there is an environment variable which shall initialize the SYSCTL
during early boot. This works for all SYSCTL types both statically and
dynamically created ones, except for the SYSCTL NODE type and SYSCTLs
which belong to VNETs. A new flag, CTLFLAG_NOFETCH, has been added to
be used in the case a tunable sysctl has a custom initialisation
function allowing the sysctl to still be marked as a tunable. The
kernel SYSCTL API is mostly the same, with a few exceptions for some
special operations like iterating childrens of a static/extern SYSCTL
node. This operation should probably be made into a factored out
common macro, hence some device drivers use this. The reason for
changing the SYSCTL API was the need for a SYSCTL parent OID pointer
and not only the SYSCTL parent OID list pointer in order to quickly
generate the sysctl path. The motivation behind this patch is to avoid
parameter loading cludges inside the OFED driver subsystem. Instead of
adding special code to the OFED driver subsystem to post-load tunables
into dynamically created sysctls, we generalize this in the kernel.
Other changes:
- Corrected a possibly incorrect sysctl name from "hw.cbb.intr_mask"
to "hw.pcic.intr_mask".
- Removed redundant TUNABLE statements throughout the kernel.
- Some minor code rewrites in connection to removing not needed
TUNABLE statements.
- Added a missing SYSCTL_DECL().
- Wrapped two very long lines.
- Avoid malloc()/free() inside sysctl string handling, in case it is
called to initialize a sysctl from a tunable, hence malloc()/free() is
not ready when sysctls from the sysctl dataset are registered.
- Bumped FreeBSD version to indicate SYSCTL API change.
MFC after: 2 weeks
Sponsored by: Mellanox Technologies
PCIe Alternate RID Interpretation (ARI) is an optional feature that
allows devices to have up to 256 different functions. It is
implemented by always setting the PCI slot number to 0 and
re-purposing the 5 bits used to encode the slot number to instead
contain the function number. Combined with the original 3 bits
allocated for the function number, this allows for 256 functions.
This is enabled by default, but it's expected to be a no-op on currently
supported hardware. It's a prerequisite for supporting PCI SR-IOV, and
I want the ARI support to go in early to help shake out any bugs in it.
ARI can be disabled by setting the tunable hw.pci.enable_ari=0.
Reviewed by: kib
MFC after: 2 months
Sponsored by: Sandvine Inc.
My PCI RID changes somehow got intermixed with my PCI ARI patch when I
committed it. I may have accidentally applied a patch to a non-clean
working tree. Revert everything while I figure out what went wrong.
Pointy hat to: rstone
I/O windows, the default is to preserve the firmware-assigned resources.
PCI bus numbers are only managed if NEW_PCIB is enabled and the architecture
defines a PCI_RES_BUS resource type.
- Add a helper API to create top-level PCI bus resource managers for each
PCI domain/segment. Host-PCI bridge drivers use this API to allocate
bus numbers from their associated domain.
- Change the PCI bus and CardBus drivers to allocate a bus resource for
their bus number from the parent PCI bridge device.
- Change the PCI-PCI and PCI-CardBus bridge drivers to allocate the
full range of bus numbers from secbus to subbus from their parent bridge.
The drivers also always program their primary bus register. The bridge
drivers also support growing their bus range by extending the bus resource
and updating subbus to match the larger range.
- Add support for managing PCI bus resources to the Host-PCI bridge drivers
used for amd64 and i386 (acpi_pcib, mptable_pcib, legacy_pcib, and qpi_pcib).
- Define a PCI_RES_BUS resource type for amd64 and i386.
Reviewed by: imp
MFC after: 1 month
are mostly useful for debugging.
- hw.pci.clear_bars ignores all firmware-assigned ranges for BARs when
set.
- hw.pci.clear_pcib ignores all firmware-assigned ranges for PCI-PCI
bridge I/O windows when set.
MFC after: 1 week
beasts still exist unfortunately. More details can be found in other
references, but the short version is that bridges with this bit set ignore
I/O port ranges that alias to valid ISA I/O port ranges. In the driver
this requires not allocating these alias regions from the parent device
(so they are free to be acquired by ISA devices), and ensuring no child
devices use resources from these alias regions.
- Change the pcib_window structure to allow for an array of backing
resources rather than a single resource and update the existing code
to cope with this. Some of the coping requires using the saved
base and limit values in pcib_window instead of using rman operations
on the backing resource.
- Add special handling for allocating and adjusting the I/O port window
of an ISA-enabled bridge to only allocate the non-alias ranges and
add those to the associated resource manager.
- Reject I/O port allocations for a fixed request that conflicts with an
ISA alias range.
- Remove the "no prefected decode" verbose printf during boot. The absence
of a "prefetched decode" line is sufficient.
- Replace the "subtractively decoded bridge" verbose printf with a single
printf that lists all the "special" decoding modes of a bridge: ISA,
subtractive, and VGA.
- Add a custom bus_release_resource() method to the PCI bus driver so that
it can properly free resources for I/O windows of PCI-PCI bridges.
(These resources are not stored in the bridge device's resource list.)
PR: misc/179033
MFC after: 2 weeks
VMware up to at least ESXi 5.1. Actually, using INTx in that case instead
may still result in interrupt storms, with MSI being the only working
option in some configurations. So introduce a PCI_QUIRK_DISABLE_MSIX quirk
which only blacklists MSI-X but not also MSI and use it for the VMware
PCI-PCI-bridges. Note that, currently, we still assume that if MSI doesn't
work, MSI-X won't work either - but that's part of the internal logic and
not guaranteed as part of the API contract. While at it, add and employ
a pci_has_quirk() helper.
