private per-chip HAL.
This allows the ah_osdep.[ch] code to check whether the power state is
valid for doing chip programming.
It should be a no-op for normal driver work but it does require a
clean kernel/module rebuild, as the size of HAL structures have changed.
Now, this doesn't track whether the hardware is ACTUALLY awake,
as NETWORK_SLEEP wakes the chip up for a short period when traffic
is received. This doesn't actually set the power mode to AWAKE, so
we have to be careful about how we touch things.
But it's enough to start down the path of implementing station mode
chipset power savings, as a large part of the silliness is making
sure the chip is awake during periodic calibration / ANI and
random places where transmit may be occuring. I'd rather not a repeat
of debugging power save on ath9k, where races with calibration
and transmit path stuff took a couple years to shake out.
Tested:
* AR5416, STA mode
Right now the only way to set the chainmask is to set the hardware
configured chainmask through capabilities. This is fine for forcing
the chainmask to be something other than what the hardware is capable
of (eg to reduce TX/RX to one connected antenna) but it does change what
the HAL hardware chainmask configuration is.
For operational mode changes, it (may?) make sense to separately control
the TX/RX chainmask.
Right now it's done as part of ar5416_reset.c - ar5416UpdateChainMasks()
calculates which TX/RX chainmasks to enable based on the operating mode.
(1 for legacy and whatever is supported for 11n operation.) But doing
this in the HAL is suboptimal - the driver needs to know the currently
configured chainmask in order to correctly enable things for each
TX descriptor. This is currently done by overriding the chainmask
config in the ar5416 TX routines but this has to disappear - the AR9300
HAL support requires the driver to dynamically set the TX chainmask based
on the TX power and TX rate in order to meet mini-PCIe slot power
requirements.
So:
* Introduce a new HAL method to set the operational chainmask variables;
* Introduce null methods for the previous generation chipsets;
* Add new driver state to record the current chainmask separate from
the hardware configured chainmask.
Part #2 of this will involve disabling ar5416UpdateChainMasks() and moving
it into the driver; as well as properly programming the TX chainmask
based on the currently configured HAL chainmask.
Tested:
* AR5416, STA mode - both legacy (11a/11bg) and 11n rates - verified
that AR_SELFGEN_MASK (the chainmask used for self-generated frames like
ACKs and RTSes) is correct, as well as the TX descriptor contents is
correct.
The existing API only exposes 'seglen' (the current buffer (segment) length)
with the data buffer pointer set in 'ds_data'. This is fine for the legacy
DMA engine but it won't work for the EDMA engines.
The EDMA engine has a significantly different TX descriptor layout.
* The legacy DMA engine had a ds_data pointer at the same offset in the
descriptor for both TX and RX buffers;
* The EDMA engine has no ds_data for RX - the data is DMAed after the
descriptor;
* The EDMA engine has support for 4 TX buffer/segment pairs in the TX
DMA descriptor;
* The EDMA TX completion is in a different FIFO, and the driver will
'link' the status completion entry to a QCU by a "QCU ID".
I don't know why it's just not filled in by the hardware, alas.
So given that, here are the changes:
* Instead of directly fondling 'ds_data' in ath_desc, change the
ath_hal_filltxdesc() to take an array of buffer pointers as well
as segment len pointers;
* The EDMA TX completion status wants a descriptor and queue id.
This (for now) uses bf_state.bfs_txq and will extract the hardware QCU
ID from that.
* .. and this is ugly and wasteful; it should change to just store
the QCU in the bf_state and save 3/7 bytes in the process.
Now, the weird crap:
* The aggregate TX path was using bf_state->bfs_txq for the TXQ, rather than
taking a function argument. I've tidied that up.
* The multicast queue frames get put on a software TXQ and then that is
appended to the hardware CABQ when appropriate. So for now, make sure
that bf_state->bfs_txq points at the CABQ when adding frames to the
multicast queue.
* .. but the multicast queue TX path for now doesn't use the software
queue and instead
(a) directly sets up the descriptor contents at that point;
(b) the frames on the vap->avp_mcastq are then just appended wholesale
to the CABQ.
