROM YOU and THINGS TO TEST:
reports. success reports, failure reports, any kind of reports. :)
send them to cgull+ide@smoke.marlboro.vt.us.
i'd also like to see the kernel messages from various BIOSes (boot -v;
dmesg), along with info on the motherboard and BIOS on that machine.
i'm especially interested in reports on how this code works on the
various Intel chipsets, and whether the register dump works
correctly. i'm also interested in hearing about other chipsets.
i'm especially interested in hearing success/failure reports for PCI
IDE controllers on cards, such as CMD's or Promise's new busmastering
IDE controllers.
UltraDMA-33 reports.
interoperation with ATAPI peripherals-- FreeBSD doesn't work with my
old Hitachi IDE CDROM, so i can't tell if I've broken anything. :)
i'd especially like to hear how the drive copes in DMA operation on
drives with bad sectors. i haven't been able to find any such yet.
success/failure reports on older IDE drives with early support for DMA
modes-- those introduced between 1.5 and 3 years ago, typically
ranging from perhaps 400MB to 1.6GB.
failure reports on operation with more than one drive would be
appreciated. the driver was developed with two drives on one
controller, the worst-case situation, and has been tested with one
drive on each controller, but you never know...
any reports of messages from the driver during normal operation,
especially "reverting to PIO mode", or "dmaverify odd vaddr or length"
(the DMA controller is strongly halfword oriented, and i'm curious to
know if any FreeBSD usage actually needs misaligned transfers).
performance reports. beware that bonnie's CPU usage reporting is
useless for IDE drives; the best test i've found has been to run a
program that runs a spin loop at an idle priority and reports how many
iterations it manages, and even that sometimes produces numbers i
don't believe. performance reports of multi-drive operation are
especially interesting; my system cannot sustain full throughput on
two drives on separate controllers, but that may just be a lame
motherboard.
THINGS I'M STILL MISSING CLUE ON:
* who's responsible for configuring DMA timing modes on IDE drives?
the BIOS or the driver?
* is there a spec for dealing with Ultra-DMA extensions?
* are there any chipsets or with bugs relating to DMA transfer that
should be blacklisted?
* are there any ATA interfaces that use some other kind of DMA
controller in conjunction with standard ATA protocol?
FINAL NOTE:
after having looked at the ATA-3 spec, all i can say is, "it's ugly".
*especially* electrically. the IDE bus is best modeled as an
unterminated transmission line, these days.
for maximum reliability, keep your IDE cables as short as possible and
as few as possible. from what i can tell, most current chipsets have
both IDE ports wired into a single buss, to a greater or lesser
degree. using two cables means you double the length of this bus.
SCSI may have its warts, but at least the basic analog design of the
bus is still somewhat reasonable. IDE passed beyond the veil two
years ago.
--John Hood, cgull@smoke.marlboro.vt.us
1997-07-29 12:57:25 +00:00
|
|
|
* can't do DMA. Then call wdd_dmainit() to initialize the controller
|
|
|
|
* and drive. wdd_dmainit should leave PIO modes operational, though
|
|
|
|
* perhaps with suboptimal performance.
|
1996-01-28 22:16:20 +00:00
|
|
|
*
|
Add support for busmaster DMA on some PCI IDE chipsets.
I changed a few bits here and there, mainly renaming wd82371.c
to ide_pci.c now that it's supposed to handle different chipsets.
It runs on my P6 natoma board with two Maxtor drives, and also
on a Fujitsu machine I have at work with an Opti chipset and
a Quantum drive.
Submitted by:cgull@smoke.marlboro.vt.us <John Hood>
Original readme:
*** WARNING ***
This code has so far been tested on exactly one motherboard with two
identical drives known for their good DMA support.
This code, in the right circumstances, could corrupt data subtly,
silently, and invisibly, in much the same way that older PCI IDE
controllers do. It's ALPHA-quality code; there's one or two major
gaps in my understanding of PCI IDE still. Don't use this code on any
system with data that you care about; it's only good for hack boxes.
Expect that any data may be silently and randomly corrupted at any
moment. It's a disk driver. It has bugs. Disk drivers with bugs
munch data. It's a fact of life.
I also *STRONGLY* recommend getting a copy of your chipset's manual
and the ATA-2 or ATA-3 spec and making sure that timing modes on your
disk drives and IDE controller are being setup correctly by the BIOS--
because the driver makes only the lamest of attempts to do this just
now.
*** END WARNING ***
that said, i happen to think the code is working pretty well...
WHAT IT DOES:
this code adds support to the wd driver for bus mastering PCI IDE
controllers that follow the SFF-8038 standard. (all the bus mastering
PCI IDE controllers i've seen so far do follow this standard.) it
should provide busmastering on nearly any current P5 or P6 chipset,
specifically including any Intel chipset using one of the PIIX south
bridges-- this includes the '430FX, '430VX, '430HX, '430TX, '440LX,
and (i think) the Orion '450GX chipsets. specific support is also
included for the VIA Apollo VP-1 chipset, as it appears in the
relabeled "HXPro" incarnation seen on cheap US$70 taiwanese
motherboards (that's what's in my development machine). it works out
of the box on controllers that do DMA mode2; if my understanding is
correct, it'll probably work on Ultra-DMA33 controllers as well.
it'll probably work on busmastering IDE controllers in PCI slots, too,
but this is an area i am less sure about.
it cuts CPU usage considerably and improves drive performance
slightly. usable numbers are difficult to come by with existing
benchmark tools, but experimentation on my K5-P90 system, with VIA
VP-1 chipset and Quantum Fireball 1080 drives, shows that disk i/o on
raw partitions imposes perhaps 5% cpu load. cpu load during
filesystem i/o drops a lot, from near 100% to anywhere between 30% and
70%. (the improvement may not be as large on an Intel chipset; from
what i can tell, the VIA VP-1 may not be very efficient with PCI I/O.)
disk performance improves by 5% or 10% with these drives.
real, visible, end-user performance improvement on a single user
machine is about nil. :) a kernel compile was sped up by a whole three
seconds. it *does* feel a bit better-behaved when the system is
swapping heavily, but a better disk driver is not the fix for *that*
problem.
THE CODE:
this code is a patch to wd.c and wd82371.c, and associated header
files. it should be considered alpha code; more work needs to be
done.
wd.c has fairly clean patches to add calls to busmaster code, as
implemented in wd82371.c and potentially elsewhere (one could imagine,
say, a Mac having a different DMA controller).
wd82371.c has been considerably reworked: the wddma interface that it
presents has been changed (expect more changes), many bugs have been
fixed, a new internal interface has been added for supporting
different chipsets, and the PCI probe has been considerably extended.
the interface between wd82371.c and wd.c is still fairly clean, but
i'm not sure it's in the right place. there's a mess of issues around
ATA/ATAPI that need to be sorted out, including ATAPI support, CD-ROM
support, tape support, LS-120/Zip support, SFF-8038i DMA, UltraDMA,
PCI IDE controllers, bus probes, buggy controllers, controller timing
setup, drive timing setup, world peace and kitchen sinks. whatever
happens with all this and however it gets partitioned, it is fairly
clear that wd.c needs some significant rework-- probably a complete
rewrite.
timing setup on disk controllers is something i've entirely punted on.
on my development machine, it appears that the BIOS does at least some
of the necessary timing setup. i chose to restrict operation to
drives that are already configured for Mode4 PIO and Mode2 multiword
DMA, since the timing is essentially the same and many if not most
chipsets use the same control registers for DMA and PIO timing.
does anybody *know* whether BIOSes are required to do timing setup for
DMA modes on drives under their care?
error recovery is probably weak. early on in development, i was
getting drive errors induced by bugs in the driver; i used these to
flush out the worst of the bugs in the driver's error handling, but
problems may remain. i haven't got a drive with bad sectors i can
watch the driver flail on.
complaints about how wd82371.c has been reindented will be ignored
until the FreeBSD project has a real style policy, there is a
mechanism for individual authors to match it (indent flags or an emacs
c-mode or whatever), and it is enforced. if i'm going to use a source
style i don't like, it would help if i could figure out what it *is*
(style(9) is about half of a policy), and a way to reasonably
duplicate it. i ended up wasting a while trying to figure out what
the right thing to do was before deciding reformatting the whole thing
was the worst possible thing to do, except for all the other
possibilities.
i have maintained wd.c's indentation; that was not too hard,
fortunately.
TO INSTALL:
my dev box is freebsd 2.2.2 release. fortunately, wd.c is a living
fossil, and has diverged very little recently. included in this
tarball is a patch file, 'otherdiffs', for all files except wd82371.c,
my edited wd82371.c, a patch file, 'wd82371.c-diff-exact', against the
2.2.2 dist of 82371.c, and another patch file,
'wd82371.c-diff-whitespace', generated with diff -b (ignore
whitespace). most of you not using 2.2.2 will probably have to use
this last patchfile with 'patch --ignore-whitespace'. apply from the
kernel source tree root. as far as i can tell, this should apply
cleanly on anything from -current back to 2.2.2 and probably back to
2.2.0. you, the kernel hacker, can figure out what to do from here.
if you need more specific directions, you probably should not be
experimenting with this code yet.
to enable DMA support, set flag 0x2000 for that drive in your config
file or in userconfig, as you would the 32-bit-PIO flag. the driver
will then turn on DMA support if your drive and controller pass its
tests. it's a bit picky, probably. on discovering DMA mode failures
or disk errors or transfers that the DMA controller can't deal with,
the driver will fall back to PIO, so it is wise to setup the flags as
if PIO were still important.
