freebsd-nq/sys/dev/pci/pci_pci.c

881 lines
23 KiB
C
Raw Normal View History

/*-
* Copyright (c) 1994,1995 Stefan Esser, Wolfgang StanglMeier
* Copyright (c) 2000 Michael Smith <msmith@freebsd.org>
* Copyright (c) 2000 BSDi
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* PCI:PCI bridge support.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <sys/sysctl.h>
#include <machine/resource.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pci_private.h>
#include <dev/pci/pcib_private.h>
#include "pcib_if.h"
static int pcib_probe(device_t dev);
static int pcib_suspend(device_t dev);
static int pcib_resume(device_t dev);
static int pcib_power_for_sleep(device_t pcib, device_t dev,
int *pstate);
static device_method_t pcib_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, pcib_probe),
DEVMETHOD(device_attach, pcib_attach),
DEVMETHOD(device_detach, bus_generic_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
DEVMETHOD(device_suspend, pcib_suspend),
DEVMETHOD(device_resume, pcib_resume),
/* Bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_read_ivar, pcib_read_ivar),
DEVMETHOD(bus_write_ivar, pcib_write_ivar),
DEVMETHOD(bus_alloc_resource, pcib_alloc_resource),
DEVMETHOD(bus_release_resource, bus_generic_release_resource),
DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
DEVMETHOD(bus_setup_intr, bus_generic_setup_intr),
DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
/* pcib interface */
DEVMETHOD(pcib_maxslots, pcib_maxslots),
DEVMETHOD(pcib_read_config, pcib_read_config),
DEVMETHOD(pcib_write_config, pcib_write_config),
DEVMETHOD(pcib_route_interrupt, pcib_route_interrupt),
First cut at MI support for PCI Message Signalled Interrupts (MSI): - Add 3 new functions to the pci_if interface along with suitable wrappers to provide the device driver visible API: - pci_alloc_msi(dev, int *count) backed by PCI_ALLOC_MSI(). '*count' here is an in and out parameter. The driver stores the desired number of messages in '*count' before calling the function. On success, '*count' holds the number of messages allocated to the device. Also on success, the driver can access the messages as SYS_RES_IRQ resources starting at rid 1. Note that the legacy INTx interrupt resource will not be available when using MSI. Note that this function will allocate either MSI or MSI-X messages depending on the devices capabilities and the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. Also note that the driver should activate the memory resource that holds the MSI-X table and pending bit array (PBA) before calling this function if the device supports MSI-X. - pci_release_msi(dev) backed by PCI_RELEASE_MSI(). This function releases the messages allocated for this device. All of the SYS_RES_IRQ resources need to be released for this function to succeed. - pci_msi_count(dev) backed by PCI_MSI_COUNT(). This function returns the maximum number of MSI or MSI-X messages supported by this device. MSI-X is preferred if present, but this function will honor the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. This function should return the largest value that pci_alloc_msi() can return (assuming the MD code is able to allocate sufficient backing resources for all of the messages). - Add default implementations for these 3 methods to the pci_driver generic PCI bus driver. (The various other PCI bus drivers such as for ACPI and OFW will inherit these default implementations.) This default implementation depends on 4 new pcib_if methods that bubble up through the PCI bridges to the MD code to allocate IRQ values and perform any needed MD setup code needed: - PCIB_ALLOC_MSI() attempts to allocate a group of MSI messages. - PCIB_RELEASE_MSI() releases a group of MSI messages. - PCIB_ALLOC_MSIX() attempts to allocate a single MSI-X message. - PCIB_RELEASE_MSIX() releases a single MSI-X message. - Add default implementations for these 4 methods that just pass the request up to the parent bus's parent bridge driver and use the default implementation in the various MI PCI bridge drivers. - Add MI functions for use by MD code when managing MSI and MSI-X interrupts: - pci_enable_msi(dev, address, data) programs the MSI capability address and data registers for a group of MSI messages - pci_enable_msix(dev, index, address, data) initializes a single MSI-X message in the MSI-X table - pci_mask_msix(dev, index) masks a single MSI-X message - pci_unmask_msix(dev, index) unmasks a single MSI-X message - pci_pending_msix(dev, index) returns true if the specified MSI-X message is currently pending - Save the MSI capability address and data registers in the pci_cfgreg block in a PCI devices ivars and restore the values when a device is resumed. Note that the MSI-X table is not currently restored during resume. - Add constants for MSI-X register offsets and fields. - Record interesting data about any MSI-X capability blocks we come across in the pci_cfgreg block in the ivars for PCI devices. Tested on: em (i386, MSI), bce (amd64/i386, MSI), mpt (amd64, MSI-X) Reviewed by: scottl, grehan, jfv MFC after: 2 months
2006-11-13 21:47:30 +00:00
DEVMETHOD(pcib_alloc_msi, pcib_alloc_msi),
DEVMETHOD(pcib_release_msi, pcib_release_msi),
DEVMETHOD(pcib_alloc_msix, pcib_alloc_msix),
DEVMETHOD(pcib_release_msix, pcib_release_msix),
Revamp the MSI/MSI-X code a bit to achieve two main goals: - Simplify the amount of work that has be done for each architecture by pushing more of the truly MI code down into the PCI bus driver. - Don't bind MSI-X indicies to IRQs so that we can allow a driver to map multiple MSI-X messages into a single IRQ when handling a message shortage. The changes include: - Add a new pcib_if method: PCIB_MAP_MSI() which is called by the PCI bus to calculate the address and data values for a given MSI/MSI-X IRQ. The x86 nexus drivers map this into a call to a new 'msi_map()' function in msi.c that does the mapping. - Retire the pcib_if method PCIB_REMAP_MSIX() and remove the 'index' parameter from PCIB_ALLOC_MSIX(). MD code no longer has any knowledge of the MSI-X index for a given MSI-X IRQ. - The PCI bus driver now stores more MSI-X state in a child's ivars. Specifically, it now stores an array of IRQs (called "message vectors" in the code) that have associated address and data values, and a small virtual version of the MSI-X table that specifies the message vector that a given MSI-X table entry uses. Sparse mappings are permitted in the virtual table. - The PCI bus driver now configures the MSI and MSI-X address/data registers directly via custom bus_setup_intr() and bus_teardown_intr() methods. pci_setup_intr() invokes PCIB_MAP_MSI() to determine the address and data values for a given message as needed. The MD code no longer has to call back down into the PCI bus code to set these values from the nexus' bus_setup_intr() handler. - The PCI bus code provides a callout (pci_remap_msi_irq()) that the MD code can call to force the PCI bus to re-invoke PCIB_MAP_MSI() to get new values of the address and data fields for a given IRQ. The x86 MSI code uses this when an MSI IRQ is moved to a different CPU, requiring a new value of the 'address' field. - The x86 MSI psuedo-driver loses a lot of code, and in fact the separate MSI/MSI-X pseudo-PICs are collapsed down into a single MSI PIC driver since the only remaining diff between the two is a substring in a bootverbose printf. - The PCI bus driver will now restore MSI-X state (including programming entries in the MSI-X table) on device resume. - The interface for pci_remap_msix() has changed. Instead of accepting indices for the allocated vectors, it accepts a mini-virtual table (with a new length parameter). This table is an array of u_ints, where each value specifies which allocated message vector to use for the corresponding MSI-X message. A vector of 0 forces a message to not have an associated IRQ. The device may choose to only use some of the IRQs assigned, in which case the unused IRQs must be at the "end" and will be released back to the system. This allows a driver to use the same remap table for different shortage values. For example, if a driver wants 4 messages, it can use the same remap table (which only uses the first two messages) for the cases when it only gets 2 or 3 messages and in the latter case the PCI bus will release the 3rd IRQ back to the system. MFC after: 1 month
2007-05-02 17:50:36 +00:00
DEVMETHOD(pcib_map_msi, pcib_map_msi),
DEVMETHOD(pcib_power_for_sleep, pcib_power_for_sleep),
{ 0, 0 }
};
static devclass_t pcib_devclass;
DEFINE_CLASS_0(pcib, pcib_driver, pcib_methods, sizeof(struct pcib_softc));
DRIVER_MODULE(pcib, pci, pcib_driver, pcib_devclass, 0, 0);
/*
* Is the prefetch window open (eg, can we allocate memory in it?)
*/
static int
pcib_is_prefetch_open(struct pcib_softc *sc)
{
return (sc->pmembase > 0 && sc->pmembase < sc->pmemlimit);
}
/*
* Is the nonprefetch window open (eg, can we allocate memory in it?)
*/
static int
pcib_is_nonprefetch_open(struct pcib_softc *sc)
{
return (sc->membase > 0 && sc->membase < sc->memlimit);
}
/*
* Is the io window open (eg, can we allocate ports in it?)
*/
static int
pcib_is_io_open(struct pcib_softc *sc)
{
return (sc->iobase > 0 && sc->iobase < sc->iolimit);
}
/*
* Get current I/O decode.
*/
static void
pcib_get_io_decode(struct pcib_softc *sc)
{
device_t dev;
uint32_t iolow;
dev = sc->dev;
iolow = pci_read_config(dev, PCIR_IOBASEL_1, 1);
if ((iolow & PCIM_BRIO_MASK) == PCIM_BRIO_32)
sc->iobase = PCI_PPBIOBASE(
pci_read_config(dev, PCIR_IOBASEH_1, 2), iolow);
else
sc->iobase = PCI_PPBIOBASE(0, iolow);
iolow = pci_read_config(dev, PCIR_IOLIMITL_1, 1);
if ((iolow & PCIM_BRIO_MASK) == PCIM_BRIO_32)
sc->iolimit = PCI_PPBIOLIMIT(
pci_read_config(dev, PCIR_IOLIMITH_1, 2), iolow);
else
sc->iolimit = PCI_PPBIOLIMIT(0, iolow);
}
/*
* Get current memory decode.
*/
static void
pcib_get_mem_decode(struct pcib_softc *sc)
{
device_t dev;
pci_addr_t pmemlow;
dev = sc->dev;
sc->membase = PCI_PPBMEMBASE(0,
pci_read_config(dev, PCIR_MEMBASE_1, 2));
sc->memlimit = PCI_PPBMEMLIMIT(0,
pci_read_config(dev, PCIR_MEMLIMIT_1, 2));
pmemlow = pci_read_config(dev, PCIR_PMBASEL_1, 2);
if ((pmemlow & PCIM_BRPM_MASK) == PCIM_BRPM_64)
sc->pmembase = PCI_PPBMEMBASE(
pci_read_config(dev, PCIR_PMBASEH_1, 4), pmemlow);
else
sc->pmembase = PCI_PPBMEMBASE(0, pmemlow);
pmemlow = pci_read_config(dev, PCIR_PMLIMITL_1, 2);
if ((pmemlow & PCIM_BRPM_MASK) == PCIM_BRPM_64)
sc->pmemlimit = PCI_PPBMEMLIMIT(
pci_read_config(dev, PCIR_PMLIMITH_1, 4), pmemlow);
else
sc->pmemlimit = PCI_PPBMEMLIMIT(0, pmemlow);
}
/*
* Restore previous I/O decode.
*/
static void
pcib_set_io_decode(struct pcib_softc *sc)
{
device_t dev;
uint32_t iohi;
dev = sc->dev;
iohi = sc->iobase >> 16;
if (iohi > 0)
pci_write_config(dev, PCIR_IOBASEH_1, iohi, 2);
pci_write_config(dev, PCIR_IOBASEL_1, sc->iobase >> 8, 1);
iohi = sc->iolimit >> 16;
if (iohi > 0)
pci_write_config(dev, PCIR_IOLIMITH_1, iohi, 2);
pci_write_config(dev, PCIR_IOLIMITL_1, sc->iolimit >> 8, 1);
}
/*
* Restore previous memory decode.
*/
static void
pcib_set_mem_decode(struct pcib_softc *sc)
{
device_t dev;
pci_addr_t pmemhi;
dev = sc->dev;
pci_write_config(dev, PCIR_MEMBASE_1, sc->membase >> 16, 2);
pci_write_config(dev, PCIR_MEMLIMIT_1, sc->memlimit >> 16, 2);
pmemhi = sc->pmembase >> 32;
if (pmemhi > 0)
pci_write_config(dev, PCIR_PMBASEH_1, pmemhi, 4);
pci_write_config(dev, PCIR_PMBASEL_1, sc->pmembase >> 16, 2);
pmemhi = sc->pmemlimit >> 32;
if (pmemhi > 0)
pci_write_config(dev, PCIR_PMLIMITH_1, pmemhi, 4);
pci_write_config(dev, PCIR_PMLIMITL_1, sc->pmemlimit >> 16, 2);
}
/*
* Get current bridge configuration.