So for now, I don't have to worry about making the multicast path
work with aggregation or the per-TID software queue. Phew.
What's left to do:
* I need to modify the 11n ath_hal_chaintxdesc() API to do the same.
I'll do that in a subsequent commit.
* Remove bf_state.bfs_txq entirely and store the QCU as appropriate.
* .. then do the runtime "is this going on the right HWQ?" checks using
that, rather than comparing pointer values.
Tested on:
* AR9280 STA/AP
* AR5416 STA/AP
The existing method for testing for MRR is to call the "SetupXTXDesc"
HAL method and see if it returns AH_TRUE or AH_FALSE. This capability
explicitly lists what number of multi-rate attempts are possible.
"1" means "one rate attempt supported".
The DMA FIFO chips (AR93xx and later) differ slightly to th elegacy
chips:
* The RX DMA descriptors don't have a ds_link field;
* The TX DMA descriptors have a ds_link field however at a different
offset.
This is a reimplementation based on what the reference driver and ath9k
does.
A subsequent commit will enable it in the TX and beacon paths.
Obtained from: Linux ath9k, Qualcomm Atheros
The AR93xx and later chips support two RX FIFO queues - a high and low
priority queue.
For legacy chips, just assume the queues are high priority.
This is inspired by the reference driver but is a reimplementation of
the API and code.
not to disable the PCIe PHY in prepration for reset.
Extend the enablepci method to have a "poweroff" flag, which if equal
to true means the hardware is about to go to sleep.
at least until I can root cause what's going on.
The only platform I've seen this on is the AR9220 when attached to
the AR71xx CPUs. I get immediate PCIe bus errors and all subsequent
accesses cause further MIPS bus exceptions. I don't have any other
big-endian platforms to test this on.
If I get a chance (or two), I'll try to whack this on a bus analyser
and see exactly what happens.
I'd rather leave this on, especially for slower, embedded platforms.
But the #ifdef hell is something I'm trying to avoid.
* For legacy NICs, the combined RSSI should be used.
For earlier AR5416 NICs, use control chain 0 RSSI rather than combined
RSSI.
For AR5416 > version 2.1, use the combined RSSI again.
* Add in a missing AR5212 HAL method (get11nextbusy) which may be called
by radar code.
This serves no functional change for what's currently in FreeBSD.
and sys/dev/ath/ath_hal/ar5211/ar5211_power.c:
sys/dev/ath/ath_hal/ar5210/ar5210_power.c:36:3: warning: signed shift result (0x200000000) requires 35 bits to represent, but 'int' only has 32 bits [-Wshift-overflow]
OS_REG_RMW_FIELD(ah, AR_SCR, AR_SCR_SLE, AR_SCR_SLE_ALLOW);
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
sys/dev/ath/ath_hal/ah_internal.h:472:42: note: expanded from:
(OS_REG_READ(_a, _r) &~ (_f)) | (((_v) << _f##_S) & (_f)))
^
sys/dev/ath/ah_osdep.h:127:49: note: expanded from:
(bus_space_handle_t)(_ah)->ah_sh, (_reg), (_val))
^~~~
The AR_SCR_SLE_{WAKE,SLP,NORM} values are pre-shifted in ar5210reg.h and
ar5211reg.h, while they should be unshifted, like in ar5212reg.h. Then,
when the OS_REG_RMW_FIELD() macro shifts them again, the values will
overflow, becoming effectively zero.
MFC after: 1 week
Although I tried to fix this earlier by introducing HALDEBUG_G(), it
turns out there seem to be other cases where the pointer value is still
NULL.
* Fix DO_HALDEBUG() and the HALDEBUG macro to check whether ah is NULL
before deferencing it
* Remove HALDEBUG_G() as it's no longer needed
This is hopefully a merge candidate for 9.0-RELEASE as enabling
debugging at startup could result in a kernel panic.
This is another commit in a series of TDMA support fixes for the 11n NICs.
* Move ath_hal_getnexttbtt() into the HAL; write methods for it.