'controller wdc0 at isa? port "IO_WD1" bio irq 14 flags 0xa0ffa0ff
vector wdintr' should work with nearly any PCI IDE controller.
i would *strongly* suggest booting single-user at first, and thrashing
the drive a bit while it's still mounted read-only. this should be
fairly safe, even if the driver goes completely out to lunch. it
might save you a reinstall.
one way to tell whether the driver is really using DMA is to check the
interrupt count during disk i/o with vmstat; DMA mode will add an
extremely low number of interrupts, as compared to even multi-sector
PIO.
boot -v will give you a copious register dump of timing-related info
on Intel and VIAtech chipsets, as well as PIO/DMA mode information on
all hard drives. refer to your ATA and chipset documentation to
interpret these.
WHAT I'D LIKE FROM YOU and THINGS TO TEST:
reports. success reports, failure reports, any kind of reports. :)
send them to cgull+ide@smoke.marlboro.vt.us.
i'd also like to see the kernel messages from various BIOSes (boot -v;
dmesg), along with info on the motherboard and BIOS on that machine.
i'm especially interested in reports on how this code works on the
various Intel chipsets, and whether the register dump works
correctly. i'm also interested in hearing about other chipsets.
i'm especially interested in hearing success/failure reports for PCI
IDE controllers on cards, such as CMD's or Promise's new busmastering
IDE controllers.
UltraDMA-33 reports.
interoperation with ATAPI peripherals-- FreeBSD doesn't work with my
old Hitachi IDE CDROM, so i can't tell if I've broken anything. :)
i'd especially like to hear how the drive copes in DMA operation on
drives with bad sectors. i haven't been able to find any such yet.
success/failure reports on older IDE drives with early support for DMA
modes-- those introduced between 1.5 and 3 years ago, typically
ranging from perhaps 400MB to 1.6GB.
failure reports on operation with more than one drive would be
appreciated. the driver was developed with two drives on one
controller, the worst-case situation, and has been tested with one
drive on each controller, but you never know...
any reports of messages from the driver during normal operation,
especially "reverting to PIO mode", or "dmaverify odd vaddr or length"
(the DMA controller is strongly halfword oriented, and i'm curious to
know if any FreeBSD usage actually needs misaligned transfers).
performance reports. beware that bonnie's CPU usage reporting is
useless for IDE drives; the best test i've found has been to run a
program that runs a spin loop at an idle priority and reports how many
iterations it manages, and even that sometimes produces numbers i
don't believe. performance reports of multi-drive operation are
especially interesting; my system cannot sustain full throughput on
two drives on separate controllers, but that may just be a lame
motherboard.
THINGS I'M STILL MISSING CLUE ON:
* who's responsible for configuring DMA timing modes on IDE drives?
the BIOS or the driver?
* is there a spec for dealing with Ultra-DMA extensions?
* are there any chipsets or with bugs relating to DMA transfer that
should be blacklisted?
* are there any ATA interfaces that use some other kind of DMA
controller in conjunction with standard ATA protocol?
FINAL NOTE:
after having looked at the ATA-3 spec, all i can say is, "it's ugly".
*especially* electrically. the IDE bus is best modeled as an
unterminated transmission line, these days.
for maximum reliability, keep your IDE cables as short as possible and
as few as possible. from what i can tell, most current chipsets have
both IDE ports wired into a single buss, to a greater or lesser
degree. using two cables means you double the length of this bus.
SCSI may have its warts, but at least the basic analog design of the
bus is still somewhat reasonable. IDE passed beyond the veil two
years ago.
--John Hood, cgull@smoke.marlboro.vt.us
1997-07-29 12:57:25 +00:00
|
|
|
* Check the transfer by calling wdd_dmaverify(). The cookie is what
|
1996-01-28 22:16:20 +00:00
|
|
|
* you got before; vaddr is the virtual address of the buffer to be
|
|
|
|
* written; len is the length of the buffer; and direction is either
|
Add support for busmaster DMA on some PCI IDE chipsets.
I changed a few bits here and there, mainly renaming wd82371.c
to ide_pci.c now that it's supposed to handle different chipsets.
It runs on my P6 natoma board with two Maxtor drives, and also
on a Fujitsu machine I have at work with an Opti chipset and
a Quantum drive.
Submitted by:cgull@smoke.marlboro.vt.us <John Hood>
Original readme:
*** WARNING ***
This code has so far been tested on exactly one motherboard with two
identical drives known for their good DMA support.
This code, in the right circumstances, could corrupt data subtly,
silently, and invisibly, in much the same way that older PCI IDE
controllers do. It's ALPHA-quality code; there's one or two major
gaps in my understanding of PCI IDE still. Don't use this code on any
system with data that you care about; it's only good for hack boxes.
Expect that any data may be silently and randomly corrupted at any
moment. It's a disk driver. It has bugs. Disk drivers with bugs
munch data. It's a fact of life.
I also *STRONGLY* recommend getting a copy of your chipset's manual
and the ATA-2 or ATA-3 spec and making sure that timing modes on your
disk drives and IDE controller are being setup correctly by the BIOS--
because the driver makes only the lamest of attempts to do this just
now.
*** END WARNING ***
that said, i happen to think the code is working pretty well...
WHAT IT DOES:
this code adds support to the wd driver for bus mastering PCI IDE
controllers that follow the SFF-8038 standard. (all the bus mastering
PCI IDE controllers i've seen so far do follow this standard.) it
should provide busmastering on nearly any current P5 or P6 chipset,
specifically including any Intel chipset using one of the PIIX south
bridges-- this includes the '430FX, '430VX, '430HX, '430TX, '440LX,
and (i think) the Orion '450GX chipsets. specific support is also
included for the VIA Apollo VP-1 chipset, as it appears in the
relabeled "HXPro" incarnation seen on cheap US$70 taiwanese
motherboards (that's what's in my development machine). it works out
of the box on controllers that do DMA mode2; if my understanding is
correct, it'll probably work on Ultra-DMA33 controllers as well.
it'll probably work on busmastering IDE controllers in PCI slots, too,
but this is an area i am less sure about.
it cuts CPU usage considerably and improves drive performance
slightly. usable numbers are difficult to come by with existing
benchmark tools, but experimentation on my K5-P90 system, with VIA
VP-1 chipset and Quantum Fireball 1080 drives, shows that disk i/o on
raw partitions imposes perhaps 5% cpu load. cpu load during
filesystem i/o drops a lot, from near 100% to anywhere between 30% and
70%. (the improvement may not be as large on an Intel chipset; from
what i can tell, the VIA VP-1 may not be very efficient with PCI I/O.)
disk performance improves by 5% or 10% with these drives.
real, visible, end-user performance improvement on a single user
machine is about nil. :) a kernel compile was sped up by a whole three
seconds. it *does* feel a bit better-behaved when the system is
swapping heavily, but a better disk driver is not the fix for *that*
problem.
THE CODE:
this code is a patch to wd.c and wd82371.c, and associated header
files. it should be considered alpha code; more work needs to be
done.
wd.c has fairly clean patches to add calls to busmaster code, as
implemented in wd82371.c and potentially elsewhere (one could imagine,
say, a Mac having a different DMA controller).
wd82371.c has been considerably reworked: the wddma interface that it
presents has been changed (expect more changes), many bugs have been
fixed, a new internal interface has been added for supporting
different chipsets, and the PCI probe has been considerably extended.
the interface between wd82371.c and wd.c is still fairly clean, but
i'm not sure it's in the right place. there's a mess of issues around
ATA/ATAPI that need to be sorted out, including ATAPI support, CD-ROM
support, tape support, LS-120/Zip support, SFF-8038i DMA, UltraDMA,
PCI IDE controllers, bus probes, buggy controllers, controller timing
setup, drive timing setup, world peace and kitchen sinks. whatever
happens with all this and however it gets partitioned, it is fairly
clear that wd.c needs some significant rework-- probably a complete
rewrite.
timing setup on disk controllers is something i've entirely punted on.
on my development machine, it appears that the BIOS does at least some
of the necessary timing setup. i chose to restrict operation to
drives that are already configured for Mode4 PIO and Mode2 multiword
DMA, since the timing is essentially the same and many if not most
chipsets use the same control registers for DMA and PIO timing.
does anybody *know* whether BIOSes are required to do timing setup for
DMA modes on drives under their care?
error recovery is probably weak. early on in development, i was
getting drive errors induced by bugs in the driver; i used these to
flush out the worst of the bugs in the driver's error handling, but
problems may remain. i haven't got a drive with bad sectors i can
watch the driver flail on.
complaints about how wd82371.c has been reindented will be ignored
until the FreeBSD project has a real style policy, there is a
mechanism for individual authors to match it (indent flags or an emacs
c-mode or whatever), and it is enforced. if i'm going to use a source
style i don't like, it would help if i could figure out what it *is*
(style(9) is about half of a policy), and a way to reasonably
duplicate it. i ended up wasting a while trying to figure out what
the right thing to do was before deciding reformatting the whole thing
was the worst possible thing to do, except for all the other
possibilities.
i have maintained wd.c's indentation; that was not too hard,
fortunately.
TO INSTALL:
my dev box is freebsd 2.2.2 release. fortunately, wd.c is a living
fossil, and has diverged very little recently. included in this
tarball is a patch file, 'otherdiffs', for all files except wd82371.c,
my edited wd82371.c, a patch file, 'wd82371.c-diff-exact', against the
2.2.2 dist of 82371.c, and another patch file,
'wd82371.c-diff-whitespace', generated with diff -b (ignore
whitespace). most of you not using 2.2.2 will probably have to use
this last patchfile with 'patch --ignore-whitespace'. apply from the
kernel source tree root. as far as i can tell, this should apply
cleanly on anything from -current back to 2.2.2 and probably back to
2.2.0. you, the kernel hacker, can figure out what to do from here.
if you need more specific directions, you probably should not be
experimenting with this code yet.
to enable DMA support, set flag 0x2000 for that drive in your config
file or in userconfig, as you would the 32-bit-PIO flag. the driver
will then turn on DMA support if your drive and controller pass its
tests. it's a bit picky, probably. on discovering DMA mode failures
or disk errors or transfers that the DMA controller can't deal with,
the driver will fall back to PIO, so it is wise to setup the flags as
if PIO were still important.