*/
static void
pcib_cfg_save(struct pcib_softc *sc)
{
device_t dev;
dev = sc->dev;
sc->command = pci_read_config(dev, PCIR_COMMAND, 2);
sc->pribus = pci_read_config(dev, PCIR_PRIBUS_1, 1);
sc->secbus = pci_read_config(dev, PCIR_SECBUS_1, 1);
sc->subbus = pci_read_config(dev, PCIR_SUBBUS_1, 1);
sc->bridgectl = pci_read_config(dev, PCIR_BRIDGECTL_1, 2);
sc->seclat = pci_read_config(dev, PCIR_SECLAT_1, 1);
if (sc->command & PCIM_CMD_PORTEN)
pcib_get_io_decode(sc);
if (sc->command & PCIM_CMD_MEMEN)
pcib_get_mem_decode(sc);
}
/*
* Restore previous bridge configuration.
*/
static void
pcib_cfg_restore(struct pcib_softc *sc)
{
device_t dev;
dev = sc->dev;
pci_write_config(dev, PCIR_COMMAND, sc->command, 2);
pci_write_config(dev, PCIR_PRIBUS_1, sc->pribus, 1);
pci_write_config(dev, PCIR_SECBUS_1, sc->secbus, 1);
pci_write_config(dev, PCIR_SUBBUS_1, sc->subbus, 1);
pci_write_config(dev, PCIR_BRIDGECTL_1, sc->bridgectl, 2);
pci_write_config(dev, PCIR_SECLAT_1, sc->seclat, 1);
if (sc->command & PCIM_CMD_PORTEN)
pcib_set_io_decode(sc);
if (sc->command & PCIM_CMD_MEMEN)
pcib_set_mem_decode(sc);
}
/*
* Generic device interface
*/
static int
pcib_probe(device_t dev)
{
if ((pci_get_class(dev) == PCIC_BRIDGE) &&
(pci_get_subclass(dev) == PCIS_BRIDGE_PCI)) {
device_set_desc(dev, "PCI-PCI bridge");
return(-10000);
}
return(ENXIO);
}
void
pcib_attach_common(device_t dev)
{
struct pcib_softc *sc;
struct sysctl_ctx_list *sctx;
struct sysctl_oid *soid;
sc = device_get_softc(dev);
sc->dev = dev;
/*
* Get current bridge configuration.
*/
sc->domain = pci_get_domain(dev);
sc->secstat = pci_read_config(dev, PCIR_SECSTAT_1, 2);
pcib_cfg_save(sc);
/*
* Setup sysctl reporting nodes
*/
sctx = device_get_sysctl_ctx(dev);
soid = device_get_sysctl_tree(dev);
SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "domain",
CTLFLAG_RD, &sc->domain, 0, "Domain number");
SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "pribus",
CTLFLAG_RD, &sc->pribus, 0, "Primary bus number");
SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "secbus",
CTLFLAG_RD, &sc->secbus, 0, "Secondary bus number");
SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "subbus",
CTLFLAG_RD, &sc->subbus, 0, "Subordinate bus number");
/*
* Quirk handling.
*/
switch (pci_get_devid(dev)) {
case 0x12258086: /* Intel 82454KX/GX (Orion) */
{
uint8_t supbus;
supbus = pci_read_config(dev, 0x41, 1);
if (supbus != 0xff) {
sc->secbus = supbus + 1;
sc->subbus = supbus + 1;
}
break;
}
/*
* The i82380FB mobile docking controller is a PCI-PCI bridge,
* and it is a subtractive bridge. However, the ProgIf is wrong
* so the normal setting of PCIB_SUBTRACTIVE bit doesn't
* happen. There's also a Toshiba bridge that behaves this
* way.
*/
case 0x124b8086: /* Intel 82380FB Mobile */
case 0x060513d7: /* Toshiba ???? */
sc->flags |= PCIB_SUBTRACTIVE;
break;
/* Compaq R3000 BIOS sets wrong subordinate bus number. */
case 0x00dd10de:
{
char *cp;
if ((cp = getenv("smbios.planar.maker")) == NULL)
break;
if (strncmp(cp, "Compal", 6) != 0) {
freeenv(cp);
break;
}
freeenv(cp);
if ((cp = getenv("smbios.planar.product")) == NULL)
break;
if (strncmp(cp, "08A0", 4) != 0) {
freeenv(cp);
break;
}
freeenv(cp);
if (sc->subbus < 0xa) {
pci_write_config(dev, PCIR_SUBBUS_1, 0xa, 1);
sc->subbus = pci_read_config(dev, PCIR_SUBBUS_1, 1);
}
break;
}
}
if (pci_msi_device_blacklisted(dev))
sc->flags |= PCIB_DISABLE_MSI;
/*
* Intel 815, 845 and other chipsets say they are PCI-PCI bridges,
* but have a ProgIF of 0x80. The 82801 family (AA, AB, BAM/CAM,
* BA/CA/DB and E) PCI bridges are HUB-PCI bridges, in Intelese.
* This means they act as if they were subtractively decoding
* bridges and pass all transactions. Mark them and real ProgIf 1
* parts as subtractive.
*/
if ((pci_get_devid(dev) & 0xff00ffff) == 0x24008086 ||
pci_read_config(dev, PCIR_PROGIF, 1) == PCIP_BRIDGE_PCI_SUBTRACTIVE)
sc->flags |= PCIB_SUBTRACTIVE;
if (bootverbose) {
device_printf(dev, " domain %d\n", sc->domain);
device_printf(dev, " secondary bus %d\n", sc->secbus);
device_printf(dev, " subordinate bus %d\n", sc->subbus);
device_printf(dev, " I/O decode 0x%x-0x%x\n", sc->iobase, sc->iolimit);
if (pcib_is_nonprefetch_open(sc))
device_printf(dev, " memory decode 0x%jx-0x%jx\n",
(uintmax_t)sc->membase, (uintmax_t)sc->memlimit);
if (pcib_is_prefetch_open(sc))
device_printf(dev, " prefetched decode 0x%jx-0x%jx\n",
(uintmax_t)sc->pmembase, (uintmax_t)sc->pmemlimit);
else
device_printf(dev, " no prefetched decode\n");
if (sc->flags & PCIB_SUBTRACTIVE)
device_printf(dev, " Subtractively decoded bridge.\n");
}
/*
* XXX If the secondary bus number is zero, we should assign a bus number
* since the BIOS hasn't, then initialise the bridge. A simple
* bus_alloc_resource with the a couple of busses seems like the right
* approach, but we don't know what busses the BIOS might have already
* assigned to other bridges on this bus that probe later than we do.
*
* If the subordinate bus number is less than the secondary bus number,
* we should pick a better value. One sensible alternative would be to
* pick 255; the only tradeoff here is that configuration transactions
* would be more widely routed than absolutely necessary. We could
* then do a walk of the tree later and fix it.
*/
}
int
pcib_attach(device_t dev)
{
struct pcib_softc *sc;
device_t child;
pcib_attach_common(dev);
sc = device_get_softc(dev);
if (sc->secbus != 0) {
child = device_add_child(dev, "pci", sc->secbus);
if (child != NULL)
return(bus_generic_attach(dev));
}
/* no secondary bus; we should have fixed this */
return(0);
}
int
pcib_suspend(device_t dev)
{
device_t pcib;
int dstate, error;
pcib_cfg_save(device_get_softc(dev));
error = bus_generic_suspend(dev);
if (error == 0 && pci_do_power_suspend) {
dstate = PCI_POWERSTATE_D3;
pcib = device_get_parent(device_get_parent(dev));
if (PCIB_POWER_FOR_SLEEP(pcib, dev, &dstate) == 0)
pci_set_powerstate(dev, dstate);
}
return (error);
}
int
pcib_resume(device_t dev)
{
device_t pcib;
if (pci_do_power_resume) {
pcib = device_get_parent(device_get_parent(dev));
if (PCIB_POWER_FOR_SLEEP(pcib, dev, NULL) == 0)
pci_set_powerstate(dev, PCI_POWERSTATE_D0);
}
pcib_cfg_restore(device_get_softc(dev));
return (bus_generic_resume(dev));
}
int
pcib_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
{
struct pcib_softc *sc = device_get_softc(dev);
switch (which) {
case PCIB_IVAR_DOMAIN:
*result = sc->domain;
return(0);
case PCIB_IVAR_BUS:
*result = sc->secbus;
return(0);
}
return(ENOENT);
}
int
pcib_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
{
struct pcib_softc *sc = device_get_softc(dev);
switch (which) {
case PCIB_IVAR_DOMAIN:
return(EINVAL);
case PCIB_IVAR_BUS:
sc->secbus = value;
return(0);
}
return(ENOENT);
}
/*
* We have to trap resource allocation requests and ensure that the bridge
* is set up to, or capable of handling them.
*/
struct resource *
pcib_alloc_resource(device_t dev, device_t child, int type, int *rid,
u_long start, u_long end, u_long count, u_int flags)
{
struct pcib_softc *sc = device_get_softc(dev);
const char *name, *suffix;
int ok;
/*
* Fail the allocation for this range if it's not supported.
*/
name = device_get_nameunit(child);
if (name == NULL) {
name = "";
suffix = "";
} else
suffix = " ";
switch (type) {
case SYS_RES_IOPORT:
ok = 0;
if (!pcib_is_io_open(sc))
break;
ok = (start >= sc->iobase && end <= sc->iolimit);
/*
* Make sure we allow access to VGA I/O addresses when the
* bridge has the "VGA Enable" bit set.
*/
if (!ok && pci_is_vga_ioport_range(start, end))
ok = (sc->bridgectl & PCIB_BCR_VGA_ENABLE) ? 1 : 0;
if ((sc->flags & PCIB_SUBTRACTIVE) == 0) {
if (!ok) {
if (start < sc->iobase)
start = sc->iobase;
if (end > sc->iolimit)
end = sc->iolimit;
if (start < end)
ok = 1;
}
} else {
ok = 1;
#if 0
/*
* If we overlap with the subtractive range, then
* pick the upper range to use.
*/
if (start < sc->iolimit && end > sc->iobase)
start = sc->iolimit + 1;
#endif
}
if (end < start) {
device_printf(dev, "ioport: end (%lx) < start (%lx)\n",
end, start);
start = 0;
end = 0;
ok = 0;
}
if (!ok) {
device_printf(dev, "%s%srequested unsupported I/O "
"range 0x%lx-0x%lx (decoding 0x%x-0x%x)\n",
name, suffix, start, end, sc->iobase, sc->iolimit);
return (NULL);
}
if (bootverbose)
device_printf(dev,
"%s%srequested I/O range 0x%lx-0x%lx: in range\n",
name, suffix, start, end);
break;
case SYS_RES_MEMORY:
ok = 0;
if (pcib_is_nonprefetch_open(sc))
ok = ok || (start >= sc->membase && end <= sc->memlimit);
if (pcib_is_prefetch_open(sc))
ok = ok || (start >= sc->pmembase && end <= sc->pmemlimit);
/*
* Make sure we allow access to VGA memory addresses when the
* bridge has the "VGA Enable" bit set.
*/
if (!ok && pci_is_vga_memory_range(start, end))
ok = (sc->bridgectl & PCIB_BCR_VGA_ENABLE) ? 1 : 0;
if ((sc->flags & PCIB_SUBTRACTIVE) == 0) {
if (!ok) {
ok = 1;
if (flags & RF_PREFETCHABLE) {
if (pcib_is_prefetch_open(sc)) {
if (start < sc->pmembase)
start = sc->pmembase;
if (end > sc->pmemlimit)
end = sc->pmemlimit;
} else {
ok = 0;
}
} else { /* non-prefetchable */
if (pcib_is_nonprefetch_open(sc)) {
if (start < sc->membase)
start = sc->membase;
if (end > sc->memlimit)
end = sc->memlimit;
} else {
ok = 0;
}
}
}
} else if (!ok) {
ok = 1; /* subtractive bridge: always ok */
#if 0
if (pcib_is_nonprefetch_open(sc)) {
if (start < sc->memlimit && end > sc->membase)
start = sc->memlimit + 1;
}
if (pcib_is_prefetch_open(sc)) {
if (start < sc->pmemlimit && end > sc->pmembase)
start = sc->pmemlimit + 1;
}
#endif
}
if (end < start) {
device_printf(dev, "memory: end (%lx) < start (%lx)\n",
end, start);
start = 0;
end = 0;
ok = 0;
}
if (!ok && bootverbose)
device_printf(dev,
"%s%srequested unsupported memory range %#lx-%#lx "
"(decoding %#jx-%#jx, %#jx-%#jx)\n",
name, suffix, start, end,
(uintmax_t)sc->membase, (uintmax_t)sc->memlimit,
(uintmax_t)sc->pmembase, (uintmax_t)sc->pmemlimit);
if (!ok)
return (NULL);
if (bootverbose)
device_printf(dev,"%s%srequested memory range "
"0x%lx-0x%lx: good\n",
name, suffix, start, end);
break;
default:
break;
}
/*
* Bridge is OK decoding this resource, so pass it up.