This returns a timer value in TSF, rather than TU.
* Move ath_hal_getcca() and ath_hal_setcca() into the HAL too, where they
likely now belong.
* Create a new HAL capability: HAL_CAP_LONG_RXDESC_TSF.
The pre-11n NICs write 15 bit TSF snapshots into the RX descriptor;
the AR5416 and later write 32 bit TSF snapshots into the RX descriptor.
* Use the new capability to choose between 15 and 31 bit TSF adjustment
functions in ath_extend_tsf().
* Write ar5416GetTsf64() and ar5416SetTsf64() methods.
ar5416GetTsf64() tries to compensate for TSF changes at the 32 bit boundary.
According to yin, this fixes the TDMA beaconing on 11n chipsets and TDMA
stations can now associate/talk, but there are still issues with traffic
stability which need to be investigated.
The ath_hal_extendtsf() function is also used in RX packet timestamping;
this may improve adhoc mode on the 11n chipsets. It also will affect the
timestamps seen in radiotap frames.
Submitted by: Kang Yin Su <cantona@cantona.net>
Approved by: re (kib)
to do about the few cases where the HAL state isn't available (regdomain)
or isn't yet setup (probe/attach.)
The global ath_hal_debug now affects all instances of the HAL.
This also restores the ability for probe/attach debugging to work; as
the sysctl tree may not be attached at that point. Users can just set
the global "hw.ath.hal.debug" to a suitable value to enable probe/attach
related debugging.
rather than global variables.
This specifically allows for debugging to be enabled per-NIC, rather
than globally.
Since the ath driver doesn't know about AH_DEBUG, and to keep the ABI
consistent regardless of whether AH_DEBUG is enabled or not, enable the
debug parameter always but only conditionally compile in the debug
methods if needed.
The ALQ support is currently still global pending some brainstorming.
Submitted by: ssgriffonuser@gmail.com
Reviewed by: adrian, bschmidt
From the ath9k source:
==
11N: we can no longer afford to self link the last descriptor.
MAC acknowledges BA status as long as it copies frames to host
buffer (or rx fifo). This can incorrectly acknowledge packets
to a sender if last desc is self-linked.
==
Since this is useful for pre-AR5416 chips that communicate PHY errors
via error frames rather than by on-chip counters, leave the support
in there, but disable it for AR5416 and later.
putting descriptors (not buffers) across a 4k page boundary can cause issues.
I've not seen it in production myself but it apparently can cause problems.
So, in preparation for addressing this workaround, (re)-expose the particular
HAL capability bit which marks whether the chipset has support for cross-4k-
boundary transactions or not.
A subsequent commit will modify the descriptor allocation to avoid allocating
descriptor entries that straddle a 4k page boundary.
The rxmonitor hook is called on each received packet. This can get very,
very busy as the tx/rx/chanbusy registers are thus read each time a packet
is received.
Instead, shuffle out the true per-packet processing which is needed and move
the rest of the ANI processing into a periodic event which runs every 100ms
by default.
The AR9100 at least doesn't have an external serial EEPROM
attached to the MAC; it instead stores the calibration data
in the normal system flash.
I believe earlier parts can do something similar but I haven't
experienced it first-hand.
This commit introduces an eepromdata pointer into the API but
doesn't at all commit to using it. A future commit will
include the glue needed to allow the AR9100 support code
to use this data pointer as the EEPROM.
the completion schedule from the hardware and returns AH_TRUE if
the hardware supports multi-rate retries (AR5212 and above); and
returns AH_FALSE if the hardware doesn't support multi-rate retries.
