the file handle's size and was recently committed to
lib/libstand/nfs.c. This allows pxeboot to use NFSv3 and work
correcty for non-FreeBSD as well as FreeBSD NFS servers.
If built with OLD_NFSV2 defined, the old
code that predated this patch will be used.
Tested by: danny at cs.huji.ac.il
which also avoids NULL pointer arithmetic, as suggested by jhb. The
available space goes from 11 bytes to 7.
Reviewed by: nyan
Approved by: rpaulo (mentor)
gnu/lib/libobjc and sys/boot/i386/boot2, so it also works when using
absolute paths and/or options, as in CC="/absolute/path/clang -foo".
Approved by: rpaulo (mentor)
Clang to compile this file: it was using the builtin memcpy and we want
to use the memcpy defined in gptboot.c. (Clang can't compile boot2 yet).
Submitted by: Dimitry Andric <dimitry at andric.com>
Reviewed by: jhb
problems compiling it, but it just gets too big at the moment, even
with -Os. This is not applicable to gptboot, though.
Submitted by: Dimitry Andric <dimitry at andric.com>
This fixes booting from a ZFS mirror with a unavailable primary device.
PR: kern/148655
Reviewed by: avg
Approved by: delphij (mentor)
MFC after: 3 days
Current code doesn't check size of elf sections and may perform needless
actions of zero-sized memory allocation and similar.
The bigger issue is that alignment requirement of a zero-sized section
gets effectively applied to the next section if it has smaller alignment
requirement. But other tools, like gdb and consequently kgdb,
completely ignore zero-sized sections and thus may map symbols to
addresses differently.
Zero-sized sections are not typical in general.
Their typical (only, even) cause in FreeBSD modules is inline assembly that
creates custom sections which is found in pcpu.h and vnet.h. Mere inclusion
of one of those header files produces a custom section in elf output.
If there is no actual use for the section in a given module, then the
section remains empty.
Better solution is to avoid creating zero-sized sections altogether,
which is in plans.
Preloaded modules are handled in boot code (load_elf_obj.c), while
dynamically loaded modules are handled by kernel (link_elf_obj.c).
Based on code by: np
MFC after: 3 weeks
out that "on amd64, libstand.a is compiled for i386, but is still installed
under ${WORLDTMP}/usr/lib instead of ${WORLDTMP}/usr/lib32. Even if it
would be installed there, ld on amd64 is set up incorrectly with a
${TOOLS_PREFIX}/usr/lib/i386 default path, so it wouldn't link. The reason
it does link under gcc is that gcc passes -L${WORLDTMP}/usr/lib twice,
even for -m32 builds, which is also incorrect, but accidentally works in
this case."
Submitted by: Dimitry Andric <dimitry at andric.com>
GCC forwards the -N flag directly to ld. This flag is not documented and
not supported by (for example) Clang. Just use -Wl,-N.
Submitted by: Pawel Worach
- use correct size (512) while reading a gang block
- skip holes while reading child blocks
- advance buffer pointer while reading child blocks
PR: 144214
MFC after: 10 days
o DB-88F5182
o DB-88F5281
o DB-88F6281
o DB-78100
o SheevaPlug
This also includes device tree bindings definitions for some newly introduced
nodes (mpp, gpio).
Reviewed by: imp
Sponsored by: The FreeBSD Foundation
o This is disabled by default for now, and can be enabled using WITH_FDT at
build time.
o Tested with ARM and PowerPC.
Reviewed by: imp
Sponsored by: The FreeBSD Foundation
locate a high memory area for the heap using the SMAP.
- Read the number of hard drive devices from the BIOS instead of hardcoding
a limit of 128. Some BIOSes duplicate disk devices once you get beyond
the maximum drive number.
MFC after: 1 month
bottom of the manpages and order them consistently.
GNU groff doesn't care about the ordering, and doesn't even mention
CAVEATS and SECURITY CONSIDERATIONS as common sections and where to put
them.
Found by: mdocml lint run
Reviewed by: ru
HAL/Fujitsu) CPUs. For the most part this consists of fleshing out the
MMU and cache handling, it doesn't add pmap optimizations possible with
these CPU, yet, though.
With these changes FreeBSD runs stable on Fujitsu Siemens PRIMEPOWER 250
and likely also other models based on SPARC64 V like 450, 650 and 850.
Thanks go to Michael Moll for providing access to a PRIMEPOWER 250.
This driver was written by Alexander Pohoyda and greatly enhanced
by Nikolay Denev. I don't have these hardwares but this driver was
tested by Nikolay Denev and xclin.
Because SiS didn't release data sheet for this controller, programming
information came from Linux driver and OpenSolaris. Unlike other open
source driver for SiS190/191, sge(4) takes full advantage of TX/RX
checksum offloading and does not require additional copy operation in
RX handler.
The controller seems to have advanced offloading features like VLAN
hardware tag insertion/stripping, TCP segmentation offload(TSO) as
well as jumbo frame support but these features are not available
yet. Special thanks to xclin <xclin<> cs dot nctu dot edu dot tw>
who sent fix for receiving VLAN oversized frames.