*/
return (bus_generic_alloc_resource(dev, child, type, rid, start, end,
count, flags));
}
/*
* PCIB interface.
*/
int
pcib_maxslots(device_t dev)
{
return(PCI_SLOTMAX);
}
/*
* Since we are a child of a PCI bus, its parent must support the pcib interface.
*/
uint32_t
pcib_read_config(device_t dev, u_int b, u_int s, u_int f, u_int reg, int width)
{
return(PCIB_READ_CONFIG(device_get_parent(device_get_parent(dev)), b, s, f, reg, width));
}
void
pcib_write_config(device_t dev, u_int b, u_int s, u_int f, u_int reg, uint32_t val, int width)
{
PCIB_WRITE_CONFIG(device_get_parent(device_get_parent(dev)), b, s, f, reg, val, width);
}
/*
* Route an interrupt across a PCI bridge.
*/
int
pcib_route_interrupt(device_t pcib, device_t dev, int pin)
{
device_t bus;
int parent_intpin;
int intnum;
/*
*
* The PCI standard defines a swizzle of the child-side device/intpin to
* the parent-side intpin as follows.
*
* device = device on child bus
* child_intpin = intpin on child bus slot (0-3)
* parent_intpin = intpin on parent bus slot (0-3)
*
* parent_intpin = (device + child_intpin) % 4
*/
parent_intpin = (pci_get_slot(dev) + (pin - 1)) % 4;
/*
* Our parent is a PCI bus. Its parent must export the pcib interface
* which includes the ability to route interrupts.
*/
bus = device_get_parent(pcib);
intnum = PCIB_ROUTE_INTERRUPT(device_get_parent(bus), pcib, parent_intpin + 1);
if (PCI_INTERRUPT_VALID(intnum) && bootverbose) {
device_printf(pcib, "slot %d INT%c is routed to irq %d\n",
pci_get_slot(dev), 'A' + pin - 1, intnum);
}
return(intnum);
}
Revamp the MSI/MSI-X code a bit to achieve two main goals: - Simplify the amount of work that has be done for each architecture by pushing more of the truly MI code down into the PCI bus driver. - Don't bind MSI-X indicies to IRQs so that we can allow a driver to map multiple MSI-X messages into a single IRQ when handling a message shortage. The changes include: - Add a new pcib_if method: PCIB_MAP_MSI() which is called by the PCI bus to calculate the address and data values for a given MSI/MSI-X IRQ. The x86 nexus drivers map this into a call to a new 'msi_map()' function in msi.c that does the mapping. - Retire the pcib_if method PCIB_REMAP_MSIX() and remove the 'index' parameter from PCIB_ALLOC_MSIX(). MD code no longer has any knowledge of the MSI-X index for a given MSI-X IRQ. - The PCI bus driver now stores more MSI-X state in a child's ivars. Specifically, it now stores an array of IRQs (called "message vectors" in the code) that have associated address and data values, and a small virtual version of the MSI-X table that specifies the message vector that a given MSI-X table entry uses. Sparse mappings are permitted in the virtual table. - The PCI bus driver now configures the MSI and MSI-X address/data registers directly via custom bus_setup_intr() and bus_teardown_intr() methods. pci_setup_intr() invokes PCIB_MAP_MSI() to determine the address and data values for a given message as needed. The MD code no longer has to call back down into the PCI bus code to set these values from the nexus' bus_setup_intr() handler. - The PCI bus code provides a callout (pci_remap_msi_irq()) that the MD code can call to force the PCI bus to re-invoke PCIB_MAP_MSI() to get new values of the address and data fields for a given IRQ. The x86 MSI code uses this when an MSI IRQ is moved to a different CPU, requiring a new value of the 'address' field. - The x86 MSI psuedo-driver loses a lot of code, and in fact the separate MSI/MSI-X pseudo-PICs are collapsed down into a single MSI PIC driver since the only remaining diff between the two is a substring in a bootverbose printf. - The PCI bus driver will now restore MSI-X state (including programming entries in the MSI-X table) on device resume. - The interface for pci_remap_msix() has changed. Instead of accepting indices for the allocated vectors, it accepts a mini-virtual table (with a new length parameter). This table is an array of u_ints, where each value specifies which allocated message vector to use for the corresponding MSI-X message. A vector of 0 forces a message to not have an associated IRQ. The device may choose to only use some of the IRQs assigned, in which case the unused IRQs must be at the "end" and will be released back to the system. This allows a driver to use the same remap table for different shortage values. For example, if a driver wants 4 messages, it can use the same remap table (which only uses the first two messages) for the cases when it only gets 2 or 3 messages and in the latter case the PCI bus will release the 3rd IRQ back to the system. MFC after: 1 month
2007-05-02 17:50:36 +00:00
/* Pass request to alloc MSI/MSI-X messages up to the parent bridge. */
First cut at MI support for PCI Message Signalled Interrupts (MSI): - Add 3 new functions to the pci_if interface along with suitable wrappers to provide the device driver visible API: - pci_alloc_msi(dev, int *count) backed by PCI_ALLOC_MSI(). '*count' here is an in and out parameter. The driver stores the desired number of messages in '*count' before calling the function. On success, '*count' holds the number of messages allocated to the device. Also on success, the driver can access the messages as SYS_RES_IRQ resources starting at rid 1. Note that the legacy INTx interrupt resource will not be available when using MSI. Note that this function will allocate either MSI or MSI-X messages depending on the devices capabilities and the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. Also note that the driver should activate the memory resource that holds the MSI-X table and pending bit array (PBA) before calling this function if the device supports MSI-X. - pci_release_msi(dev) backed by PCI_RELEASE_MSI(). This function releases the messages allocated for this device. All of the SYS_RES_IRQ resources need to be released for this function to succeed. - pci_msi_count(dev) backed by PCI_MSI_COUNT(). This function returns the maximum number of MSI or MSI-X messages supported by this device. MSI-X is preferred if present, but this function will honor the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. This function should return the largest value that pci_alloc_msi() can return (assuming the MD code is able to allocate sufficient backing resources for all of the messages). - Add default implementations for these 3 methods to the pci_driver generic PCI bus driver. (The various other PCI bus drivers such as for ACPI and OFW will inherit these default implementations.) This default implementation depends on 4 new pcib_if methods that bubble up through the PCI bridges to the MD code to allocate IRQ values and perform any needed MD setup code needed: - PCIB_ALLOC_MSI() attempts to allocate a group of MSI messages. - PCIB_RELEASE_MSI() releases a group of MSI messages. - PCIB_ALLOC_MSIX() attempts to allocate a single MSI-X message. - PCIB_RELEASE_MSIX() releases a single MSI-X message. - Add default implementations for these 4 methods that just pass the request up to the parent bus's parent bridge driver and use the default implementation in the various MI PCI bridge drivers. - Add MI functions for use by MD code when managing MSI and MSI-X interrupts: - pci_enable_msi(dev, address, data) programs the MSI capability address and data registers for a group of MSI messages - pci_enable_msix(dev, index, address, data) initializes a single MSI-X message in the MSI-X table - pci_mask_msix(dev, index) masks a single MSI-X message - pci_unmask_msix(dev, index) unmasks a single MSI-X message - pci_pending_msix(dev, index) returns true if the specified MSI-X message is currently pending - Save the MSI capability address and data registers in the pci_cfgreg block in a PCI devices ivars and restore the values when a device is resumed. Note that the MSI-X table is not currently restored during resume. - Add constants for MSI-X register offsets and fields. - Record interesting data about any MSI-X capability blocks we come across in the pci_cfgreg block in the ivars for PCI devices. Tested on: em (i386, MSI), bce (amd64/i386, MSI), mpt (amd64, MSI-X) Reviewed by: scottl, grehan, jfv MFC after: 2 months
2006-11-13 21:47:30 +00:00
int
pcib_alloc_msi(device_t pcib, device_t dev, int count, int maxcount, int *irqs)
{
struct pcib_softc *sc = device_get_softc(pcib);
First cut at MI support for PCI Message Signalled Interrupts (MSI): - Add 3 new functions to the pci_if interface along with suitable wrappers to provide the device driver visible API: - pci_alloc_msi(dev, int *count) backed by PCI_ALLOC_MSI(). '*count' here is an in and out parameter. The driver stores the desired number of messages in '*count' before calling the function. On success, '*count' holds the number of messages allocated to the device. Also on success, the driver can access the messages as SYS_RES_IRQ resources starting at rid 1. Note that the legacy INTx interrupt resource will not be available when using MSI. Note that this function will allocate either MSI or MSI-X messages depending on the devices capabilities and the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. Also note that the driver should activate the memory resource that holds the MSI-X table and pending bit array (PBA) before calling this function if the device supports MSI-X. - pci_release_msi(dev) backed by PCI_RELEASE_MSI(). This function releases the messages allocated for this device. All of the SYS_RES_IRQ resources need to be released for this function to succeed. - pci_msi_count(dev) backed by PCI_MSI_COUNT(). This function returns the maximum number of MSI or MSI-X messages supported by this device. MSI-X is preferred if present, but this function will honor the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. This function should return the largest value that pci_alloc_msi() can return (assuming the MD code is able to allocate sufficient backing resources for all of the messages). - Add default implementations for these 3 methods to the pci_driver generic PCI bus driver. (The various other PCI bus drivers such as for ACPI and OFW will inherit these default implementations.) This default implementation depends on 4 new pcib_if methods that bubble up through the PCI bridges to the MD code to allocate IRQ values and perform any needed MD setup code needed: - PCIB_ALLOC_MSI() attempts to allocate a group of MSI messages. - PCIB_RELEASE_MSI() releases a group of MSI messages. - PCIB_ALLOC_MSIX() attempts to allocate a single MSI-X message. - PCIB_RELEASE_MSIX() releases a single MSI-X message. - Add default implementations for these 4 methods that just pass the request up to the parent bus's parent bridge driver and use the default implementation in the various MI PCI bridge drivers. - Add MI functions for use by MD code when managing MSI and MSI-X interrupts: - pci_enable_msi(dev, address, data) programs the MSI capability address and data registers for a group of MSI messages - pci_enable_msix(dev, index, address, data) initializes a single MSI-X message in the MSI-X table - pci_mask_msix(dev, index) masks a single MSI-X message - pci_unmask_msix(dev, index) unmasks a single MSI-X message - pci_pending_msix(dev, index) returns true if the specified MSI-X message is currently pending - Save the MSI capability address and data registers in the pci_cfgreg block in a PCI devices ivars and restore the values when a device is resumed. Note that the MSI-X table is not currently restored during resume. - Add constants for MSI-X register offsets and fields. - Record interesting data about any MSI-X capability blocks we come across in the pci_cfgreg block in the ivars for PCI devices. Tested on: em (i386, MSI), bce (amd64/i386, MSI), mpt (amd64, MSI-X) Reviewed by: scottl, grehan, jfv MFC after: 2 months
2006-11-13 21:47:30 +00:00
device_t bus;
if (sc->flags & PCIB_DISABLE_MSI)
return (ENXIO);
First cut at MI support for PCI Message Signalled Interrupts (MSI): - Add 3 new functions to the pci_if interface along with suitable wrappers to provide the device driver visible API: - pci_alloc_msi(dev, int *count) backed by PCI_ALLOC_MSI(). '*count' here is an in and out parameter. The driver stores the desired number of messages in '*count' before calling the function. On success, '*count' holds the number of messages allocated to the device. Also on success, the driver can access the messages as SYS_RES_IRQ resources starting at rid 1. Note that the legacy INTx interrupt resource will not be available when using MSI. Note that this function will allocate either MSI or MSI-X messages depending on the devices capabilities and the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. Also note that the driver should activate the memory resource that holds the MSI-X table and pending bit array (PBA) before calling this function if the device supports MSI-X. - pci_release_msi(dev) backed by PCI_RELEASE_MSI(). This function releases the messages allocated for this device. All of the SYS_RES_IRQ resources need to be released for this function to succeed. - pci_msi_count(dev) backed by PCI_MSI_COUNT(). This function returns the maximum number of MSI or MSI-X messages supported by this device. MSI-X is preferred if present, but this function will honor the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. This function should return the largest value that pci_alloc_msi() can return (assuming the MD code is able to allocate sufficient backing resources for all of the messages). - Add default implementations for these 3 methods to the pci_driver generic PCI bus driver. (The various other PCI bus drivers such as for ACPI and OFW will inherit these default implementations.) This default implementation depends on 4 new pcib_if methods that bubble up through the PCI bridges to the MD code to allocate IRQ values and perform any needed MD setup code needed: - PCIB_ALLOC_MSI() attempts to allocate a group of MSI messages. - PCIB_RELEASE_MSI() releases a group of MSI messages. - PCIB_ALLOC_MSIX() attempts to allocate a single MSI-X message. - PCIB_RELEASE_MSIX() releases a single MSI-X message. - Add default implementations for these 4 methods that just pass the request up to the parent bus's parent bridge driver and use the default implementation in the various MI PCI bridge drivers. - Add MI functions for use by MD code when managing MSI and MSI-X interrupts: - pci_enable_msi(dev, address, data) programs the MSI capability address and data registers for a group of MSI messages - pci_enable_msix(dev, index, address, data) initializes a single MSI-X message in the MSI-X table - pci_mask_msix(dev, index) masks a single MSI-X message - pci_unmask_msix(dev, index) unmasks a single MSI-X message - pci_pending_msix(dev, index) returns true if the specified MSI-X message is currently pending - Save the MSI capability address and data registers in the pci_cfgreg block in a PCI devices ivars and restore the values when a device is resumed. Note that the MSI-X table is not currently restored during resume. - Add constants for MSI-X register offsets and fields. - Record interesting data about any MSI-X capability blocks we come across in the pci_cfgreg block in the ivars for PCI devices. Tested on: em (i386, MSI), bce (amd64/i386, MSI), mpt (amd64, MSI-X) Reviewed by: scottl, grehan, jfv MFC after: 2 months
