words, every architecture is now auto-sizing the kmem arena. This revision
changes kmeminit() so that the definition of VM_KMEM_SIZE_SCALE becomes
mandatory and the definition of VM_KMEM_SIZE becomes optional.
Replace or eliminate all existing definitions of VM_KMEM_SIZE. With
auto-sizing enabled, VM_KMEM_SIZE effectively became an alternate spelling
for VM_KMEM_SIZE_MIN on most architectures. Use VM_KMEM_SIZE_MIN for
clarity.
Change kmeminit() so that the effect of defining VM_KMEM_SIZE is similar to
that of setting the tunable vm.kmem_size. Whereas the macros
VM_KMEM_SIZE_{MAX,MIN,SCALE} have had the same effect as the tunables
vm.kmem_size_{max,min,scale}, the effects of VM_KMEM_SIZE and vm.kmem_size
have been distinct. In particular, whereas VM_KMEM_SIZE was overridden by
VM_KMEM_SIZE_{MAX,MIN,SCALE} and vm.kmem_size_{max,min,scale}, vm.kmem_size
was not. Remedy this inconsistency. Now, VM_KMEM_SIZE can be used to set
the size of the kmem arena at compile-time without that value being
overridden by auto-sizing.
Update the nearby comments to reflect the kmem submap being replaced by the
kmem arena. Stop duplicating the auto-sizing formula in every machine-
dependent vmparam.h and place it in kmeminit() where auto-sizing takes
place.
Reviewed by: kib (an earlier version)
Sponsored by: EMC / Isilon Storage Division
fdtbus in most cases. This brings ARM and MIPS more in line with existing
Open Firmware platforms like sparc64 and powerpc, as well as preventing
double-enumeration of the OF tree on embedded PowerPC (first through nexus,
then through fdtbus).
This change is also designed to simplify resource management on FDT platforms
by letting there exist a platform-defined root bus resource_activate() call
instead of replying on fdtbus to do the right thing through fdt_bs_tag.
The OFW_BUS_MAP_INTR() and OFW_BUS_CONFIG_INTR() kobj methods are also
available to implement for similar purposes.
Discussed on: -arm, -mips
Tested by: zbb, brooks, imp, and others
MFC after: 6 weeks
allocates kva space from the top down for the device mappings and builds
entries in an internal table which is automatically used later by
arm_devmap_bootstrap(). The platform code just calls the new
arm_devmap_add_entry() function as many times as it needs to (up to 32
entries allowed; most platforms use 2 or 3 at most).
There is also a new arm_devmap_lastaddr() function that returns the lowest
kva address allocated; this can be used to implement initarm_lastaddr()
which is used to initialize vm_max_kernel_address.
The new code is based on a similar concept developed for the imx family
SoCs recently. They will soon be converted to use this new common code.
static device mappings, rather than as the first of the initializations
that a platform can hook into. This allows a platform to allocate KVA
from the top of the address space downwards for things like static device
mapping, and return the final "last usable address" result after that and
other early init work is done.
Because some platforms were doing work in initarm_lastaddr() that needs to
be done early, add a new initarm_early_init() routine and move the early
init code to that routine on those platforms.
Rename platform_devmap_init() to initarm_devmap_init() to match all the
other init routines called from initarm() that are designed to be
implemented by platform code.
Add a comment block that explains when these routines are called and the
type of work expected to be done in each of them.
new devmap.[ch] files. Emphasize the MD nature of these things by using
the prefix arm_devmap_ on the function and type names (already a few of
these things found their way into MI code, hopefully it will be harder to
do by accident in the future).
out common code related to mapping device memory into a new devmap.c file.
Remove the growing duplication of code that used pmap_devmap_find_pa() and
then did some math with the returned results to generate a virtual address,
and likewise in reverse to get a physical address. Now there are a pair
of functions, arm_devmap_vtop() and arm_devmap_ptov(), to do that. The
bus_space_map() implementations are rewritten in terms of these.
the essentially identical generic implementations instead. The generic
implementations differ only in the spelling of a couple variable names
and some formatting differences.
include it accordingly. The build machinery for universe and tinderbox
tries to build every kernel config whose name begins and ends with [A-Z0-9]
and the common include file that has most of the options isn't buildable
by itself, so the new lowercase .common will avoid building it.
accessed through the direct map unless the kernel configuration actually
includes a direct map. Only a few configurations do, and for the rest the
unnecessary free page pool is a small pessimization.
Tested by: zbb
MFC after: 6 weeks
Use the published compatible strings (our own invention, "ti,mmchs" is
still accepted as well, for now).
Don't blindly turn on 8-bit bus mode, because even though the conroller
supports it, the board has to be wired appropriately as well. Use the
published property (bus-width=<n>) and honor all the valid values (1,4,8).
The eMMC device on a Beaglebone Black is wired for 8-bit, update the dts.
The mmchs controller can inherently do both 1.8v and 3.0v on the first
device and 1.8v only on other devices, unless an external transceiver is
used. Set the voltage automatically for the first device and honor
the published fdt property (ti,dualvolt) for other devices.
Thanks go to Ilya Bakulin for figuring out the voltage compatibility stuff.
threaded handlers.
It's not easy to see from the diffs of this change exactly how it
accomplishes the above. The arm_mask_irq() and arm_unmask_irq() functions
are, respectively, the pre_thread and post_thread hooks. Not seen in
these diffs, the arm_post_filter() routine also EOIs. The post_filter
routine runs after filter handlers if there will be no threaded handlers,
so it just EOIs. The pre_thread routine masks the interrupt (at the
controller, not the source) and EOIs. So one way or another, the EOI
happens at the point where filter handlers are done.
the interrupt handler. If the event callback starts a new short timeout,
the timer can fire before returning from the event callback, and clearing
the interrupt status after that loses the interrupt and hangs until the
counter wraps. Fixing all of this removes the need for the do-nothing
loop at the top of the handler which really just waited for the counter to
roll over and reach the one-shot count again.
Also add a missing return(0) in the periodic timer start case.
Use values of the correct defines to determine statement's result.
ARM_ARCH_ symbols are always defined, hence only values are relevant.
Reviewed by: cognet
Sheeva PJ4Bv6 - based chips were only prototypes for V7 class Armada
SoC family. Current in-tree support for PJ4Bv6 will not work and also
there should be no platforms in active use that would incorporate that
CPU revision.
Loading kernel to 0xf00000 has no practical reason.
Starting it from the u-boot's highest possible end address
(2MB counting from 0x0) makes more sense.
Tested by: kevlo
Depending on u-boot's flavor some boards have their SoC registers
base address configured to 0xD0000000 and other to 0xF1000000.
U-boot is passing currently set value via CP15 register.
In order to create proper mapping for SoC registers and allow further
successful initialization it is necessary to replace fdt_immr_pa with
the real value and eventually fix-up device tree blob.
Tested by: kevlo
Armada XP initialization flow requires SoC registers to be
mapped very early in order to configure Snoop Filter for SMP.
Additional mapping in locore.S is redundant as proper mapping is
made in pmap_devmap_bootstrap() prior to calling cpu_setup() which
configures the Snoop Filter.
For secondaru CPUs it is better to pass VA of the SoC
registers defined in MV_BASE and PA consistent with the value
in the Device Tree.
Tested by: kevlo