The sample rate module directly reads the TX completion descriptor
and extracts the TX schedule information from that. It will be
updated in a future commit to instead use this method to determine
the completion schedule.
o add ah_configPCIE and ah_disablePCIE for drivers to configure PCIE
power save operation (modeled after ath9k, may need changes)
o add private state flag to indicate if device is PCIE (replaces private
hack in 5212 code)
o add serdes programming ini bits for 5416 and later parts and setup
for each part (5416 and 9160 logic hand-crafted from existing routines);
5212 remains open-coded but is now hooked in via ah_configPCIE
o add PCIE workaround gunk
o add ar5416AttachPCIE for iodomatic code used by 5416 and later parts
o remove HAL_CHANNEL; convert the hal to use net80211 channels; this
mostly involves mechanical changes to variable names and channel
attribute macros
o gut HAL_CHANNEL_PRIVATE as most of the contents are now redundant
with the net80211 channel available
o change api for ath_hal_init_channels: no more reglass id's, no more outdoor
indication (was a noop), anM contents
o add ath_hal_getchannels to have the hal construct a channel list without
altering runtime state; this is used to retrieve the calibration list for
the device in ath_getradiocaps
o add ath_hal_set_channels to take a channel list and regulatory data from
above and construct internal state to match (maps frequencies for 900MHz
cards, setup for CTL lookups, etc)
o compact the private channel table: we keep one private channel
per frequency instead of one per HAL_CHANNEL; this gives a big
space savings and potentially improves ani and calibration by
sharing state (to be seen; didn't see anything in testing); a new config
option AH_MAXCHAN controls the table size (default to 96 which
was chosen to be ~3x the largest expected size)
o shrink ani state and change to mirror private channel table (one entry per
frequency indexed by ic_devdata)
o move ani state flags to private channel state
o remove country codes; use net80211 definitions instead
o remove GSM regulatory support; it's no longer needed now that we
pass in channel lists from above
o consolidate ADHOC_NO_11A attribute with DISALLOW_ADHOC_11A
o simplify initial channel list construction based on the EEPROM contents;
we preserve country code support for now but may want to just fallback
to a WWR sku and dispatch the discovered country code up to user space
so the channel list can be constructed using the master regdomain tables
o defer to net80211 for max antenna gain
o eliminate sorting of internal channel table; now that we use ic_devdata
as an index, table lookups are O(1)
o remove internal copy of the country code; the public one is sufficient
o remove AH_SUPPORT_11D conditional compilation; we always support 11d
o remove ath_hal_ispublicsafetysku; not needed any more
o remove ath_hal_isgsmsku; no more GSM stuff
o move Conformance Test Limit (CTL) state from private channel to a lookup
using per-band pointers cached in the private state block
o remove regulatory class id support; was unused and belongs in net80211
o fix channel list construction to set IEEE80211_CHAN_NOADHOC,
IEEE80211_CHAN_NOHOSTAP, and IEEE80211_CHAN_4MSXMIT
o remove private channel flags CHANNEL_DFS and CHANNEL_4MS_LIMIT; these are
now set in the constructed net80211 channel
o store CHANNEL_NFCREQUIRED (Noise Floor Required) channel attribute in one
of the driver-private flag bits of the net80211 channel
o move 900MHz frequency mapping into the hal; the mapped frequency is stored
in the private channel and used throughout the hal (no more mapping in the
driver and/or net80211)
o remove ath_hal_mhz2ieee; it's no longer needed as net80211 does the
calculation and available in the net80211 channel
o change noise floor calibration logic to work with compacted private channel
table setup; this may require revisiting as we no longer can distinguish
channel attributes (e.g. 11b vs 11g vs turbo) but since the data is used
only to calculate status data we can live with it for now
o change ah_getChipPowerLimits internal method to operate on a single channel
instead of all channels in the private channel table
o add ath_hal_gethwchannel to map a net80211 channel to a h/w frequency
(always the same except for 900MHz channels)
o add HAL_EEBADREG and HAL_EEBADCC status codes to better identify regulatory
problems
o remove CTRY_DEBUG and CTRY_DEFAULT enum's; these come from net80211 now
o change ath_hal_getwirelessmodes to really return wireless modes supported
by the hardware (was previously applying regulatory constraints)
o return channel interference status with IEEE80211_CHANSTATE_CWINT (should
change to a callback so hal api's can take const pointers)
o remove some #define's no longer needed with the inclusion of
<net80211/_ieee80211.h>
Sponsored by: Carlson Wireless