2006-11-13 21:47:30 +00:00
bus = device_get_parent(pcib);
return (PCIB_ALLOC_MSI(device_get_parent(bus), dev, count, maxcount,
irqs));
}
Revamp the MSI/MSI-X code a bit to achieve two main goals: - Simplify the amount of work that has be done for each architecture by pushing more of the truly MI code down into the PCI bus driver. - Don't bind MSI-X indicies to IRQs so that we can allow a driver to map multiple MSI-X messages into a single IRQ when handling a message shortage. The changes include: - Add a new pcib_if method: PCIB_MAP_MSI() which is called by the PCI bus to calculate the address and data values for a given MSI/MSI-X IRQ. The x86 nexus drivers map this into a call to a new 'msi_map()' function in msi.c that does the mapping. - Retire the pcib_if method PCIB_REMAP_MSIX() and remove the 'index' parameter from PCIB_ALLOC_MSIX(). MD code no longer has any knowledge of the MSI-X index for a given MSI-X IRQ. - The PCI bus driver now stores more MSI-X state in a child's ivars. Specifically, it now stores an array of IRQs (called "message vectors" in the code) that have associated address and data values, and a small virtual version of the MSI-X table that specifies the message vector that a given MSI-X table entry uses. Sparse mappings are permitted in the virtual table. - The PCI bus driver now configures the MSI and MSI-X address/data registers directly via custom bus_setup_intr() and bus_teardown_intr() methods. pci_setup_intr() invokes PCIB_MAP_MSI() to determine the address and data values for a given message as needed. The MD code no longer has to call back down into the PCI bus code to set these values from the nexus' bus_setup_intr() handler. - The PCI bus code provides a callout (pci_remap_msi_irq()) that the MD code can call to force the PCI bus to re-invoke PCIB_MAP_MSI() to get new values of the address and data fields for a given IRQ. The x86 MSI code uses this when an MSI IRQ is moved to a different CPU, requiring a new value of the 'address' field. - The x86 MSI psuedo-driver loses a lot of code, and in fact the separate MSI/MSI-X pseudo-PICs are collapsed down into a single MSI PIC driver since the only remaining diff between the two is a substring in a bootverbose printf. - The PCI bus driver will now restore MSI-X state (including programming entries in the MSI-X table) on device resume. - The interface for pci_remap_msix() has changed. Instead of accepting indices for the allocated vectors, it accepts a mini-virtual table (with a new length parameter). This table is an array of u_ints, where each value specifies which allocated message vector to use for the corresponding MSI-X message. A vector of 0 forces a message to not have an associated IRQ. The device may choose to only use some of the IRQs assigned, in which case the unused IRQs must be at the "end" and will be released back to the system. This allows a driver to use the same remap table for different shortage values. For example, if a driver wants 4 messages, it can use the same remap table (which only uses the first two messages) for the cases when it only gets 2 or 3 messages and in the latter case the PCI bus will release the 3rd IRQ back to the system. MFC after: 1 month
2007-05-02 17:50:36 +00:00
/* Pass request to release MSI/MSI-X messages up to the parent bridge. */
First cut at MI support for PCI Message Signalled Interrupts (MSI): - Add 3 new functions to the pci_if interface along with suitable wrappers to provide the device driver visible API: - pci_alloc_msi(dev, int *count) backed by PCI_ALLOC_MSI(). '*count' here is an in and out parameter. The driver stores the desired number of messages in '*count' before calling the function. On success, '*count' holds the number of messages allocated to the device. Also on success, the driver can access the messages as SYS_RES_IRQ resources starting at rid 1. Note that the legacy INTx interrupt resource will not be available when using MSI. Note that this function will allocate either MSI or MSI-X messages depending on the devices capabilities and the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. Also note that the driver should activate the memory resource that holds the MSI-X table and pending bit array (PBA) before calling this function if the device supports MSI-X. - pci_release_msi(dev) backed by PCI_RELEASE_MSI(). This function releases the messages allocated for this device. All of the SYS_RES_IRQ resources need to be released for this function to succeed. - pci_msi_count(dev) backed by PCI_MSI_COUNT(). This function returns the maximum number of MSI or MSI-X messages supported by this device. MSI-X is preferred if present, but this function will honor the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. This function should return the largest value that pci_alloc_msi() can return (assuming the MD code is able to allocate sufficient backing resources for all of the messages). - Add default implementations for these 3 methods to the pci_driver generic PCI bus driver. (The various other PCI bus drivers such as for ACPI and OFW will inherit these default implementations.) This default implementation depends on 4 new pcib_if methods that bubble up through the PCI bridges to the MD code to allocate IRQ values and perform any needed MD setup code needed: - PCIB_ALLOC_MSI() attempts to allocate a group of MSI messages. - PCIB_RELEASE_MSI() releases a group of MSI messages. - PCIB_ALLOC_MSIX() attempts to allocate a single MSI-X message. - PCIB_RELEASE_MSIX() releases a single MSI-X message. - Add default implementations for these 4 methods that just pass the request up to the parent bus's parent bridge driver and use the default implementation in the various MI PCI bridge drivers. - Add MI functions for use by MD code when managing MSI and MSI-X interrupts: - pci_enable_msi(dev, address, data) programs the MSI capability address and data registers for a group of MSI messages - pci_enable_msix(dev, index, address, data) initializes a single MSI-X message in the MSI-X table - pci_mask_msix(dev, index) masks a single MSI-X message - pci_unmask_msix(dev, index) unmasks a single MSI-X message - pci_pending_msix(dev, index) returns true if the specified MSI-X message is currently pending - Save the MSI capability address and data registers in the pci_cfgreg block in a PCI devices ivars and restore the values when a device is resumed. Note that the MSI-X table is not currently restored during resume. - Add constants for MSI-X register offsets and fields. - Record interesting data about any MSI-X capability blocks we come across in the pci_cfgreg block in the ivars for PCI devices. Tested on: em (i386, MSI), bce (amd64/i386, MSI), mpt (amd64, MSI-X) Reviewed by: scottl, grehan, jfv MFC after: 2 months
2006-11-13 21:47:30 +00:00
int
pcib_release_msi(device_t pcib, device_t dev, int count, int *irqs)
{
device_t bus;
bus = device_get_parent(pcib);
return (PCIB_RELEASE_MSI(device_get_parent(bus), dev, count, irqs));
}
/* Pass request to alloc an MSI-X message up to the parent bridge. */
int
Revamp the MSI/MSI-X code a bit to achieve two main goals: - Simplify the amount of work that has be done for each architecture by pushing more of the truly MI code down into the PCI bus driver. - Don't bind MSI-X indicies to IRQs so that we can allow a driver to map multiple MSI-X messages into a single IRQ when handling a message shortage. The changes include: - Add a new pcib_if method: PCIB_MAP_MSI() which is called by the PCI bus to calculate the address and data values for a given MSI/MSI-X IRQ. The x86 nexus drivers map this into a call to a new 'msi_map()' function in msi.c that does the mapping. - Retire the pcib_if method PCIB_REMAP_MSIX() and remove the 'index' parameter from PCIB_ALLOC_MSIX(). MD code no longer has any knowledge of the MSI-X index for a given MSI-X IRQ. - The PCI bus driver now stores more MSI-X state in a child's ivars. Specifically, it now stores an array of IRQs (called "message vectors" in the code) that have associated address and data values, and a small virtual version of the MSI-X table that specifies the message vector that a given MSI-X table entry uses. Sparse mappings are permitted in the virtual table. - The PCI bus driver now configures the MSI and MSI-X address/data registers directly via custom bus_setup_intr() and bus_teardown_intr() methods. pci_setup_intr() invokes PCIB_MAP_MSI() to determine the address and data values for a given message as needed. The MD code no longer has to call back down into the PCI bus code to set these values from the nexus' bus_setup_intr() handler. - The PCI bus code provides a callout (pci_remap_msi_irq()) that the MD code can call to force the PCI bus to re-invoke PCIB_MAP_MSI() to get new values of the address and data fields for a given IRQ. The x86 MSI code uses this when an MSI IRQ is moved to a different CPU, requiring a new value of the 'address' field. - The x86 MSI psuedo-driver loses a lot of code, and in fact the separate MSI/MSI-X pseudo-PICs are collapsed down into a single MSI PIC driver since the only remaining diff between the two is a substring in a bootverbose printf. - The PCI bus driver will now restore MSI-X state (including programming entries in the MSI-X table) on device resume. - The interface for pci_remap_msix() has changed. Instead of accepting indices for the allocated vectors, it accepts a mini-virtual table (with a new length parameter). This table is an array of u_ints, where each value specifies which allocated message vector to use for the corresponding MSI-X message. A vector of 0 forces a message to not have an associated IRQ. The device may choose to only use some of the IRQs assigned, in which case the unused IRQs must be at the "end" and will be released back to the system. This allows a driver to use the same remap table for different shortage values. For example, if a driver wants 4 messages, it can use the same remap table (which only uses the first two messages) for the cases when it only gets 2 or 3 messages and in the latter case the PCI bus will release the 3rd IRQ back to the system. MFC after: 1 month
2007-05-02 17:50:36 +00:00
pcib_alloc_msix(device_t pcib, device_t dev, int *irq)
First cut at MI support for PCI Message Signalled Interrupts (MSI): - Add 3 new functions to the pci_if interface along with suitable wrappers to provide the device driver visible API: - pci_alloc_msi(dev, int *count) backed by PCI_ALLOC_MSI(). '*count' here is an in and out parameter. The driver stores the desired number of messages in '*count' before calling the function. On success, '*count' holds the number of messages allocated to the device. Also on success, the driver can access the messages as SYS_RES_IRQ resources starting at rid 1. Note that the legacy INTx interrupt resource will not be available when using MSI. Note that this function will allocate either MSI or MSI-X messages depending on the devices capabilities and the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. Also note that the driver should activate the memory resource that holds the MSI-X table and pending bit array (PBA) before calling this function if the device supports MSI-X. - pci_release_msi(dev) backed by PCI_RELEASE_MSI(). This function releases the messages allocated for this device. All of the SYS_RES_IRQ resources need to be released for this function to succeed. - pci_msi_count(dev) backed by PCI_MSI_COUNT(). This function returns the maximum number of MSI or MSI-X messages supported by this device. MSI-X is preferred if present, but this function will honor the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. This function should return the largest value that pci_alloc_msi() can return (assuming the MD code is able to allocate sufficient backing resources for all of the messages). - Add default implementations for these 3 methods to the pci_driver generic PCI bus driver. (The various other PCI bus drivers such as for ACPI and OFW will inherit these default implementations.) This default implementation depends on 4 new pcib_if methods that bubble up through the PCI bridges to the MD code to allocate IRQ values and perform any needed MD setup code needed: - PCIB_ALLOC_MSI() attempts to allocate a group of MSI messages. - PCIB_RELEASE_MSI() releases a group of MSI messages. - PCIB_ALLOC_MSIX() attempts to allocate a single MSI-X message. - PCIB_RELEASE_MSIX() releases a single MSI-X message. - Add default implementations for these 4 methods that just pass the request up to the parent bus's parent bridge driver and use the default implementation in the various MI PCI bridge drivers. - Add MI functions for use by MD code when managing MSI and MSI-X interrupts: - pci_enable_msi(dev, address, data) programs the MSI capability address and data registers for a group of MSI messages - pci_enable_msix(dev, index, address, data) initializes a single MSI-X message in the MSI-X table - pci_mask_msix(dev, index) masks a single MSI-X message - pci_unmask_msix(dev, index) unmasks a single MSI-X message - pci_pending_msix(dev, index) returns true if the specified MSI-X message is currently pending - Save the MSI capability address and data registers in the pci_cfgreg block in a PCI devices ivars and restore the values when a device is resumed. Note that the MSI-X table is not currently restored during resume. - Add constants for MSI-X register offsets and fields. - Record interesting data about any MSI-X capability blocks we come across in the pci_cfgreg block in the ivars for PCI devices. Tested on: em (i386, MSI), bce (amd64/i386, MSI), mpt (amd64, MSI-X) Reviewed by: scottl, grehan, jfv MFC after: 2 months