'controller wdc0 at isa? port "IO_WD1" bio irq 14 flags 0xa0ffa0ff
vector wdintr' should work with nearly any PCI IDE controller.
i would *strongly* suggest booting single-user at first, and thrashing
the drive a bit while it's still mounted read-only. this should be
fairly safe, even if the driver goes completely out to lunch. it
might save you a reinstall.
one way to tell whether the driver is really using DMA is to check the
interrupt count during disk i/o with vmstat; DMA mode will add an
extremely low number of interrupts, as compared to even multi-sector
PIO.
boot -v will give you a copious register dump of timing-related info
on Intel and VIAtech chipsets, as well as PIO/DMA mode information on
all hard drives. refer to your ATA and chipset documentation to
interpret these.
WHAT I'D LIKE FROM YOU and THINGS TO TEST:
reports. success reports, failure reports, any kind of reports. :)
send them to cgull+ide@smoke.marlboro.vt.us.
i'd also like to see the kernel messages from various BIOSes (boot -v;
dmesg), along with info on the motherboard and BIOS on that machine.
i'm especially interested in reports on how this code works on the
various Intel chipsets, and whether the register dump works
correctly. i'm also interested in hearing about other chipsets.
i'm especially interested in hearing success/failure reports for PCI
IDE controllers on cards, such as CMD's or Promise's new busmastering
IDE controllers.
UltraDMA-33 reports.
interoperation with ATAPI peripherals-- FreeBSD doesn't work with my
old Hitachi IDE CDROM, so i can't tell if I've broken anything. :)
i'd especially like to hear how the drive copes in DMA operation on
drives with bad sectors. i haven't been able to find any such yet.
success/failure reports on older IDE drives with early support for DMA
modes-- those introduced between 1.5 and 3 years ago, typically
ranging from perhaps 400MB to 1.6GB.
failure reports on operation with more than one drive would be
appreciated. the driver was developed with two drives on one
controller, the worst-case situation, and has been tested with one
drive on each controller, but you never know...
any reports of messages from the driver during normal operation,
especially "reverting to PIO mode", or "dmaverify odd vaddr or length"
(the DMA controller is strongly halfword oriented, and i'm curious to
know if any FreeBSD usage actually needs misaligned transfers).
performance reports. beware that bonnie's CPU usage reporting is
useless for IDE drives; the best test i've found has been to run a
program that runs a spin loop at an idle priority and reports how many
iterations it manages, and even that sometimes produces numbers i
don't believe. performance reports of multi-drive operation are
especially interesting; my system cannot sustain full throughput on
two drives on separate controllers, but that may just be a lame
motherboard.
THINGS I'M STILL MISSING CLUE ON:
* who's responsible for configuring DMA timing modes on IDE drives?
the BIOS or the driver?
* is there a spec for dealing with Ultra-DMA extensions?
* are there any chipsets or with bugs relating to DMA transfer that
should be blacklisted?
* are there any ATA interfaces that use some other kind of DMA
controller in conjunction with standard ATA protocol?
FINAL NOTE:
after having looked at the ATA-3 spec, all i can say is, "it's ugly".
*especially* electrically. the IDE bus is best modeled as an
unterminated transmission line, these days.
for maximum reliability, keep your IDE cables as short as possible and
as few as possible. from what i can tell, most current chipsets have
both IDE ports wired into a single buss, to a greater or lesser
degree. using two cables means you double the length of this bus.
SCSI may have its warts, but at least the basic analog design of the
bus is still somewhat reasonable. IDE passed beyond the veil two
years ago.
--John Hood, cgull@smoke.marlboro.vt.us
1997-07-29 12:57:25 +00:00
|
|
|
* B_READ or B_WRITE. This function verifies that the DMA hardware is
|
|
|
|
* capable of handling the request you've made.
|
|
|
|
*
|
|
|
|
* Setup the transfer by calling wdd_dmaprep(). This takes the same
|
|
|
|
* paramaters as wdd_dmaverify().
|
1996-01-28 22:16:20 +00:00
|
|
|
*
|
|
|
|
* Send a read/write DMA command to the drive.
|
|
|
|
*
|
|
|
|
* Call wdd_dmastart().
|
|
|
|
*
|
|
|
|
* Wait for an interrupt. Multi-sector transfers will only interrupt
|
|
|
|
* at the end of the transfer.
|
|
|
|
*
|
|
|
|
* Call wdd_dmadone(). It will return the status as defined by the
|
|
|
|
* WDDS_* constants below.
|
|
|
|
*/
|
|
|
|
struct wddma {
|
1997-09-20 07:41:58 +00:00
|
|
|
void *(*wdd_candma) /* returns a cookie if PCI */
|
1999-01-17 05:46:25 +00:00
|
|
|
__P((int iobase_wd, int ctlr, int unit));
|
Add support for busmaster DMA on some PCI IDE chipsets.
I changed a few bits here and there, mainly renaming wd82371.c
to ide_pci.c now that it's supposed to handle different chipsets.
It runs on my P6 natoma board with two Maxtor drives, and also
on a Fujitsu machine I have at work with an Opti chipset and
a Quantum drive.
Submitted by:cgull@smoke.marlboro.vt.us <John Hood>
Original readme:
*** WARNING ***
This code has so far been tested on exactly one motherboard with two
identical drives known for their good DMA support.
This code, in the right circumstances, could corrupt data subtly,
silently, and invisibly, in much the same way that older PCI IDE
controllers do. It's ALPHA-quality code; there's one or two major
gaps in my understanding of PCI IDE still. Don't use this code on any
system with data that you care about; it's only good for hack boxes.
Expect that any data may be silently and randomly corrupted at any
moment. It's a disk driver. It has bugs. Disk drivers with bugs
munch data. It's a fact of life.
I also *STRONGLY* recommend getting a copy of your chipset's manual
and the ATA-2 or ATA-3 spec and making sure that timing modes on your
disk drives and IDE controller are being setup correctly by the BIOS--
because the driver makes only the lamest of attempts to do this just
now.
*** END WARNING ***
that said, i happen to think the code is working pretty well...
WHAT IT DOES:
this code adds support to the wd driver for bus mastering PCI IDE
controllers that follow the SFF-8038 standard. (all the bus mastering
PCI IDE controllers i've seen so far do follow this standard.) it
should provide busmastering on nearly any current P5 or P6 chipset,
specifically including any Intel chipset using one of the PIIX south
bridges-- this includes the '430FX, '430VX, '430HX, '430TX, '440LX,
and (i think) the Orion '450GX chipsets. specific support is also
included for the VIA Apollo VP-1 chipset, as it appears in the
relabeled "HXPro" incarnation seen on cheap US$70 taiwanese
motherboards (that's what's in my development machine). it works out
of the box on controllers that do DMA mode2; if my understanding is
correct, it'll probably work on Ultra-DMA33 controllers as well.
it'll probably work on busmastering IDE controllers in PCI slots, too,
but this is an area i am less sure about.
it cuts CPU usage considerably and improves drive performance
slightly. usable numbers are difficult to come by with existing
benchmark tools, but experimentation on my K5-P90 system, with VIA
VP-1 chipset and Quantum Fireball 1080 drives, shows that disk i/o on
raw partitions imposes perhaps 5% cpu load. cpu load during
filesystem i/o drops a lot, from near 100% to anywhere between 30% and
70%. (the improvement may not be as large on an Intel chipset; from
what i can tell, the VIA VP-1 may not be very efficient with PCI I/O.)
disk performance improves by 5% or 10% with these drives.
real, visible, end-user performance improvement on a single user
machine is about nil. :) a kernel compile was sped up by a whole three
seconds. it *does* feel a bit better-behaved when the system is
swapping heavily, but a better disk driver is not the fix for *that*
problem.
THE CODE:
this code is a patch to wd.c and wd82371.c, and associated header
files. it should be considered alpha code; more work needs to be
done.
wd.c has fairly clean patches to add calls to busmaster code, as
implemented in wd82371.c and potentially elsewhere (one could imagine,
say, a Mac having a different DMA controller).
wd82371.c has been considerably reworked: the wddma interface that it
presents has been changed (expect more changes), many bugs have been
fixed, a new internal interface has been added for supporting
different chipsets, and the PCI probe has been considerably extended.
the interface between wd82371.c and wd.c is still fairly clean, but
i'm not sure it's in the right place. there's a mess of issues around
ATA/ATAPI that need to be sorted out, including ATAPI support, CD-ROM
support, tape support, LS-120/Zip support, SFF-8038i DMA, UltraDMA,
PCI IDE controllers, bus probes, buggy controllers, controller timing
setup, drive timing setup, world peace and kitchen sinks. whatever
happens with all this and however it gets partitioned, it is fairly
clear that wd.c needs some significant rework-- probably a complete
rewrite.
timing setup on disk controllers is something i've entirely punted on.
on my development machine, it appears that the BIOS does at least some
of the necessary timing setup. i chose to restrict operation to
drives that are already configured for Mode4 PIO and Mode2 multiword
DMA, since the timing is essentially the same and many if not most
chipsets use the same control registers for DMA and PIO timing.
does anybody *know* whether BIOSes are required to do timing setup for
DMA modes on drives under their care?
error recovery is probably weak. early on in development, i was
getting drive errors induced by bugs in the driver; i used these to
flush out the worst of the bugs in the driver's error handling, but
problems may remain. i haven't got a drive with bad sectors i can
watch the driver flail on.
complaints about how wd82371.c has been reindented will be ignored
until the FreeBSD project has a real style policy, there is a
mechanism for individual authors to match it (indent flags or an emacs
c-mode or whatever), and it is enforced. if i'm going to use a source
style i don't like, it would help if i could figure out what it *is*
(style(9) is about half of a policy), and a way to reasonably
duplicate it. i ended up wasting a while trying to figure out what
the right thing to do was before deciding reformatting the whole thing
was the worst possible thing to do, except for all the other
possibilities.
i have maintained wd.c's indentation; that was not too hard,
fortunately.