2006-11-13 21:47:30 +00:00
{
struct pcib_softc *sc = device_get_softc(pcib);
First cut at MI support for PCI Message Signalled Interrupts (MSI): - Add 3 new functions to the pci_if interface along with suitable wrappers to provide the device driver visible API: - pci_alloc_msi(dev, int *count) backed by PCI_ALLOC_MSI(). '*count' here is an in and out parameter. The driver stores the desired number of messages in '*count' before calling the function. On success, '*count' holds the number of messages allocated to the device. Also on success, the driver can access the messages as SYS_RES_IRQ resources starting at rid 1. Note that the legacy INTx interrupt resource will not be available when using MSI. Note that this function will allocate either MSI or MSI-X messages depending on the devices capabilities and the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. Also note that the driver should activate the memory resource that holds the MSI-X table and pending bit array (PBA) before calling this function if the device supports MSI-X. - pci_release_msi(dev) backed by PCI_RELEASE_MSI(). This function releases the messages allocated for this device. All of the SYS_RES_IRQ resources need to be released for this function to succeed. - pci_msi_count(dev) backed by PCI_MSI_COUNT(). This function returns the maximum number of MSI or MSI-X messages supported by this device. MSI-X is preferred if present, but this function will honor the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. This function should return the largest value that pci_alloc_msi() can return (assuming the MD code is able to allocate sufficient backing resources for all of the messages). - Add default implementations for these 3 methods to the pci_driver generic PCI bus driver. (The various other PCI bus drivers such as for ACPI and OFW will inherit these default implementations.) This default implementation depends on 4 new pcib_if methods that bubble up through the PCI bridges to the MD code to allocate IRQ values and perform any needed MD setup code needed: - PCIB_ALLOC_MSI() attempts to allocate a group of MSI messages. - PCIB_RELEASE_MSI() releases a group of MSI messages. - PCIB_ALLOC_MSIX() attempts to allocate a single MSI-X message. - PCIB_RELEASE_MSIX() releases a single MSI-X message. - Add default implementations for these 4 methods that just pass the request up to the parent bus's parent bridge driver and use the default implementation in the various MI PCI bridge drivers. - Add MI functions for use by MD code when managing MSI and MSI-X interrupts: - pci_enable_msi(dev, address, data) programs the MSI capability address and data registers for a group of MSI messages - pci_enable_msix(dev, index, address, data) initializes a single MSI-X message in the MSI-X table - pci_mask_msix(dev, index) masks a single MSI-X message - pci_unmask_msix(dev, index) unmasks a single MSI-X message - pci_pending_msix(dev, index) returns true if the specified MSI-X message is currently pending - Save the MSI capability address and data registers in the pci_cfgreg block in a PCI devices ivars and restore the values when a device is resumed. Note that the MSI-X table is not currently restored during resume. - Add constants for MSI-X register offsets and fields. - Record interesting data about any MSI-X capability blocks we come across in the pci_cfgreg block in the ivars for PCI devices. Tested on: em (i386, MSI), bce (amd64/i386, MSI), mpt (amd64, MSI-X) Reviewed by: scottl, grehan, jfv MFC after: 2 months
2006-11-13 21:47:30 +00:00
device_t bus;
if (sc->flags & PCIB_DISABLE_MSI)
return (ENXIO);
First cut at MI support for PCI Message Signalled Interrupts (MSI): - Add 3 new functions to the pci_if interface along with suitable wrappers to provide the device driver visible API: - pci_alloc_msi(dev, int *count) backed by PCI_ALLOC_MSI(). '*count' here is an in and out parameter. The driver stores the desired number of messages in '*count' before calling the function. On success, '*count' holds the number of messages allocated to the device. Also on success, the driver can access the messages as SYS_RES_IRQ resources starting at rid 1. Note that the legacy INTx interrupt resource will not be available when using MSI. Note that this function will allocate either MSI or MSI-X messages depending on the devices capabilities and the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. Also note that the driver should activate the memory resource that holds the MSI-X table and pending bit array (PBA) before calling this function if the device supports MSI-X. - pci_release_msi(dev) backed by PCI_RELEASE_MSI(). This function releases the messages allocated for this device. All of the SYS_RES_IRQ resources need to be released for this function to succeed. - pci_msi_count(dev) backed by PCI_MSI_COUNT(). This function returns the maximum number of MSI or MSI-X messages supported by this device. MSI-X is preferred if present, but this function will honor the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. This function should return the largest value that pci_alloc_msi() can return (assuming the MD code is able to allocate sufficient backing resources for all of the messages). - Add default implementations for these 3 methods to the pci_driver generic PCI bus driver. (The various other PCI bus drivers such as for ACPI and OFW will inherit these default implementations.) This default implementation depends on 4 new pcib_if methods that bubble up through the PCI bridges to the MD code to allocate IRQ values and perform any needed MD setup code needed: - PCIB_ALLOC_MSI() attempts to allocate a group of MSI messages. - PCIB_RELEASE_MSI() releases a group of MSI messages. - PCIB_ALLOC_MSIX() attempts to allocate a single MSI-X message. - PCIB_RELEASE_MSIX() releases a single MSI-X message. - Add default implementations for these 4 methods that just pass the request up to the parent bus's parent bridge driver and use the default implementation in the various MI PCI bridge drivers. - Add MI functions for use by MD code when managing MSI and MSI-X interrupts: - pci_enable_msi(dev, address, data) programs the MSI capability address and data registers for a group of MSI messages - pci_enable_msix(dev, index, address, data) initializes a single MSI-X message in the MSI-X table - pci_mask_msix(dev, index) masks a single MSI-X message - pci_unmask_msix(dev, index) unmasks a single MSI-X message - pci_pending_msix(dev, index) returns true if the specified MSI-X message is currently pending - Save the MSI capability address and data registers in the pci_cfgreg block in a PCI devices ivars and restore the values when a device is resumed. Note that the MSI-X table is not currently restored during resume. - Add constants for MSI-X register offsets and fields. - Record interesting data about any MSI-X capability blocks we come across in the pci_cfgreg block in the ivars for PCI devices. Tested on: em (i386, MSI), bce (amd64/i386, MSI), mpt (amd64, MSI-X) Reviewed by: scottl, grehan, jfv MFC after: 2 months
2006-11-13 21:47:30 +00:00
bus = device_get_parent(pcib);
Revamp the MSI/MSI-X code a bit to achieve two main goals: - Simplify the amount of work that has be done for each architecture by pushing more of the truly MI code down into the PCI bus driver. - Don't bind MSI-X indicies to IRQs so that we can allow a driver to map multiple MSI-X messages into a single IRQ when handling a message shortage. The changes include: - Add a new pcib_if method: PCIB_MAP_MSI() which is called by the PCI bus to calculate the address and data values for a given MSI/MSI-X IRQ. The x86 nexus drivers map this into a call to a new 'msi_map()' function in msi.c that does the mapping. - Retire the pcib_if method PCIB_REMAP_MSIX() and remove the 'index' parameter from PCIB_ALLOC_MSIX(). MD code no longer has any knowledge of the MSI-X index for a given MSI-X IRQ. - The PCI bus driver now stores more MSI-X state in a child's ivars. Specifically, it now stores an array of IRQs (called "message vectors" in the code) that have associated address and data values, and a small virtual version of the MSI-X table that specifies the message vector that a given MSI-X table entry uses. Sparse mappings are permitted in the virtual table. - The PCI bus driver now configures the MSI and MSI-X address/data registers directly via custom bus_setup_intr() and bus_teardown_intr() methods. pci_setup_intr() invokes PCIB_MAP_MSI() to determine the address and data values for a given message as needed. The MD code no longer has to call back down into the PCI bus code to set these values from the nexus' bus_setup_intr() handler. - The PCI bus code provides a callout (pci_remap_msi_irq()) that the MD code can call to force the PCI bus to re-invoke PCIB_MAP_MSI() to get new values of the address and data fields for a given IRQ. The x86 MSI code uses this when an MSI IRQ is moved to a different CPU, requiring a new value of the 'address' field. - The x86 MSI psuedo-driver loses a lot of code, and in fact the separate MSI/MSI-X pseudo-PICs are collapsed down into a single MSI PIC driver since the only remaining diff between the two is a substring in a bootverbose printf. - The PCI bus driver will now restore MSI-X state (including programming entries in the MSI-X table) on device resume. - The interface for pci_remap_msix() has changed. Instead of accepting indices for the allocated vectors, it accepts a mini-virtual table (with a new length parameter). This table is an array of u_ints, where each value specifies which allocated message vector to use for the corresponding MSI-X message. A vector of 0 forces a message to not have an associated IRQ. The device may choose to only use some of the IRQs assigned, in which case the unused IRQs must be at the "end" and will be released back to the system. This allows a driver to use the same remap table for different shortage values. For example, if a driver wants 4 messages, it can use the same remap table (which only uses the first two messages) for the cases when it only gets 2 or 3 messages and in the latter case the PCI bus will release the 3rd IRQ back to the system. MFC after: 1 month
2007-05-02 17:50:36 +00:00
return (PCIB_ALLOC_MSIX(device_get_parent(bus), dev, irq));
First cut at MI support for PCI Message Signalled Interrupts (MSI): - Add 3 new functions to the pci_if interface along with suitable wrappers to provide the device driver visible API: - pci_alloc_msi(dev, int *count) backed by PCI_ALLOC_MSI(). '*count' here is an in and out parameter. The driver stores the desired number of messages in '*count' before calling the function. On success, '*count' holds the number of messages allocated to the device. Also on success, the driver can access the messages as SYS_RES_IRQ resources starting at rid 1. Note that the legacy INTx interrupt resource will not be available when using MSI. Note that this function will allocate either MSI or MSI-X messages depending on the devices capabilities and the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. Also note that the driver should activate the memory resource that holds the MSI-X table and pending bit array (PBA) before calling this function if the device supports MSI-X. - pci_release_msi(dev) backed by PCI_RELEASE_MSI(). This function releases the messages allocated for this device. All of the SYS_RES_IRQ resources need to be released for this function to succeed. - pci_msi_count(dev) backed by PCI_MSI_COUNT(). This function returns the maximum number of MSI or MSI-X messages supported by this device. MSI-X is preferred if present, but this function will honor the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. This function should return the largest value that pci_alloc_msi() can return (assuming the MD code is able to allocate sufficient backing resources for all of the messages). - Add default implementations for these 3 methods to the pci_driver generic PCI bus driver. (The various other PCI bus drivers such as for ACPI and OFW will inherit these default implementations.) This default implementation depends on 4 new pcib_if methods that bubble up through the PCI bridges to the MD code to allocate IRQ values and perform any needed MD setup code needed: - PCIB_ALLOC_MSI() attempts to allocate a group of MSI messages. - PCIB_RELEASE_MSI() releases a group of MSI messages. - PCIB_ALLOC_MSIX() attempts to allocate a single MSI-X message. - PCIB_RELEASE_MSIX() releases a single MSI-X message. - Add default implementations for these 4 methods that just pass the request up to the parent bus's parent bridge driver and use the default implementation in the various MI PCI bridge drivers. - Add MI functions for use by MD code when managing MSI and MSI-X interrupts: - pci_enable_msi(dev, address, data) programs the MSI capability address and data registers for a group of MSI messages - pci_enable_msix(dev, index, address, data) initializes a single MSI-X message in the MSI-X table - pci_mask_msix(dev, index) masks a single MSI-X message - pci_unmask_msix(dev, index) unmasks a single MSI-X message - pci_pending_msix(dev, index) returns true if the specified MSI-X message is currently pending - Save the MSI capability address and data registers in the pci_cfgreg block in a PCI devices ivars and restore the values when a device is resumed. Note that the MSI-X table is not currently restored during resume. - Add constants for MSI-X register offsets and fields. - Record interesting data about any MSI-X capability blocks we come across in the pci_cfgreg block in the ivars for PCI devices. Tested on: em (i386, MSI), bce (amd64/i386, MSI), mpt (amd64, MSI-X) Reviewed by: scottl, grehan, jfv MFC after: 2 months