TO INSTALL:
my dev box is freebsd 2.2.2 release. fortunately, wd.c is a living
fossil, and has diverged very little recently. included in this
tarball is a patch file, 'otherdiffs', for all files except wd82371.c,
my edited wd82371.c, a patch file, 'wd82371.c-diff-exact', against the
2.2.2 dist of 82371.c, and another patch file,
'wd82371.c-diff-whitespace', generated with diff -b (ignore
whitespace). most of you not using 2.2.2 will probably have to use
this last patchfile with 'patch --ignore-whitespace'. apply from the
kernel source tree root. as far as i can tell, this should apply
cleanly on anything from -current back to 2.2.2 and probably back to
2.2.0. you, the kernel hacker, can figure out what to do from here.
if you need more specific directions, you probably should not be
experimenting with this code yet.
to enable DMA support, set flag 0x2000 for that drive in your config
file or in userconfig, as you would the 32-bit-PIO flag. the driver
will then turn on DMA support if your drive and controller pass its
tests. it's a bit picky, probably. on discovering DMA mode failures
or disk errors or transfers that the DMA controller can't deal with,
the driver will fall back to PIO, so it is wise to setup the flags as
if PIO were still important.
'controller wdc0 at isa? port "IO_WD1" bio irq 14 flags 0xa0ffa0ff
vector wdintr' should work with nearly any PCI IDE controller.
i would *strongly* suggest booting single-user at first, and thrashing
the drive a bit while it's still mounted read-only. this should be
fairly safe, even if the driver goes completely out to lunch. it
might save you a reinstall.
one way to tell whether the driver is really using DMA is to check the
interrupt count during disk i/o with vmstat; DMA mode will add an
extremely low number of interrupts, as compared to even multi-sector
PIO.
boot -v will give you a copious register dump of timing-related info
on Intel and VIAtech chipsets, as well as PIO/DMA mode information on
all hard drives. refer to your ATA and chipset documentation to
interpret these.
WHAT I'D LIKE FROM YOU and THINGS TO TEST:
reports. success reports, failure reports, any kind of reports. :)
send them to cgull+ide@smoke.marlboro.vt.us.
i'd also like to see the kernel messages from various BIOSes (boot -v;
dmesg), along with info on the motherboard and BIOS on that machine.
i'm especially interested in reports on how this code works on the
various Intel chipsets, and whether the register dump works
correctly. i'm also interested in hearing about other chipsets.
i'm especially interested in hearing success/failure reports for PCI
IDE controllers on cards, such as CMD's or Promise's new busmastering
IDE controllers.
UltraDMA-33 reports.
interoperation with ATAPI peripherals-- FreeBSD doesn't work with my
old Hitachi IDE CDROM, so i can't tell if I've broken anything. :)
i'd especially like to hear how the drive copes in DMA operation on
drives with bad sectors. i haven't been able to find any such yet.
success/failure reports on older IDE drives with early support for DMA
modes-- those introduced between 1.5 and 3 years ago, typically
ranging from perhaps 400MB to 1.6GB.
failure reports on operation with more than one drive would be
appreciated. the driver was developed with two drives on one
controller, the worst-case situation, and has been tested with one
drive on each controller, but you never know...
any reports of messages from the driver during normal operation,
especially "reverting to PIO mode", or "dmaverify odd vaddr or length"
(the DMA controller is strongly halfword oriented, and i'm curious to
know if any FreeBSD usage actually needs misaligned transfers).
performance reports. beware that bonnie's CPU usage reporting is
useless for IDE drives; the best test i've found has been to run a
program that runs a spin loop at an idle priority and reports how many
iterations it manages, and even that sometimes produces numbers i
don't believe. performance reports of multi-drive operation are
especially interesting; my system cannot sustain full throughput on
two drives on separate controllers, but that may just be a lame
motherboard.
THINGS I'M STILL MISSING CLUE ON:
* who's responsible for configuring DMA timing modes on IDE drives?
the BIOS or the driver?
* is there a spec for dealing with Ultra-DMA extensions?
* are there any chipsets or with bugs relating to DMA transfer that
should be blacklisted?
* are there any ATA interfaces that use some other kind of DMA
controller in conjunction with standard ATA protocol?
FINAL NOTE:
after having looked at the ATA-3 spec, all i can say is, "it's ugly".
*especially* electrically. the IDE bus is best modeled as an
unterminated transmission line, these days.
for maximum reliability, keep your IDE cables as short as possible and
as few as possible. from what i can tell, most current chipsets have
both IDE ports wired into a single buss, to a greater or lesser
degree. using two cables means you double the length of this bus.
SCSI may have its warts, but at least the basic analog design of the
bus is still somewhat reasonable. IDE passed beyond the veil two
years ago.
--John Hood, cgull@smoke.marlboro.vt.us
1997-07-29 12:57:25 +00:00
|
|
|
int (*wdd_dmaverify) /* verify that request is DMA-able */
|
|
|
|
__P((void *cookie, char *vaddr, u_long len, int direction));
|
1996-01-28 22:16:20 +00:00
|
|
|
int (*wdd_dmaprep) /* prepare DMA hardware */
|
|
|
|
__P((void *cookie, char *vaddr, u_long len, int direction));
|
|
|
|
void (*wdd_dmastart) /* begin DMA transfer */
|
|
|
|
__P((void *cookie));
|
|
|
|
int (*wdd_dmadone) /* DMA transfer completed */
|
|
|
|
__P((void *cookie));
|
|
|
|
int (*wdd_dmastatus) /* return status of DMA */
|
|
|
|
__P((void *cookie));
|
Add support for busmaster DMA on some PCI IDE chipsets.
I changed a few bits here and there, mainly renaming wd82371.c
to ide_pci.c now that it's supposed to handle different chipsets.
It runs on my P6 natoma board with two Maxtor drives, and also
on a Fujitsu machine I have at work with an Opti chipset and
a Quantum drive.
Submitted by:cgull@smoke.marlboro.vt.us <John Hood>
Original readme:
*** WARNING ***
This code has so far been tested on exactly one motherboard with two
identical drives known for their good DMA support.
This code, in the right circumstances, could corrupt data subtly,
silently, and invisibly, in much the same way that older PCI IDE
controllers do. It's ALPHA-quality code; there's one or two major
gaps in my understanding of PCI IDE still. Don't use this code on any
system with data that you care about; it's only good for hack boxes.
Expect that any data may be silently and randomly corrupted at any
moment. It's a disk driver. It has bugs. Disk drivers with bugs
munch data. It's a fact of life.
I also *STRONGLY* recommend getting a copy of your chipset's manual
and the ATA-2 or ATA-3 spec and making sure that timing modes on your
disk drives and IDE controller are being setup correctly by the BIOS--
because the driver makes only the lamest of attempts to do this just
now.
*** END WARNING ***
that said, i happen to think the code is working pretty well...
WHAT IT DOES:
this code adds support to the wd driver for bus mastering PCI IDE
controllers that follow the SFF-8038 standard. (all the bus mastering
PCI IDE controllers i've seen so far do follow this standard.) it
should provide busmastering on nearly any current P5 or P6 chipset,
specifically including any Intel chipset using one of the PIIX south
bridges-- this includes the '430FX, '430VX, '430HX, '430TX, '440LX,
and (i think) the Orion '450GX chipsets. specific support is also
included for the VIA Apollo VP-1 chipset, as it appears in the
relabeled "HXPro" incarnation seen on cheap US$70 taiwanese
motherboards (that's what's in my development machine). it works out
of the box on controllers that do DMA mode2; if my understanding is
correct, it'll probably work on Ultra-DMA33 controllers as well.
it'll probably work on busmastering IDE controllers in PCI slots, too,
but this is an area i am less sure about.
it cuts CPU usage considerably and improves drive performance
slightly. usable numbers are difficult to come by with existing
benchmark tools, but experimentation on my K5-P90 system, with VIA
VP-1 chipset and Quantum Fireball 1080 drives, shows that disk i/o on
raw partitions imposes perhaps 5% cpu load. cpu load during
filesystem i/o drops a lot, from near 100% to anywhere between 30% and
70%. (the improvement may not be as large on an Intel chipset; from
what i can tell, the VIA VP-1 may not be very efficient with PCI I/O.)
disk performance improves by 5% or 10% with these drives.
real, visible, end-user performance improvement on a single user
machine is about nil. :) a kernel compile was sped up by a whole three
seconds. it *does* feel a bit better-behaved when the system is
swapping heavily, but a better disk driver is not the fix for *that*
problem.