2006-11-13 21:47:30 +00:00
}
Revamp the MSI/MSI-X code a bit to achieve two main goals: - Simplify the amount of work that has be done for each architecture by pushing more of the truly MI code down into the PCI bus driver. - Don't bind MSI-X indicies to IRQs so that we can allow a driver to map multiple MSI-X messages into a single IRQ when handling a message shortage. The changes include: - Add a new pcib_if method: PCIB_MAP_MSI() which is called by the PCI bus to calculate the address and data values for a given MSI/MSI-X IRQ. The x86 nexus drivers map this into a call to a new 'msi_map()' function in msi.c that does the mapping. - Retire the pcib_if method PCIB_REMAP_MSIX() and remove the 'index' parameter from PCIB_ALLOC_MSIX(). MD code no longer has any knowledge of the MSI-X index for a given MSI-X IRQ. - The PCI bus driver now stores more MSI-X state in a child's ivars. Specifically, it now stores an array of IRQs (called "message vectors" in the code) that have associated address and data values, and a small virtual version of the MSI-X table that specifies the message vector that a given MSI-X table entry uses. Sparse mappings are permitted in the virtual table. - The PCI bus driver now configures the MSI and MSI-X address/data registers directly via custom bus_setup_intr() and bus_teardown_intr() methods. pci_setup_intr() invokes PCIB_MAP_MSI() to determine the address and data values for a given message as needed. The MD code no longer has to call back down into the PCI bus code to set these values from the nexus' bus_setup_intr() handler. - The PCI bus code provides a callout (pci_remap_msi_irq()) that the MD code can call to force the PCI bus to re-invoke PCIB_MAP_MSI() to get new values of the address and data fields for a given IRQ. The x86 MSI code uses this when an MSI IRQ is moved to a different CPU, requiring a new value of the 'address' field. - The x86 MSI psuedo-driver loses a lot of code, and in fact the separate MSI/MSI-X pseudo-PICs are collapsed down into a single MSI PIC driver since the only remaining diff between the two is a substring in a bootverbose printf. - The PCI bus driver will now restore MSI-X state (including programming entries in the MSI-X table) on device resume. - The interface for pci_remap_msix() has changed. Instead of accepting indices for the allocated vectors, it accepts a mini-virtual table (with a new length parameter). This table is an array of u_ints, where each value specifies which allocated message vector to use for the corresponding MSI-X message. A vector of 0 forces a message to not have an associated IRQ. The device may choose to only use some of the IRQs assigned, in which case the unused IRQs must be at the "end" and will be released back to the system. This allows a driver to use the same remap table for different shortage values. For example, if a driver wants 4 messages, it can use the same remap table (which only uses the first two messages) for the cases when it only gets 2 or 3 messages and in the latter case the PCI bus will release the 3rd IRQ back to the system. MFC after: 1 month
2007-05-02 17:50:36 +00:00
/* Pass request to release an MSI-X message up to the parent bridge. */
Expand the MSI/MSI-X API to address some deficiencies in the MSI-X support. - First off, device drivers really do need to know if they are allocating MSI or MSI-X messages. MSI requires allocating powerof2() messages for example where MSI-X does not. To address this, split out the MSI-X support from pci_msi_count() and pci_alloc_msi() into new driver-visible functions pci_msix_count() and pci_alloc_msix(). As a result, pci_msi_count() now just returns a count of the max supported MSI messages for the device, and pci_alloc_msi() only tries to allocate MSI messages. To get a count of the max supported MSI-X messages, use pci_msix_count(). To allocate MSI-X messages, use pci_alloc_msix(). pci_release_msi() still handles both MSI and MSI-X messages, however. As a result of this change, drivers using the existing API will only use MSI messages and will no longer try to use MSI-X messages. - Because MSI-X allows for each message to have its own data and address values (and thus does not require all of the messages to have their MD vectors allocated as a group), some devices allow for "sparse" use of MSI-X message slots. For example, if a device supports 8 messages but the OS is only able to allocate 2 messages, the device may make the best use of 2 IRQs if it enables the messages at slots 1 and 4 rather than default of using the first N slots (or indicies) at 1 and 2. To support this, add a new pci_remap_msix() function that a driver may call after a successful pci_alloc_msix() (but before allocating any of the SYS_RES_IRQ resources) to allow the allocated IRQ resources to be assigned to different message indices. For example, from the earlier example, after pci_alloc_msix() returned a value of 2, the driver would call pci_remap_msix() passing in array of integers { 1, 4 } as the new message indices to use. The rid's for the SYS_RES_IRQ resources will always match the message indices. Thus, after the call to pci_remap_msix() the driver would be able to access the first message in slot 1 at SYS_RES_IRQ rid 1, and the second message at slot 4 at SYS_RES_IRQ rid 4. Note that the message slots/indices are 1-based rather than 0-based so that they will always correspond to the rid values (SYS_RES_IRQ rid 0 is reserved for the legacy INTx interrupt). To support this API, a new PCIB_REMAP_MSIX() method was added to the pcib interface to change the message index for a single IRQ. Tested by: scottl
2007-01-22 21:48:44 +00:00
int
Revamp the MSI/MSI-X code a bit to achieve two main goals: - Simplify the amount of work that has be done for each architecture by pushing more of the truly MI code down into the PCI bus driver. - Don't bind MSI-X indicies to IRQs so that we can allow a driver to map multiple MSI-X messages into a single IRQ when handling a message shortage. The changes include: - Add a new pcib_if method: PCIB_MAP_MSI() which is called by the PCI bus to calculate the address and data values for a given MSI/MSI-X IRQ. The x86 nexus drivers map this into a call to a new 'msi_map()' function in msi.c that does the mapping. - Retire the pcib_if method PCIB_REMAP_MSIX() and remove the 'index' parameter from PCIB_ALLOC_MSIX(). MD code no longer has any knowledge of the MSI-X index for a given MSI-X IRQ. - The PCI bus driver now stores more MSI-X state in a child's ivars. Specifically, it now stores an array of IRQs (called "message vectors" in the code) that have associated address and data values, and a small virtual version of the MSI-X table that specifies the message vector that a given MSI-X table entry uses. Sparse mappings are permitted in the virtual table. - The PCI bus driver now configures the MSI and MSI-X address/data registers directly via custom bus_setup_intr() and bus_teardown_intr() methods. pci_setup_intr() invokes PCIB_MAP_MSI() to determine the address and data values for a given message as needed. The MD code no longer has to call back down into the PCI bus code to set these values from the nexus' bus_setup_intr() handler. - The PCI bus code provides a callout (pci_remap_msi_irq()) that the MD code can call to force the PCI bus to re-invoke PCIB_MAP_MSI() to get new values of the address and data fields for a given IRQ. The x86 MSI code uses this when an MSI IRQ is moved to a different CPU, requiring a new value of the 'address' field. - The x86 MSI psuedo-driver loses a lot of code, and in fact the separate MSI/MSI-X pseudo-PICs are collapsed down into a single MSI PIC driver since the only remaining diff between the two is a substring in a bootverbose printf. - The PCI bus driver will now restore MSI-X state (including programming entries in the MSI-X table) on device resume. - The interface for pci_remap_msix() has changed. Instead of accepting indices for the allocated vectors, it accepts a mini-virtual table (with a new length parameter). This table is an array of u_ints, where each value specifies which allocated message vector to use for the corresponding MSI-X message. A vector of 0 forces a message to not have an associated IRQ. The device may choose to only use some of the IRQs assigned, in which case the unused IRQs must be at the "end" and will be released back to the system. This allows a driver to use the same remap table for different shortage values. For example, if a driver wants 4 messages, it can use the same remap table (which only uses the first two messages) for the cases when it only gets 2 or 3 messages and in the latter case the PCI bus will release the 3rd IRQ back to the system. MFC after: 1 month
2007-05-02 17:50:36 +00:00
pcib_release_msix(device_t pcib, device_t dev, int irq)
Expand the MSI/MSI-X API to address some deficiencies in the MSI-X support. - First off, device drivers really do need to know if they are allocating MSI or MSI-X messages. MSI requires allocating powerof2() messages for example where MSI-X does not. To address this, split out the MSI-X support from pci_msi_count() and pci_alloc_msi() into new driver-visible functions pci_msix_count() and pci_alloc_msix(). As a result, pci_msi_count() now just returns a count of the max supported MSI messages for the device, and pci_alloc_msi() only tries to allocate MSI messages. To get a count of the max supported MSI-X messages, use pci_msix_count(). To allocate MSI-X messages, use pci_alloc_msix(). pci_release_msi() still handles both MSI and MSI-X messages, however. As a result of this change, drivers using the existing API will only use MSI messages and will no longer try to use MSI-X messages. - Because MSI-X allows for each message to have its own data and address values (and thus does not require all of the messages to have their MD vectors allocated as a group), some devices allow for "sparse" use of MSI-X message slots. For example, if a device supports 8 messages but the OS is only able to allocate 2 messages, the device may make the best use of 2 IRQs if it enables the messages at slots 1 and 4 rather than default of using the first N slots (or indicies) at 1 and 2. To support this, add a new pci_remap_msix() function that a driver may call after a successful pci_alloc_msix() (but before allocating any of the SYS_RES_IRQ resources) to allow the allocated IRQ resources to be assigned to different message indices. For example, from the earlier example, after pci_alloc_msix() returned a value of 2, the driver would call pci_remap_msix() passing in array of integers { 1, 4 } as the new message indices to use. The rid's for the SYS_RES_IRQ resources will always match the message indices. Thus, after the call to pci_remap_msix() the driver would be able to access the first message in slot 1 at SYS_RES_IRQ rid 1, and the second message at slot 4 at SYS_RES_IRQ rid 4. Note that the message slots/indices are 1-based rather than 0-based so that they will always correspond to the rid values (SYS_RES_IRQ rid 0 is reserved for the legacy INTx interrupt). To support this API, a new PCIB_REMAP_MSIX() method was added to the pcib interface to change the message index for a single IRQ. Tested by: scottl
2007-01-22 21:48:44 +00:00
{
device_t bus;
bus = device_get_parent(pcib);
Revamp the MSI/MSI-X code a bit to achieve two main goals: - Simplify the amount of work that has be done for each architecture by pushing more of the truly MI code down into the PCI bus driver. - Don't bind MSI-X indicies to IRQs so that we can allow a driver to map multiple MSI-X messages into a single IRQ when handling a message shortage. The changes include: - Add a new pcib_if method: PCIB_MAP_MSI() which is called by the PCI bus to calculate the address and data values for a given MSI/MSI-X IRQ. The x86 nexus drivers map this into a call to a new 'msi_map()' function in msi.c that does the mapping. - Retire the pcib_if method PCIB_REMAP_MSIX() and remove the 'index' parameter from PCIB_ALLOC_MSIX(). MD code no longer has any knowledge of the MSI-X index for a given MSI-X IRQ. - The PCI bus driver now stores more MSI-X state in a child's ivars. Specifically, it now stores an array of IRQs (called "message vectors" in the code) that have associated address and data values, and a small virtual version of the MSI-X table that specifies the message vector that a given MSI-X table entry uses. Sparse mappings are permitted in the virtual table. - The PCI bus driver now configures the MSI and MSI-X address/data registers directly via custom bus_setup_intr() and bus_teardown_intr() methods. pci_setup_intr() invokes PCIB_MAP_MSI() to determine the address and data values for a given message as needed. The MD code no longer has to call back down into the PCI bus code to set these values from the nexus' bus_setup_intr() handler. - The PCI bus code provides a callout (pci_remap_msi_irq()) that the MD code can call to force the PCI bus to re-invoke PCIB_MAP_MSI() to get new values of the address and data fields for a given IRQ. The x86 MSI code uses this when an MSI IRQ is moved to a different CPU, requiring a new value of the 'address' field. - The x86 MSI psuedo-driver loses a lot of code, and in fact the separate MSI/MSI-X pseudo-PICs are collapsed down into a single MSI PIC driver since the only remaining diff between the two is a substring in a bootverbose printf. - The PCI bus driver will now restore MSI-X state (including programming entries in the MSI-X table) on device resume. - The interface for pci_remap_msix() has changed. Instead of accepting indices for the allocated vectors, it accepts a mini-virtual table (with a new length parameter). This table is an array of u_ints, where each value specifies which allocated message vector to use for the corresponding MSI-X message. A vector of 0 forces a message to not have an associated IRQ. The device may choose to only use some of the IRQs assigned, in which case the unused IRQs must be at the "end" and will be released back to the system. This allows a driver to use the same remap table for different shortage values. For example, if a driver wants 4 messages, it can use the same remap table (which only uses the first two messages) for the cases when it only gets 2 or 3 messages and in the latter case the PCI bus will release the 3rd IRQ back to the system. MFC after: 1 month
2007-05-02 17:50:36 +00:00
return (PCIB_RELEASE_MSIX(device_get_parent(bus), dev, irq));
Expand the MSI/MSI-X API to address some deficiencies in the MSI-X support. - First off, device drivers really do need to know if they are allocating MSI or MSI-X messages. MSI requires allocating powerof2() messages for example where MSI-X does not. To address this, split out the MSI-X support from pci_msi_count() and pci_alloc_msi() into new driver-visible functions pci_msix_count() and pci_alloc_msix(). As a result, pci_msi_count() now just returns a count of the max supported MSI messages for the device, and pci_alloc_msi() only tries to allocate MSI messages. To get a count of the max supported MSI-X messages, use pci_msix_count(). To allocate MSI-X messages, use pci_alloc_msix(). pci_release_msi() still handles both MSI and MSI-X messages, however. As a result of this change, drivers using the existing API will only use MSI messages and will no longer try to use MSI-X messages. - Because MSI-X allows for each message to have its own data and address values (and thus does not require all of the messages to have their MD vectors allocated as a group), some devices allow for "sparse" use of MSI-X message slots. For example, if a device supports 8 messages but the OS is only able to allocate 2 messages, the device may make the best use of 2 IRQs if it enables the messages at slots 1 and 4 rather than default of using the first N slots (or indicies) at 1 and 2. To support this, add a new pci_remap_msix() function that a driver may call after a successful pci_alloc_msix() (but before allocating any of the SYS_RES_IRQ resources) to allow the allocated IRQ resources to be assigned to different message indices. For example, from the earlier example, after pci_alloc_msix() returned a value of 2, the driver would call pci_remap_msix() passing in array of integers { 1, 4 } as the new message indices to use. The rid's for the SYS_RES_IRQ resources will always match the message indices. Thus, after the call to pci_remap_msix() the driver would be able to access the first message in slot 1 at SYS_RES_IRQ rid 1, and the second message at slot 4 at SYS_RES_IRQ rid 4. Note that the message slots/indices are 1-based rather than 0-based so that they will always correspond to the rid values (SYS_RES_IRQ rid 0 is reserved for the legacy INTx interrupt). To support this API, a new PCIB_REMAP_MSIX() method was added to the pcib interface to change the message index for a single IRQ. Tested by: scottl
2007-01-22 21:48:44 +00:00
}
Revamp the MSI/MSI-X code a bit to achieve two main goals: - Simplify the amount of work that has be done for each architecture by pushing more of the truly MI code down into the PCI bus driver. - Don't bind MSI-X indicies to IRQs so that we can allow a driver to map multiple MSI-X messages into a single IRQ when handling a message shortage. The changes include: - Add a new pcib_if method: PCIB_MAP_MSI() which is called by the PCI bus to calculate the address and data values for a given MSI/MSI-X IRQ. The x86 nexus drivers map this into a call to a new 'msi_map()' function in msi.c that does the mapping. - Retire the pcib_if method PCIB_REMAP_MSIX() and remove the 'index' parameter from PCIB_ALLOC_MSIX(). MD code no longer has any knowledge of the MSI-X index for a given MSI-X IRQ. - The PCI bus driver now stores more MSI-X state in a child's ivars. Specifically, it now stores an array of IRQs (called "message vectors" in the code) that have associated address and data values, and a small virtual version of the MSI-X table that specifies the message vector that a given MSI-X table entry uses. Sparse mappings are permitted in the virtual table. - The PCI bus driver now configures the MSI and MSI-X address/data registers directly via custom bus_setup_intr() and bus_teardown_intr() methods. pci_setup_intr() invokes PCIB_MAP_MSI() to determine the address and data values for a given message as needed. The MD code no longer has to call back down into the PCI bus code to set these values from the nexus' bus_setup_intr() handler. - The PCI bus code provides a callout (pci_remap_msi_irq()) that the MD code can call to force the PCI bus to re-invoke PCIB_MAP_MSI() to get new values of the address and data fields for a given IRQ. The x86 MSI code uses this when an MSI IRQ is moved to a different CPU, requiring a new value of the 'address' field. - The x86 MSI psuedo-driver loses a lot of code, and in fact the separate MSI/MSI-X pseudo-PICs are collapsed down into a single MSI PIC driver since the only remaining diff between the two is a substring in a bootverbose printf. - The PCI bus driver will now restore MSI-X state (including programming entries in the MSI-X table) on device resume. - The interface for pci_remap_msix() has changed. Instead of accepting indices for the allocated vectors, it accepts a mini-virtual table (with a new length parameter). This table is an array of u_ints, where each value specifies which allocated message vector to use for the corresponding MSI-X message. A vector of 0 forces a message to not have an associated IRQ. The device may choose to only use some of the IRQs assigned, in which case the unused IRQs must be at the "end" and will be released back to the system. This allows a driver to use the same remap table for different shortage values. For example, if a driver wants 4 messages, it can use the same remap table (which only uses the first two messages) for the cases when it only gets 2 or 3 messages and in the latter case the PCI bus will release the 3rd IRQ back to the system. MFC after: 1 month
2007-05-02 17:50:36 +00:00
/* Pass request to map MSI/MSI-X message up to parent bridge. */
First cut at MI support for PCI Message Signalled Interrupts (MSI): - Add 3 new functions to the pci_if interface along with suitable wrappers to provide the device driver visible API: - pci_alloc_msi(dev, int *count) backed by PCI_ALLOC_MSI(). '*count' here is an in and out parameter. The driver stores the desired number of messages in '*count' before calling the function. On success, '*count' holds the number of messages allocated to the device. Also on success, the driver can access the messages as SYS_RES_IRQ resources starting at rid 1. Note that the legacy INTx interrupt resource will not be available when using MSI. Note that this function will allocate either MSI or MSI-X messages depending on the devices capabilities and the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. Also note that the driver should activate the memory resource that holds the MSI-X table and pending bit array (PBA) before calling this function if the device supports MSI-X. - pci_release_msi(dev) backed by PCI_RELEASE_MSI(). This function releases the messages allocated for this device. All of the SYS_RES_IRQ resources need to be released for this function to succeed. - pci_msi_count(dev) backed by PCI_MSI_COUNT(). This function returns the maximum number of MSI or MSI-X messages supported by this device. MSI-X is preferred if present, but this function will honor the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. This function should return the largest value that pci_alloc_msi() can return (assuming the MD code is able to allocate sufficient backing resources for all of the messages). - Add default implementations for these 3 methods to the pci_driver generic PCI bus driver. (The various other PCI bus drivers such as for ACPI and OFW will inherit these default implementations.) This default implementation depends on 4 new pcib_if methods that bubble up through the PCI bridges to the MD code to allocate IRQ values and perform any needed MD setup code needed: - PCIB_ALLOC_MSI() attempts to allocate a group of MSI messages. - PCIB_RELEASE_MSI() releases a group of MSI messages. - PCIB_ALLOC_MSIX() attempts to allocate a single MSI-X message. - PCIB_RELEASE_MSIX() releases a single MSI-X message. - Add default implementations for these 4 methods that just pass the request up to the parent bus's parent bridge driver and use the default implementation in the various MI PCI bridge drivers. - Add MI functions for use by MD code when managing MSI and MSI-X interrupts: - pci_enable_msi(dev, address, data) programs the MSI capability address and data registers for a group of MSI messages - pci_enable_msix(dev, index, address, data) initializes a single MSI-X message in the MSI-X table - pci_mask_msix(dev, index) masks a single MSI-X message - pci_unmask_msix(dev, index) unmasks a single MSI-X message - pci_pending_msix(dev, index) returns true if the specified MSI-X message is currently pending - Save the MSI capability address and data registers in the pci_cfgreg block in a PCI devices ivars and restore the values when a device is resumed. Note that the MSI-X table is not currently restored during resume. - Add constants for MSI-X register offsets and fields. - Record interesting data about any MSI-X capability blocks we come across in the pci_cfgreg block in the ivars for PCI devices. Tested on: em (i386, MSI), bce (amd64/i386, MSI), mpt (amd64, MSI-X) Reviewed by: scottl, grehan, jfv MFC after: 2 months
2006-11-13 21:47:30 +00:00
int
Revamp the MSI/MSI-X code a bit to achieve two main goals: - Simplify the amount of work that has be done for each architecture by pushing more of the truly MI code down into the PCI bus driver. - Don't bind MSI-X indicies to IRQs so that we can allow a driver to map multiple MSI-X messages into a single IRQ when handling a message shortage. The changes include: - Add a new pcib_if method: PCIB_MAP_MSI() which is called by the PCI bus to calculate the address and data values for a given MSI/MSI-X IRQ. The x86 nexus drivers map this into a call to a new 'msi_map()' function in msi.c that does the mapping. - Retire the pcib_if method PCIB_REMAP_MSIX() and remove the 'index' parameter from PCIB_ALLOC_MSIX(). MD code no longer has any knowledge of the MSI-X index for a given MSI-X IRQ. - The PCI bus driver now stores more MSI-X state in a child's ivars. Specifically, it now stores an array of IRQs (called "message vectors" in the code) that have associated address and data values, and a small virtual version of the MSI-X table that specifies the message vector that a given MSI-X table entry uses. Sparse mappings are permitted in the virtual table. - The PCI bus driver now configures the MSI and MSI-X address/data registers directly via custom bus_setup_intr() and bus_teardown_intr() methods. pci_setup_intr() invokes PCIB_MAP_MSI() to determine the address and data values for a given message as needed. The MD code no longer has to call back down into the PCI bus code to set these values from the nexus' bus_setup_intr() handler. - The PCI bus code provides a callout (pci_remap_msi_irq()) that the MD code can call to force the PCI bus to re-invoke PCIB_MAP_MSI() to get new values of the address and data fields for a given IRQ. The x86 MSI code uses this when an MSI IRQ is moved to a different CPU, requiring a new value of the 'address' field. - The x86 MSI psuedo-driver loses a lot of code, and in fact the separate MSI/MSI-X pseudo-PICs are collapsed down into a single MSI PIC driver since the only remaining diff between the two is a substring in a bootverbose printf. - The PCI bus driver will now restore MSI-X state (including programming entries in the MSI-X table) on device resume. - The interface for pci_remap_msix() has changed. Instead of accepting indices for the allocated vectors, it accepts a mini-virtual table (with a new length parameter). This table is an array of u_ints, where each value specifies which allocated message vector to use for the corresponding MSI-X message. A vector of 0 forces a message to not have an associated IRQ. The device may choose to only use some of the IRQs assigned, in which case the unused IRQs must be at the "end" and will be released back to the system. This allows a driver to use the same remap table for different shortage values. For example, if a driver wants 4 messages, it can use the same remap table (which only uses the first two messages) for the cases when it only gets 2 or 3 messages and in the latter case the PCI bus will release the 3rd IRQ back to the system. MFC after: 1 month