THE CODE:
this code is a patch to wd.c and wd82371.c, and associated header
files. it should be considered alpha code; more work needs to be
done.
wd.c has fairly clean patches to add calls to busmaster code, as
implemented in wd82371.c and potentially elsewhere (one could imagine,
say, a Mac having a different DMA controller).
wd82371.c has been considerably reworked: the wddma interface that it
presents has been changed (expect more changes), many bugs have been
fixed, a new internal interface has been added for supporting
different chipsets, and the PCI probe has been considerably extended.
the interface between wd82371.c and wd.c is still fairly clean, but
i'm not sure it's in the right place. there's a mess of issues around
ATA/ATAPI that need to be sorted out, including ATAPI support, CD-ROM
support, tape support, LS-120/Zip support, SFF-8038i DMA, UltraDMA,
PCI IDE controllers, bus probes, buggy controllers, controller timing
setup, drive timing setup, world peace and kitchen sinks. whatever
happens with all this and however it gets partitioned, it is fairly
clear that wd.c needs some significant rework-- probably a complete
rewrite.
timing setup on disk controllers is something i've entirely punted on.
on my development machine, it appears that the BIOS does at least some
of the necessary timing setup. i chose to restrict operation to
drives that are already configured for Mode4 PIO and Mode2 multiword
DMA, since the timing is essentially the same and many if not most
chipsets use the same control registers for DMA and PIO timing.
does anybody *know* whether BIOSes are required to do timing setup for
DMA modes on drives under their care?
error recovery is probably weak. early on in development, i was
getting drive errors induced by bugs in the driver; i used these to
flush out the worst of the bugs in the driver's error handling, but
problems may remain. i haven't got a drive with bad sectors i can
watch the driver flail on.
complaints about how wd82371.c has been reindented will be ignored
until the FreeBSD project has a real style policy, there is a
mechanism for individual authors to match it (indent flags or an emacs
c-mode or whatever), and it is enforced. if i'm going to use a source
style i don't like, it would help if i could figure out what it *is*
(style(9) is about half of a policy), and a way to reasonably
duplicate it. i ended up wasting a while trying to figure out what
the right thing to do was before deciding reformatting the whole thing
was the worst possible thing to do, except for all the other
possibilities.
i have maintained wd.c's indentation; that was not too hard,
fortunately.
TO INSTALL:
my dev box is freebsd 2.2.2 release. fortunately, wd.c is a living
fossil, and has diverged very little recently. included in this
tarball is a patch file, 'otherdiffs', for all files except wd82371.c,
my edited wd82371.c, a patch file, 'wd82371.c-diff-exact', against the
2.2.2 dist of 82371.c, and another patch file,
'wd82371.c-diff-whitespace', generated with diff -b (ignore
whitespace). most of you not using 2.2.2 will probably have to use
this last patchfile with 'patch --ignore-whitespace'. apply from the
kernel source tree root. as far as i can tell, this should apply
cleanly on anything from -current back to 2.2.2 and probably back to
2.2.0. you, the kernel hacker, can figure out what to do from here.
if you need more specific directions, you probably should not be
experimenting with this code yet.
to enable DMA support, set flag 0x2000 for that drive in your config
file or in userconfig, as you would the 32-bit-PIO flag. the driver
will then turn on DMA support if your drive and controller pass its
tests. it's a bit picky, probably. on discovering DMA mode failures
or disk errors or transfers that the DMA controller can't deal with,
the driver will fall back to PIO, so it is wise to setup the flags as
if PIO were still important.
'controller wdc0 at isa? port "IO_WD1" bio irq 14 flags 0xa0ffa0ff
vector wdintr' should work with nearly any PCI IDE controller.
i would *strongly* suggest booting single-user at first, and thrashing
the drive a bit while it's still mounted read-only. this should be
fairly safe, even if the driver goes completely out to lunch. it
might save you a reinstall.
one way to tell whether the driver is really using DMA is to check the
interrupt count during disk i/o with vmstat; DMA mode will add an
extremely low number of interrupts, as compared to even multi-sector
PIO.
boot -v will give you a copious register dump of timing-related info
on Intel and VIAtech chipsets, as well as PIO/DMA mode information on
all hard drives. refer to your ATA and chipset documentation to
interpret these.
WHAT I'D LIKE FROM YOU and THINGS TO TEST:
reports. success reports, failure reports, any kind of reports. :)
send them to cgull+ide@smoke.marlboro.vt.us.
i'd also like to see the kernel messages from various BIOSes (boot -v;
dmesg), along with info on the motherboard and BIOS on that machine.
i'm especially interested in reports on how this code works on the
various Intel chipsets, and whether the register dump works
correctly. i'm also interested in hearing about other chipsets.
i'm especially interested in hearing success/failure reports for PCI
IDE controllers on cards, such as CMD's or Promise's new busmastering
IDE controllers.
UltraDMA-33 reports.
interoperation with ATAPI peripherals-- FreeBSD doesn't work with my
old Hitachi IDE CDROM, so i can't tell if I've broken anything. :)
i'd especially like to hear how the drive copes in DMA operation on
drives with bad sectors. i haven't been able to find any such yet.
success/failure reports on older IDE drives with early support for DMA
modes-- those introduced between 1.5 and 3 years ago, typically
ranging from perhaps 400MB to 1.6GB.
failure reports on operation with more than one drive would be
appreciated. the driver was developed with two drives on one
controller, the worst-case situation, and has been tested with one
drive on each controller, but you never know...
any reports of messages from the driver during normal operation,
especially "reverting to PIO mode", or "dmaverify odd vaddr or length"
(the DMA controller is strongly halfword oriented, and i'm curious to
know if any FreeBSD usage actually needs misaligned transfers).
performance reports. beware that bonnie's CPU usage reporting is
useless for IDE drives; the best test i've found has been to run a
program that runs a spin loop at an idle priority and reports how many
iterations it manages, and even that sometimes produces numbers i
don't believe. performance reports of multi-drive operation are
especially interesting; my system cannot sustain full throughput on
two drives on separate controllers, but that may just be a lame
motherboard.
THINGS I'M STILL MISSING CLUE ON:
* who's responsible for configuring DMA timing modes on IDE drives?
the BIOS or the driver?
* is there a spec for dealing with Ultra-DMA extensions?
* are there any chipsets or with bugs relating to DMA transfer that
should be blacklisted?
* are there any ATA interfaces that use some other kind of DMA
controller in conjunction with standard ATA protocol?
FINAL NOTE:
after having looked at the ATA-3 spec, all i can say is, "it's ugly".
*especially* electrically. the IDE bus is best modeled as an
unterminated transmission line, these days.
for maximum reliability, keep your IDE cables as short as possible and
as few as possible. from what i can tell, most current chipsets have
both IDE ports wired into a single buss, to a greater or lesser
degree. using two cables means you double the length of this bus.
SCSI may have its warts, but at least the basic analog design of the
bus is still somewhat reasonable. IDE passed beyond the veil two
years ago.
--John Hood, cgull@smoke.marlboro.vt.us
1997-07-29 12:57:25 +00:00
|
|
|
int (*wdd_dmainit) /* initialize controller and drive */
|
|
|
|
__P((void *cookie,
|
|
|
|
struct wdparams *wp,
|
|
|
|
int(wdcmd)__P((int mode, void *wdinfo)),
|
|
|
|
void *wdinfo));
|
1997-09-20 07:41:58 +00:00
|
|
|
int (*wdd_iobase) /* returns iobase address */
|
|
|
|
__P((void *cookie));
|
|
|
|
int (*wdd_altiobase) /* returns altiobase address */
|
|
|
|
__P((void *cookie));
|
1996-01-28 22:16:20 +00:00
|
|
|
};
|
|
|
|
|
Add support for busmaster DMA on some PCI IDE chipsets.
I changed a few bits here and there, mainly renaming wd82371.c
to ide_pci.c now that it's supposed to handle different chipsets.
It runs on my P6 natoma board with two Maxtor drives, and also
on a Fujitsu machine I have at work with an Opti chipset and
a Quantum drive.
Submitted by:cgull@smoke.marlboro.vt.us <John Hood>
Original readme:
*** WARNING ***
This code has so far been tested on exactly one motherboard with two
identical drives known for their good DMA support.
This code, in the right circumstances, could corrupt data subtly,
silently, and invisibly, in much the same way that older PCI IDE
controllers do. It's ALPHA-quality code; there's one or two major
gaps in my understanding of PCI IDE still. Don't use this code on any
system with data that you care about; it's only good for hack boxes.
Expect that any data may be silently and randomly corrupted at any
moment. It's a disk driver. It has bugs. Disk drivers with bugs
munch data. It's a fact of life.
I also *STRONGLY* recommend getting a copy of your chipset's manual
and the ATA-2 or ATA-3 spec and making sure that timing modes on your
disk drives and IDE controller are being setup correctly by the BIOS--
because the driver makes only the lamest of attempts to do this just
now.
*** END WARNING ***
that said, i happen to think the code is working pretty well...
WHAT IT DOES:
this code adds support to the wd driver for bus mastering PCI IDE
controllers that follow the SFF-8038 standard. (all the bus mastering
PCI IDE controllers i've seen so far do follow this standard.) it
should provide busmastering on nearly any current P5 or P6 chipset,
specifically including any Intel chipset using one of the PIIX south
bridges-- this includes the '430FX, '430VX, '430HX, '430TX, '440LX,
and (i think) the Orion '450GX chipsets. specific support is also
included for the VIA Apollo VP-1 chipset, as it appears in the
relabeled "HXPro" incarnation seen on cheap US$70 taiwanese
motherboards (that's what's in my development machine). it works out
of the box on controllers that do DMA mode2; if my understanding is
correct, it'll probably work on Ultra-DMA33 controllers as well.
it'll probably work on busmastering IDE controllers in PCI slots, too,
but this is an area i am less sure about.
it cuts CPU usage considerably and improves drive performance
slightly. usable numbers are difficult to come by with existing
benchmark tools, but experimentation on my K5-P90 system, with VIA
VP-1 chipset and Quantum Fireball 1080 drives, shows that disk i/o on
raw partitions imposes perhaps 5% cpu load. cpu load during
filesystem i/o drops a lot, from near 100% to anywhere between 30% and
70%. (the improvement may not be as large on an Intel chipset; from
what i can tell, the VIA VP-1 may not be very efficient with PCI I/O.)
disk performance improves by 5% or 10% with these drives.
real, visible, end-user performance improvement on a single user
machine is about nil. :) a kernel compile was sped up by a whole three
seconds. it *does* feel a bit better-behaved when the system is
swapping heavily, but a better disk driver is not the fix for *that*
problem.
THE CODE:
this code is a patch to wd.c and wd82371.c, and associated header
files. it should be considered alpha code; more work needs to be
done.
wd.c has fairly clean patches to add calls to busmaster code, as
implemented in wd82371.c and potentially elsewhere (one could imagine,
say, a Mac having a different DMA controller).
wd82371.c has been considerably reworked: the wddma interface that it
presents has been changed (expect more changes), many bugs have been
fixed, a new internal interface has been added for supporting
different chipsets, and the PCI probe has been considerably extended.
the interface between wd82371.c and wd.c is still fairly clean, but
i'm not sure it's in the right place. there's a mess of issues around
ATA/ATAPI that need to be sorted out, including ATAPI support, CD-ROM
support, tape support, LS-120/Zip support, SFF-8038i DMA, UltraDMA,
PCI IDE controllers, bus probes, buggy controllers, controller timing
setup, drive timing setup, world peace and kitchen sinks. whatever
happens with all this and however it gets partitioned, it is fairly
clear that wd.c needs some significant rework-- probably a complete
rewrite.
timing setup on disk controllers is something i've entirely punted on.
on my development machine, it appears that the BIOS does at least some
of the necessary timing setup. i chose to restrict operation to
drives that are already configured for Mode4 PIO and Mode2 multiword
DMA, since the timing is essentially the same and many if not most
chipsets use the same control registers for DMA and PIO timing.
does anybody *know* whether BIOSes are required to do timing setup for
DMA modes on drives under their care?
error recovery is probably weak. early on in development, i was
getting drive errors induced by bugs in the driver; i used these to
flush out the worst of the bugs in the driver's error handling, but
problems may remain. i haven't got a drive with bad sectors i can
watch the driver flail on.
complaints about how wd82371.c has been reindented will be ignored
until the FreeBSD project has a real style policy, there is a
mechanism for individual authors to match it (indent flags or an emacs
c-mode or whatever), and it is enforced. if i'm going to use a source
style i don't like, it would help if i could figure out what it *is*
(style(9) is about half of a policy), and a way to reasonably
duplicate it. i ended up wasting a while trying to figure out what
the right thing to do was before deciding reformatting the whole thing
was the worst possible thing to do, except for all the other
possibilities.
i have maintained wd.c's indentation; that was not too hard,
fortunately.
TO INSTALL:
my dev box is freebsd 2.2.2 release. fortunately, wd.c is a living
fossil, and has diverged very little recently. included in this
tarball is a patch file, 'otherdiffs', for all files except wd82371.c,
my edited wd82371.c, a patch file, 'wd82371.c-diff-exact', against the
2.2.2 dist of 82371.c, and another patch file,
'wd82371.c-diff-whitespace', generated with diff -b (ignore
whitespace). most of you not using 2.2.2 will probably have to use
this last patchfile with 'patch --ignore-whitespace'. apply from the
kernel source tree root. as far as i can tell, this should apply
cleanly on anything from -current back to 2.2.2 and probably back to
2.2.0. you, the kernel hacker, can figure out what to do from here.
if you need more specific directions, you probably should not be
experimenting with this code yet.
to enable DMA support, set flag 0x2000 for that drive in your config
file or in userconfig, as you would the 32-bit-PIO flag. the driver
will then turn on DMA support if your drive and controller pass its
tests. it's a bit picky, probably. on discovering DMA mode failures
or disk errors or transfers that the DMA controller can't deal with,
the driver will fall back to PIO, so it is wise to setup the flags as
if PIO were still important.
'controller wdc0 at isa? port "IO_WD1" bio irq 14 flags 0xa0ffa0ff
vector wdintr' should work with nearly any PCI IDE controller.
i would *strongly* suggest booting single-user at first, and thrashing
the drive a bit while it's still mounted read-only. this should be
fairly safe, even if the driver goes completely out to lunch. it
might save you a reinstall.
one way to tell whether the driver is really using DMA is to check the
interrupt count during disk i/o with vmstat; DMA mode will add an
extremely low number of interrupts, as compared to even multi-sector
PIO.
boot -v will give you a copious register dump of timing-related info
on Intel and VIAtech chipsets, as well as PIO/DMA mode information on
all hard drives. refer to your ATA and chipset documentation to
interpret these.
WHAT I'D LIKE FROM YOU and THINGS TO TEST:
reports. success reports, failure reports, any kind of reports. :)
send them to cgull+ide@smoke.marlboro.vt.us.
i'd also like to see the kernel messages from various BIOSes (boot -v;
dmesg), along with info on the motherboard and BIOS on that machine.
i'm especially interested in reports on how this code works on the
various Intel chipsets, and whether the register dump works
correctly. i'm also interested in hearing about other chipsets.
i'm especially interested in hearing success/failure reports for PCI
IDE controllers on cards, such as CMD's or Promise's new busmastering
IDE controllers.
UltraDMA-33 reports.
interoperation with ATAPI peripherals-- FreeBSD doesn't work with my
old Hitachi IDE CDROM, so i can't tell if I've broken anything. :)
i'd especially like to hear how the drive copes in DMA operation on
drives with bad sectors. i haven't been able to find any such yet.
success/failure reports on older IDE drives with early support for DMA
modes-- those introduced between 1.5 and 3 years ago, typically
ranging from perhaps 400MB to 1.6GB.
failure reports on operation with more than one drive would be
appreciated. the driver was developed with two drives on one
controller, the worst-case situation, and has been tested with one
drive on each controller, but you never know...
any reports of messages from the driver during normal operation,
especially "reverting to PIO mode", or "dmaverify odd vaddr or length"
(the DMA controller is strongly halfword oriented, and i'm curious to
know if any FreeBSD usage actually needs misaligned transfers).
performance reports. beware that bonnie's CPU usage reporting is
useless for IDE drives; the best test i've found has been to run a
program that runs a spin loop at an idle priority and reports how many
iterations it manages, and even that sometimes produces numbers i
don't believe. performance reports of multi-drive operation are
especially interesting; my system cannot sustain full throughput on
two drives on separate controllers, but that may just be a lame
motherboard.
THINGS I'M STILL MISSING CLUE ON:
* who's responsible for configuring DMA timing modes on IDE drives?
the BIOS or the driver?
* is there a spec for dealing with Ultra-DMA extensions?
* are there any chipsets or with bugs relating to DMA transfer that
should be blacklisted?
* are there any ATA interfaces that use some other kind of DMA
controller in conjunction with standard ATA protocol?
FINAL NOTE:
after having looked at the ATA-3 spec, all i can say is, "it's ugly".
*especially* electrically. the IDE bus is best modeled as an
unterminated transmission line, these days.
for maximum reliability, keep your IDE cables as short as possible and
as few as possible. from what i can tell, most current chipsets have
both IDE ports wired into a single buss, to a greater or lesser
degree. using two cables means you double the length of this bus.
SCSI may have its warts, but at least the basic analog design of the
bus is still somewhat reasonable. IDE passed beyond the veil two
years ago.
--John Hood, cgull@smoke.marlboro.vt.us
1997-07-29 12:57:25 +00:00
|
|
|
/* logical status bits returned by wdd_dmastatus */
|
1996-01-28 22:16:20 +00:00
|
|
|
#define WDDS_ACTIVE 0x0001
|
|
|
|
#define WDDS_ERROR 0x0002
|
|
|
|
#define WDDS_INTERRUPT 0x0004
|
|
|
|
|
1997-09-04 18:49:53 +00:00
|
|
|
#define WDDS_BITS "\20\4interrupt\2error\1active"
|
|
|
|
|
|
|
|
/* defines for ATA timing modes */
|
|
|
|
#define WDDMA_GRPMASK 0xf8
|
|
|
|
#define WDDMA_MODEMASK 0x07
|
Add support for busmaster DMA on some PCI IDE chipsets.
I changed a few bits here and there, mainly renaming wd82371.c
to ide_pci.c now that it's supposed to handle different chipsets.
It runs on my P6 natoma board with two Maxtor drives, and also
on a Fujitsu machine I have at work with an Opti chipset and
a Quantum drive.
Submitted by:cgull@smoke.marlboro.vt.us <John Hood>
Original readme:
*** WARNING ***
This code has so far been tested on exactly one motherboard with two
identical drives known for their good DMA support.
This code, in the right circumstances, could corrupt data subtly,
silently, and invisibly, in much the same way that older PCI IDE
controllers do. It's ALPHA-quality code; there's one or two major
gaps in my understanding of PCI IDE still. Don't use this code on any
system with data that you care about; it's only good for hack boxes.
Expect that any data may be silently and randomly corrupted at any
moment. It's a disk driver. It has bugs. Disk drivers with bugs
munch data. It's a fact of life.
I also *STRONGLY* recommend getting a copy of your chipset's manual
and the ATA-2 or ATA-3 spec and making sure that timing modes on your
disk drives and IDE controller are being setup correctly by the BIOS--
because the driver makes only the lamest of attempts to do this just
now.
*** END WARNING ***
that said, i happen to think the code is working pretty well...