2007-05-02 17:50:36 +00:00
pcib_map_msi(device_t pcib, device_t dev, int irq, uint64_t *addr,
uint32_t *data)
First cut at MI support for PCI Message Signalled Interrupts (MSI): - Add 3 new functions to the pci_if interface along with suitable wrappers to provide the device driver visible API: - pci_alloc_msi(dev, int *count) backed by PCI_ALLOC_MSI(). '*count' here is an in and out parameter. The driver stores the desired number of messages in '*count' before calling the function. On success, '*count' holds the number of messages allocated to the device. Also on success, the driver can access the messages as SYS_RES_IRQ resources starting at rid 1. Note that the legacy INTx interrupt resource will not be available when using MSI. Note that this function will allocate either MSI or MSI-X messages depending on the devices capabilities and the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. Also note that the driver should activate the memory resource that holds the MSI-X table and pending bit array (PBA) before calling this function if the device supports MSI-X. - pci_release_msi(dev) backed by PCI_RELEASE_MSI(). This function releases the messages allocated for this device. All of the SYS_RES_IRQ resources need to be released for this function to succeed. - pci_msi_count(dev) backed by PCI_MSI_COUNT(). This function returns the maximum number of MSI or MSI-X messages supported by this device. MSI-X is preferred if present, but this function will honor the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. This function should return the largest value that pci_alloc_msi() can return (assuming the MD code is able to allocate sufficient backing resources for all of the messages). - Add default implementations for these 3 methods to the pci_driver generic PCI bus driver. (The various other PCI bus drivers such as for ACPI and OFW will inherit these default implementations.) This default implementation depends on 4 new pcib_if methods that bubble up through the PCI bridges to the MD code to allocate IRQ values and perform any needed MD setup code needed: - PCIB_ALLOC_MSI() attempts to allocate a group of MSI messages. - PCIB_RELEASE_MSI() releases a group of MSI messages. - PCIB_ALLOC_MSIX() attempts to allocate a single MSI-X message. - PCIB_RELEASE_MSIX() releases a single MSI-X message. - Add default implementations for these 4 methods that just pass the request up to the parent bus's parent bridge driver and use the default implementation in the various MI PCI bridge drivers. - Add MI functions for use by MD code when managing MSI and MSI-X interrupts: - pci_enable_msi(dev, address, data) programs the MSI capability address and data registers for a group of MSI messages - pci_enable_msix(dev, index, address, data) initializes a single MSI-X message in the MSI-X table - pci_mask_msix(dev, index) masks a single MSI-X message - pci_unmask_msix(dev, index) unmasks a single MSI-X message - pci_pending_msix(dev, index) returns true if the specified MSI-X message is currently pending - Save the MSI capability address and data registers in the pci_cfgreg block in a PCI devices ivars and restore the values when a device is resumed. Note that the MSI-X table is not currently restored during resume. - Add constants for MSI-X register offsets and fields. - Record interesting data about any MSI-X capability blocks we come across in the pci_cfgreg block in the ivars for PCI devices. Tested on: em (i386, MSI), bce (amd64/i386, MSI), mpt (amd64, MSI-X) Reviewed by: scottl, grehan, jfv MFC after: 2 months
2006-11-13 21:47:30 +00:00
{
device_t bus;
int error;
First cut at MI support for PCI Message Signalled Interrupts (MSI): - Add 3 new functions to the pci_if interface along with suitable wrappers to provide the device driver visible API: - pci_alloc_msi(dev, int *count) backed by PCI_ALLOC_MSI(). '*count' here is an in and out parameter. The driver stores the desired number of messages in '*count' before calling the function. On success, '*count' holds the number of messages allocated to the device. Also on success, the driver can access the messages as SYS_RES_IRQ resources starting at rid 1. Note that the legacy INTx interrupt resource will not be available when using MSI. Note that this function will allocate either MSI or MSI-X messages depending on the devices capabilities and the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. Also note that the driver should activate the memory resource that holds the MSI-X table and pending bit array (PBA) before calling this function if the device supports MSI-X. - pci_release_msi(dev) backed by PCI_RELEASE_MSI(). This function releases the messages allocated for this device. All of the SYS_RES_IRQ resources need to be released for this function to succeed. - pci_msi_count(dev) backed by PCI_MSI_COUNT(). This function returns the maximum number of MSI or MSI-X messages supported by this device. MSI-X is preferred if present, but this function will honor the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. This function should return the largest value that pci_alloc_msi() can return (assuming the MD code is able to allocate sufficient backing resources for all of the messages). - Add default implementations for these 3 methods to the pci_driver generic PCI bus driver. (The various other PCI bus drivers such as for ACPI and OFW will inherit these default implementations.) This default implementation depends on 4 new pcib_if methods that bubble up through the PCI bridges to the MD code to allocate IRQ values and perform any needed MD setup code needed: - PCIB_ALLOC_MSI() attempts to allocate a group of MSI messages. - PCIB_RELEASE_MSI() releases a group of MSI messages. - PCIB_ALLOC_MSIX() attempts to allocate a single MSI-X message. - PCIB_RELEASE_MSIX() releases a single MSI-X message. - Add default implementations for these 4 methods that just pass the request up to the parent bus's parent bridge driver and use the default implementation in the various MI PCI bridge drivers. - Add MI functions for use by MD code when managing MSI and MSI-X interrupts: - pci_enable_msi(dev, address, data) programs the MSI capability address and data registers for a group of MSI messages - pci_enable_msix(dev, index, address, data) initializes a single MSI-X message in the MSI-X table - pci_mask_msix(dev, index) masks a single MSI-X message - pci_unmask_msix(dev, index) unmasks a single MSI-X message - pci_pending_msix(dev, index) returns true if the specified MSI-X message is currently pending - Save the MSI capability address and data registers in the pci_cfgreg block in a PCI devices ivars and restore the values when a device is resumed. Note that the MSI-X table is not currently restored during resume. - Add constants for MSI-X register offsets and fields. - Record interesting data about any MSI-X capability blocks we come across in the pci_cfgreg block in the ivars for PCI devices. Tested on: em (i386, MSI), bce (amd64/i386, MSI), mpt (amd64, MSI-X) Reviewed by: scottl, grehan, jfv MFC after: 2 months
2006-11-13 21:47:30 +00:00
bus = device_get_parent(pcib);
error = PCIB_MAP_MSI(device_get_parent(bus), dev, irq, addr, data);
if (error)
return (error);
pci_ht_map_msi(pcib, *addr);
return (0);
First cut at MI support for PCI Message Signalled Interrupts (MSI): - Add 3 new functions to the pci_if interface along with suitable wrappers to provide the device driver visible API: - pci_alloc_msi(dev, int *count) backed by PCI_ALLOC_MSI(). '*count' here is an in and out parameter. The driver stores the desired number of messages in '*count' before calling the function. On success, '*count' holds the number of messages allocated to the device. Also on success, the driver can access the messages as SYS_RES_IRQ resources starting at rid 1. Note that the legacy INTx interrupt resource will not be available when using MSI. Note that this function will allocate either MSI or MSI-X messages depending on the devices capabilities and the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. Also note that the driver should activate the memory resource that holds the MSI-X table and pending bit array (PBA) before calling this function if the device supports MSI-X. - pci_release_msi(dev) backed by PCI_RELEASE_MSI(). This function releases the messages allocated for this device. All of the SYS_RES_IRQ resources need to be released for this function to succeed. - pci_msi_count(dev) backed by PCI_MSI_COUNT(). This function returns the maximum number of MSI or MSI-X messages supported by this device. MSI-X is preferred if present, but this function will honor the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. This function should return the largest value that pci_alloc_msi() can return (assuming the MD code is able to allocate sufficient backing resources for all of the messages). - Add default implementations for these 3 methods to the pci_driver generic PCI bus driver. (The various other PCI bus drivers such as for ACPI and OFW will inherit these default implementations.) This default implementation depends on 4 new pcib_if methods that bubble up through the PCI bridges to the MD code to allocate IRQ values and perform any needed MD setup code needed: - PCIB_ALLOC_MSI() attempts to allocate a group of MSI messages. - PCIB_RELEASE_MSI() releases a group of MSI messages. - PCIB_ALLOC_MSIX() attempts to allocate a single MSI-X message. - PCIB_RELEASE_MSIX() releases a single MSI-X message. - Add default implementations for these 4 methods that just pass the request up to the parent bus's parent bridge driver and use the default implementation in the various MI PCI bridge drivers. - Add MI functions for use by MD code when managing MSI and MSI-X interrupts: - pci_enable_msi(dev, address, data) programs the MSI capability address and data registers for a group of MSI messages - pci_enable_msix(dev, index, address, data) initializes a single MSI-X message in the MSI-X table - pci_mask_msix(dev, index) masks a single MSI-X message - pci_unmask_msix(dev, index) unmasks a single MSI-X message - pci_pending_msix(dev, index) returns true if the specified MSI-X message is currently pending - Save the MSI capability address and data registers in the pci_cfgreg block in a PCI devices ivars and restore the values when a device is resumed. Note that the MSI-X table is not currently restored during resume. - Add constants for MSI-X register offsets and fields. - Record interesting data about any MSI-X capability blocks we come across in the pci_cfgreg block in the ivars for PCI devices. Tested on: em (i386, MSI), bce (amd64/i386, MSI), mpt (amd64, MSI-X) Reviewed by: scottl, grehan, jfv MFC after: 2 months
2006-11-13 21:47:30 +00:00
}
/* Pass request for device power state up to parent bridge. */
int
pcib_power_for_sleep(device_t pcib, device_t dev, int *pstate)
{
device_t bus;
bus = device_get_parent(pcib);
return (PCIB_POWER_FOR_SLEEP(bus, dev, pstate));
}
/*
* Try to read the bus number of a host-PCI bridge using appropriate config
* registers.
*/
int
host_pcib_get_busno(pci_read_config_fn read_config, int bus, int slot, int func,
uint8_t *busnum)
{
uint32_t id;
id = read_config(bus, slot, func, PCIR_DEVVENDOR, 4);
if (id == 0xffffffff)
return (0);
switch (id) {
case 0x12258086:
/* Intel 824?? */
/* XXX This is a guess */
/* *busnum = read_config(bus, slot, func, 0x41, 1); */
*busnum = bus;
break;
case 0x84c48086:
/* Intel 82454KX/GX (Orion) */
*busnum = read_config(bus, slot, func, 0x4a, 1);
break;
case 0x84ca8086:
/*
* For the 450nx chipset, there is a whole bundle of
* things pretending to be host bridges. The MIOC will
* be seen first and isn't really a pci bridge (the
* actual busses are attached to the PXB's). We need to
* read the registers of the MIOC to figure out the
* bus numbers for the PXB channels.
*
* Since the MIOC doesn't have a pci bus attached, we
* pretend it wasn't there.
*/
return (0);
case 0x84cb8086:
switch (slot) {
case 0x12:
/* Intel 82454NX PXB#0, Bus#A */
*busnum = read_config(bus, 0x10, func, 0xd0, 1);
break;
case 0x13:
/* Intel 82454NX PXB#0, Bus#B */
*busnum = read_config(bus, 0x10, func, 0xd1, 1) + 1;
break;
case 0x14:
/* Intel 82454NX PXB#1, Bus#A */
*busnum = read_config(bus, 0x10, func, 0xd3, 1);
break;
case 0x15:
/* Intel 82454NX PXB#1, Bus#B */
*busnum = read_config(bus, 0x10, func, 0xd4, 1) + 1;
break;
}
break;
/* ServerWorks -- vendor 0x1166 */
case 0x00051166:
case 0x00061166:
case 0x00081166:
case 0x00091166:
case 0x00101166:
case 0x00111166:
case 0x00171166:
case 0x01011166:
case 0x010f1014:
case 0x01101166:
case 0x02011166:
case 0x02251166:
case 0x03021014:
*busnum = read_config(bus, slot, func, 0x44, 1);
break;
/* Compaq/HP -- vendor 0x0e11 */
case 0x60100e11:
*busnum = read_config(bus, slot, func, 0xc8, 1);
break;
default:
/* Don't know how to read bus number. */
return 0;
}
return 1;
}