WHAT IT DOES:
this code adds support to the wd driver for bus mastering PCI IDE
controllers that follow the SFF-8038 standard. (all the bus mastering
PCI IDE controllers i've seen so far do follow this standard.) it
should provide busmastering on nearly any current P5 or P6 chipset,
specifically including any Intel chipset using one of the PIIX south
bridges-- this includes the '430FX, '430VX, '430HX, '430TX, '440LX,
and (i think) the Orion '450GX chipsets. specific support is also
included for the VIA Apollo VP-1 chipset, as it appears in the
relabeled "HXPro" incarnation seen on cheap US$70 taiwanese
motherboards (that's what's in my development machine). it works out
of the box on controllers that do DMA mode2; if my understanding is
correct, it'll probably work on Ultra-DMA33 controllers as well.
it'll probably work on busmastering IDE controllers in PCI slots, too,
but this is an area i am less sure about.
it cuts CPU usage considerably and improves drive performance
slightly. usable numbers are difficult to come by with existing
benchmark tools, but experimentation on my K5-P90 system, with VIA
VP-1 chipset and Quantum Fireball 1080 drives, shows that disk i/o on
raw partitions imposes perhaps 5% cpu load. cpu load during
filesystem i/o drops a lot, from near 100% to anywhere between 30% and
70%. (the improvement may not be as large on an Intel chipset; from
what i can tell, the VIA VP-1 may not be very efficient with PCI I/O.)
disk performance improves by 5% or 10% with these drives.
real, visible, end-user performance improvement on a single user
machine is about nil. :) a kernel compile was sped up by a whole three
seconds. it *does* feel a bit better-behaved when the system is
swapping heavily, but a better disk driver is not the fix for *that*
problem.
THE CODE:
this code is a patch to wd.c and wd82371.c, and associated header
files. it should be considered alpha code; more work needs to be
done.
wd.c has fairly clean patches to add calls to busmaster code, as
implemented in wd82371.c and potentially elsewhere (one could imagine,
say, a Mac having a different DMA controller).
wd82371.c has been considerably reworked: the wddma interface that it
presents has been changed (expect more changes), many bugs have been
fixed, a new internal interface has been added for supporting
different chipsets, and the PCI probe has been considerably extended.
the interface between wd82371.c and wd.c is still fairly clean, but
i'm not sure it's in the right place. there's a mess of issues around
ATA/ATAPI that need to be sorted out, including ATAPI support, CD-ROM
support, tape support, LS-120/Zip support, SFF-8038i DMA, UltraDMA,
PCI IDE controllers, bus probes, buggy controllers, controller timing
setup, drive timing setup, world peace and kitchen sinks. whatever
happens with all this and however it gets partitioned, it is fairly
clear that wd.c needs some significant rework-- probably a complete
rewrite.
timing setup on disk controllers is something i've entirely punted on.
on my development machine, it appears that the BIOS does at least some
of the necessary timing setup. i chose to restrict operation to
drives that are already configured for Mode4 PIO and Mode2 multiword
DMA, since the timing is essentially the same and many if not most
chipsets use the same control registers for DMA and PIO timing.
does anybody *know* whether BIOSes are required to do timing setup for
DMA modes on drives under their care?
error recovery is probably weak. early on in development, i was
getting drive errors induced by bugs in the driver; i used these to
flush out the worst of the bugs in the driver's error handling, but
problems may remain. i haven't got a drive with bad sectors i can
watch the driver flail on.
complaints about how wd82371.c has been reindented will be ignored
until the FreeBSD project has a real style policy, there is a
mechanism for individual authors to match it (indent flags or an emacs
c-mode or whatever), and it is enforced. if i'm going to use a source
style i don't like, it would help if i could figure out what it *is*
(style(9) is about half of a policy), and a way to reasonably
duplicate it. i ended up wasting a while trying to figure out what
the right thing to do was before deciding reformatting the whole thing
was the worst possible thing to do, except for all the other
possibilities.
i have maintained wd.c's indentation; that was not too hard,
fortunately.
TO INSTALL:
my dev box is freebsd 2.2.2 release. fortunately, wd.c is a living
fossil, and has diverged very little recently. included in this
tarball is a patch file, 'otherdiffs', for all files except wd82371.c,
my edited wd82371.c, a patch file, 'wd82371.c-diff-exact', against the
2.2.2 dist of 82371.c, and another patch file,
'wd82371.c-diff-whitespace', generated with diff -b (ignore
whitespace). most of you not using 2.2.2 will probably have to use
this last patchfile with 'patch --ignore-whitespace'. apply from the
kernel source tree root. as far as i can tell, this should apply
cleanly on anything from -current back to 2.2.2 and probably back to
2.2.0. you, the kernel hacker, can figure out what to do from here.
if you need more specific directions, you probably should not be
experimenting with this code yet.
to enable DMA support, set flag 0x2000 for that drive in your config
file or in userconfig, as you would the 32-bit-PIO flag. the driver
will then turn on DMA support if your drive and controller pass its
tests. it's a bit picky, probably. on discovering DMA mode failures
or disk errors or transfers that the DMA controller can't deal with,
the driver will fall back to PIO, so it is wise to setup the flags as
if PIO were still important.
'controller wdc0 at isa? port "IO_WD1" bio irq 14 flags 0xa0ffa0ff
vector wdintr' should work with nearly any PCI IDE controller.
i would *strongly* suggest booting single-user at first, and thrashing
the drive a bit while it's still mounted read-only. this should be
fairly safe, even if the driver goes completely out to lunch. it
might save you a reinstall.
one way to tell whether the driver is really using DMA is to check the
interrupt count during disk i/o with vmstat; DMA mode will add an
extremely low number of interrupts, as compared to even multi-sector
PIO.
boot -v will give you a copious register dump of timing-related info
on Intel and VIAtech chipsets, as well as PIO/DMA mode information on
all hard drives. refer to your ATA and chipset documentation to
interpret these.
WHAT I'D LIKE FROM YOU and THINGS TO TEST:
reports. success reports, failure reports, any kind of reports. :)
send them to cgull+ide@smoke.marlboro.vt.us.
i'd also like to see the kernel messages from various BIOSes (boot -v;
dmesg), along with info on the motherboard and BIOS on that machine.
i'm especially interested in reports on how this code works on the
various Intel chipsets, and whether the register dump works
correctly. i'm also interested in hearing about other chipsets.
i'm especially interested in hearing success/failure reports for PCI
IDE controllers on cards, such as CMD's or Promise's new busmastering
IDE controllers.
UltraDMA-33 reports.
interoperation with ATAPI peripherals-- FreeBSD doesn't work with my
old Hitachi IDE CDROM, so i can't tell if I've broken anything. :)
i'd especially like to hear how the drive copes in DMA operation on
drives with bad sectors. i haven't been able to find any such yet.
success/failure reports on older IDE drives with early support for DMA
modes-- those introduced between 1.5 and 3 years ago, typically
ranging from perhaps 400MB to 1.6GB.
failure reports on operation with more than one drive would be
appreciated. the driver was developed with two drives on one
controller, the worst-case situation, and has been tested with one
drive on each controller, but you never know...
any reports of messages from the driver during normal operation,
especially "reverting to PIO mode", or "dmaverify odd vaddr or length"
(the DMA controller is strongly halfword oriented, and i'm curious to
know if any FreeBSD usage actually needs misaligned transfers).
performance reports. beware that bonnie's CPU usage reporting is
useless for IDE drives; the best test i've found has been to run a
program that runs a spin loop at an idle priority and reports how many
iterations it manages, and even that sometimes produces numbers i
don't believe. performance reports of multi-drive operation are
especially interesting; my system cannot sustain full throughput on
two drives on separate controllers, but that may just be a lame
motherboard.
THINGS I'M STILL MISSING CLUE ON:
* who's responsible for configuring DMA timing modes on IDE drives?
the BIOS or the driver?
* is there a spec for dealing with Ultra-DMA extensions?
* are there any chipsets or with bugs relating to DMA transfer that
should be blacklisted?
* are there any ATA interfaces that use some other kind of DMA
controller in conjunction with standard ATA protocol?
FINAL NOTE:
after having looked at the ATA-3 spec, all i can say is, "it's ugly".
*especially* electrically. the IDE bus is best modeled as an
unterminated transmission line, these days.
for maximum reliability, keep your IDE cables as short as possible and
as few as possible. from what i can tell, most current chipsets have
both IDE ports wired into a single buss, to a greater or lesser
degree. using two cables means you double the length of this bus.
SCSI may have its warts, but at least the basic analog design of the
bus is still somewhat reasonable. IDE passed beyond the veil two
years ago.
--John Hood, cgull@smoke.marlboro.vt.us
1997-07-29 12:57:25 +00:00
|
|
|
/* flow-controlled PIO modes */
|
|
|
|
#define WDDMA_PIO 0x10
|
|
|
|
#define WDDMA_PIO3 0x10
|
|
|
|
#define WDDMA_PIO4 0x11
|
|
|
|
/* multi-word DMA timing modes */
|
|
|
|
#define WDDMA_MDMA 0x20
|
|
|
|
#define WDDMA_MDMA0 0x20
|
|
|
|
#define WDDMA_MDMA1 0x21
|
|
|
|
#define WDDMA_MDMA2 0x22
|
|
|
|
|
|
|
|
/* Ultra DMA timing modes */
|
1997-09-04 18:49:53 +00:00
|
|
|
#define WDDMA_UDMA 0x40
|
|
|
|
#define WDDMA_UDMA0 0x40
|
|
|
|
#define WDDMA_UDMA1 0x41
|
|
|
|
#define WDDMA_UDMA2 0x42
|
Add support for busmaster DMA on some PCI IDE chipsets.
I changed a few bits here and there, mainly renaming wd82371.c
to ide_pci.c now that it's supposed to handle different chipsets.
It runs on my P6 natoma board with two Maxtor drives, and also
on a Fujitsu machine I have at work with an Opti chipset and
a Quantum drive.
Submitted by:cgull@smoke.marlboro.vt.us <John Hood>
Original readme:
*** WARNING ***
This code has so far been tested on exactly one motherboard with two
identical drives known for their good DMA support.
This code, in the right circumstances, could corrupt data subtly,
silently, and invisibly, in much the same way that older PCI IDE
controllers do. It's ALPHA-quality code; there's one or two major
gaps in my understanding of PCI IDE still. Don't use this code on any
system with data that you care about; it's only good for hack boxes.
Expect that any data may be silently and randomly corrupted at any
moment. It's a disk driver. It has bugs. Disk drivers with bugs
munch data. It's a fact of life.
I also *STRONGLY* recommend getting a copy of your chipset's manual
and the ATA-2 or ATA-3 spec and making sure that timing modes on your
disk drives and IDE controller are being setup correctly by the BIOS--
because the driver makes only the lamest of attempts to do this just
now.
*** END WARNING ***
that said, i happen to think the code is working pretty well...
WHAT IT DOES:
this code adds support to the wd driver for bus mastering PCI IDE
controllers that follow the SFF-8038 standard. (all the bus mastering
PCI IDE controllers i've seen so far do follow this standard.) it
should provide busmastering on nearly any current P5 or P6 chipset,
specifically including any Intel chipset using one of the PIIX south
bridges-- this includes the '430FX, '430VX, '430HX, '430TX, '440LX,
and (i think) the Orion '450GX chipsets. specific support is also
included for the VIA Apollo VP-1 chipset, as it appears in the
relabeled "HXPro" incarnation seen on cheap US$70 taiwanese
motherboards (that's what's in my development machine). it works out
of the box on controllers that do DMA mode2; if my understanding is
correct, it'll probably work on Ultra-DMA33 controllers as well.
it'll probably work on busmastering IDE controllers in PCI slots, too,
but this is an area i am less sure about.
it cuts CPU usage considerably and improves drive performance
slightly. usable numbers are difficult to come by with existing
benchmark tools, but experimentation on my K5-P90 system, with VIA
VP-1 chipset and Quantum Fireball 1080 drives, shows that disk i/o on
raw partitions imposes perhaps 5% cpu load. cpu load during
filesystem i/o drops a lot, from near 100% to anywhere between 30% and
70%. (the improvement may not be as large on an Intel chipset; from
what i can tell, the VIA VP-1 may not be very efficient with PCI I/O.)
disk performance improves by 5% or 10% with these drives.
real, visible, end-user performance improvement on a single user
machine is about nil. :) a kernel compile was sped up by a whole three
seconds. it *does* feel a bit better-behaved when the system is
swapping heavily, but a better disk driver is not the fix for *that*
problem.
THE CODE:
this code is a patch to wd.c and wd82371.c, and associated header
files. it should be considered alpha code; more work needs to be
done.
wd.c has fairly clean patches to add calls to busmaster code, as
implemented in wd82371.c and potentially elsewhere (one could imagine,
say, a Mac having a different DMA controller).
wd82371.c has been considerably reworked: the wddma interface that it
presents has been changed (expect more changes), many bugs have been
fixed, a new internal interface has been added for supporting
different chipsets, and the PCI probe has been considerably extended.
the interface between wd82371.c and wd.c is still fairly clean, but
i'm not sure it's in the right place. there's a mess of issues around
ATA/ATAPI that need to be sorted out, including ATAPI support, CD-ROM
support, tape support, LS-120/Zip support, SFF-8038i DMA, UltraDMA,
PCI IDE controllers, bus probes, buggy controllers, controller timing
setup, drive timing setup, world peace and kitchen sinks. whatever
happens with all this and however it gets partitioned, it is fairly
clear that wd.c needs some significant rework-- probably a complete
rewrite.
timing setup on disk controllers is something i've entirely punted on.
on my development machine, it appears that the BIOS does at least some
of the necessary timing setup. i chose to restrict operation to
drives that are already configured for Mode4 PIO and Mode2 multiword
DMA, since the timing is essentially the same and many if not most
chipsets use the same control registers for DMA and PIO timing.
does anybody *know* whether BIOSes are required to do timing setup for
DMA modes on drives under their care?
error recovery is probably weak. early on in development, i was
getting drive errors induced by bugs in the driver; i used these to
flush out the worst of the bugs in the driver's error handling, but
problems may remain. i haven't got a drive with bad sectors i can
watch the driver flail on.
complaints about how wd82371.c has been reindented will be ignored
until the FreeBSD project has a real style policy, there is a
mechanism for individual authors to match it (indent flags or an emacs
c-mode or whatever), and it is enforced. if i'm going to use a source
style i don't like, it would help if i could figure out what it *is*
(style(9) is about half of a policy), and a way to reasonably
duplicate it. i ended up wasting a while trying to figure out what
the right thing to do was before deciding reformatting the whole thing
was the worst possible thing to do, except for all the other
possibilities.
i have maintained wd.c's indentation; that was not too hard,
fortunately.
TO INSTALL:
my dev box is freebsd 2.2.2 release. fortunately, wd.c is a living
fossil, and has diverged very little recently. included in this
tarball is a patch file, 'otherdiffs', for all files except wd82371.c,
my edited wd82371.c, a patch file, 'wd82371.c-diff-exact', against the
2.2.2 dist of 82371.c, and another patch file,
'wd82371.c-diff-whitespace', generated with diff -b (ignore
whitespace). most of you not using 2.2.2 will probably have to use
this last patchfile with 'patch --ignore-whitespace'. apply from the
kernel source tree root. as far as i can tell, this should apply
cleanly on anything from -current back to 2.2.2 and probably back to
2.2.0. you, the kernel hacker, can figure out what to do from here.
if you need more specific directions, you probably should not be
experimenting with this code yet.
to enable DMA support, set flag 0x2000 for that drive in your config
file or in userconfig, as you would the 32-bit-PIO flag. the driver
will then turn on DMA support if your drive and controller pass its
tests. it's a bit picky, probably. on discovering DMA mode failures
or disk errors or transfers that the DMA controller can't deal with,
the driver will fall back to PIO, so it is wise to setup the flags as
if PIO were still important.
'controller wdc0 at isa? port "IO_WD1" bio irq 14 flags 0xa0ffa0ff
vector wdintr' should work with nearly any PCI IDE controller.
i would *strongly* suggest booting single-user at first, and thrashing
the drive a bit while it's still mounted read-only. this should be
fairly safe, even if the driver goes completely out to lunch. it
might save you a reinstall.
one way to tell whether the driver is really using DMA is to check the
interrupt count during disk i/o with vmstat; DMA mode will add an
extremely low number of interrupts, as compared to even multi-sector
PIO.
boot -v will give you a copious register dump of timing-related info
on Intel and VIAtech chipsets, as well as PIO/DMA mode information on
all hard drives. refer to your ATA and chipset documentation to
interpret these.
WHAT I'D LIKE FROM YOU and THINGS TO TEST:
reports. success reports, failure reports, any kind of reports. :)
send them to cgull+ide@smoke.marlboro.vt.us.
i'd also like to see the kernel messages from various BIOSes (boot -v;
dmesg), along with info on the motherboard and BIOS on that machine.
i'm especially interested in reports on how this code works on the
various Intel chipsets, and whether the register dump works
correctly. i'm also interested in hearing about other chipsets.
i'm especially interested in hearing success/failure reports for PCI
IDE controllers on cards, such as CMD's or Promise's new busmastering
IDE controllers.
UltraDMA-33 reports.
interoperation with ATAPI peripherals-- FreeBSD doesn't work with my
old Hitachi IDE CDROM, so i can't tell if I've broken anything. :)
i'd especially like to hear how the drive copes in DMA operation on
drives with bad sectors. i haven't been able to find any such yet.
success/failure reports on older IDE drives with early support for DMA
modes-- those introduced between 1.5 and 3 years ago, typically
ranging from perhaps 400MB to 1.6GB.
failure reports on operation with more than one drive would be
appreciated. the driver was developed with two drives on one
controller, the worst-case situation, and has been tested with one
drive on each controller, but you never know...
any reports of messages from the driver during normal operation,
especially "reverting to PIO mode", or "dmaverify odd vaddr or length"
(the DMA controller is strongly halfword oriented, and i'm curious to
know if any FreeBSD usage actually needs misaligned transfers).
performance reports. beware that bonnie's CPU usage reporting is
useless for IDE drives; the best test i've found has been to run a
program that runs a spin loop at an idle priority and reports how many
iterations it manages, and even that sometimes produces numbers i
don't believe. performance reports of multi-drive operation are
especially interesting; my system cannot sustain full throughput on
two drives on separate controllers, but that may just be a lame
motherboard.
THINGS I'M STILL MISSING CLUE ON:
* who's responsible for configuring DMA timing modes on IDE drives?
the BIOS or the driver?
* is there a spec for dealing with Ultra-DMA extensions?
* are there any chipsets or with bugs relating to DMA transfer that
should be blacklisted?
* are there any ATA interfaces that use some other kind of DMA
controller in conjunction with standard ATA protocol?
FINAL NOTE:
after having looked at the ATA-3 spec, all i can say is, "it's ugly".
*especially* electrically. the IDE bus is best modeled as an
unterminated transmission line, these days.
for maximum reliability, keep your IDE cables as short as possible and
as few as possible. from what i can tell, most current chipsets have
both IDE ports wired into a single buss, to a greater or lesser
degree. using two cables means you double the length of this bus.
SCSI may have its warts, but at least the basic analog design of the
bus is still somewhat reasonable. IDE passed beyond the veil two
years ago.
--John Hood, cgull@smoke.marlboro.vt.us
1997-07-29 12:57:25 +00:00
|
|
|
|
1999-04-13 20:22:34 +00:00
|
|
|
#define Q_CMD640B 0x00000001 /* CMD640B quirk: serialize IDE channels */
|
|
|
|
void wdc_pci(int quirks);
|
|
|
|
|
1997-09-20 07:41:58 +00:00
|
|
|
extern struct wddma wddma[];
|
1996-01-28 22:16:20 +00:00
|
|
|
|
1999-01-12 01:04:38 +00:00
|
|
|
void wdintr __P((void *unit));
|
1998-10-22 05:58:45 +00:00
|
|
|
|
1995-02-26 01:15:30 +00:00
|
|
|
#endif /* KERNEL */
|