Reported and tested by: Paul Bucher
- Use NULL instead of 0 for pointers.
Submitted by: jhb (mostly)
Approved by: jhb
MFC after: 3 days
on the secondary side of a bridge will not be propagated to the primary
bus unless this is enabled. Busmastering is not enabled by default (we
have relied on firmware to set this bit to date). The OS needs to set it
for any bridges not configured by system firmware.
Tested by: Steve Polyack korvus comcast net
MFC after: 2 weeks
the request up the tree in order to be on the safe side. Growing windows
in this case would mean to switch resources to positive decoding and
it's unclear how to correctly handle this. At least with ALi/ULi M5249
PCI-PCI bridges, this also just doesn't work out of the box.
Reviewed by: jhb
MFC after: 3 days
growing "downward" (moving the start address down). First, an off by
one error caused the end address to be moved down an extra alignment
chunk unnecessarily. Second, when aligning the new candidate starting
address, the wrong bits were masked off.
Tested by: Andrey Zonov andrey zonov org
MFC after: 3 days
one. Interestingly, these are actually the default for quite some time
(bus_generic_driver_added(9) since r52045 and bus_generic_print_child(9)
since r52045) but even recently added device drivers do this unnecessarily.
Discussed with: jhb, marcel
- While at it, use DEVMETHOD_END.
Discussed with: jhb
- Also while at it, use __FBSDID.
resource allocation on x86 platforms:
- Add a new helper API that Host-PCI bridge drivers can use to restrict
resource allocation requests to a set of address ranges for different
resource types.
- For the ACPI Host-PCI bridge driver, use Producer address range resources
in _CRS to enumerate valid address ranges for a given Host-PCI bridge.
This can be disabled by including "hostres" in the debug.acpi.disabled
tunable.
- For the MPTable Host-PCI bridge driver, use entries in the extended
MPTable to determine the valid address ranges for a given Host-PCI
bridge. This required adding code to parse extended table entries.
Similar to the new PCI-PCI bridge driver, these changes are only enabled
if the NEW_PCIB kernel option is enabled (which is enabled by default on
amd64 and i386).
Approved by: re (kib)
driver would verify that requests for child devices were confined to any
existing I/O windows, but the driver relied on the firmware to initialize
the windows and would never grow the windows for new requests. Now the
driver actively manages the I/O windows.
This is implemented by allocating a bus resource for each I/O window from
the parent PCI bus and suballocating that resource to child devices. The
suballocations are managed by creating an rman for each I/O window. The
suballocated resources are mapped by passing the bus_activate_resource()
call up to the parent PCI bus. Windows are grown when needed by using
bus_adjust_resource() to adjust the resource allocated from the parent PCI
bus. If the adjust request succeeds, the window is adjusted and the
suballocation request for the child device is retried.
When growing a window, the rman_first_free_region() and
rman_last_free_region() routines are used to determine if the front or
end of the existing I/O window is free. From using that, the smallest
ranges that need to be added to either the front or back of the window
are computed. The driver will first try to grow the window in whichever
direction requires the smallest growth first followed by the other
direction if that fails.
Subtractive bridges will first attempt to satisfy requests for child
resources from I/O windows (including attempts to grow the windows). If
that fails, the request is passed up to the parent PCI bus directly
however.
The PCI-PCI bridge driver will try to use firmware-assigned ranges for
child BARs first and only allocate a "fresh" range if that specific range
cannot be accommodated in the I/O window. This allows systems where the
firmware assigns resources during boot but later wipes the I/O windows
(some ACPI BIOSen are known to do this) to "rediscover" the original I/O
window ranges.
The ACPI Host-PCI bridge driver has been adjusted to correctly honor
hw.acpi.host_mem_start and the I/O port equivalent when a PCI-PCI bridge
makes a wildcard request for an I/O window range.
The new PCI-PCI bridge driver is only enabled if the NEW_PCIB kernel option
is enabled. This is a transition aide to allow platforms that do not
yet support bus_activate_resource() and bus_adjust_resource() in their
Host-PCI bridge drivers (and possibly other drivers as needed) to use the
old driver for now. Once all platforms support the new driver, the
kernel option and old driver will be removed.
PR: kern/143874 kern/149306
Tested by: mav
method is used by the PCI bus driver to query the power management system
to determine the proper device state to be used for a device during suspend
and resume. For the ACPI PCI bridge drivers this calls
acpi_device_pwr_for_sleep(). This removes ACPI-specific knowledge from
the PCI and PCI-PCI bridge drivers.
Reviewed by: jkim
(1) Fix pcib_read/write_config prototypes.
(2) When contrainting a resource request for a 'subtractive' bridge,
it is important to select a range outside the base/limit
registers, since those are the only values known to not
possibly work. On my HP laptop, the base bridge excludes I/O
ports 0xa000-0xafff, however that was the range we were passing
up the tree. Instead, when a range spans the "hole" we now
arbitrarily pick the range just above the hole to allocate from.
All of my rl and xl cards, at a minimum, started working again on this
laptop with those fixes.
memory area's base and limit are optional. The low 4-bits of the "low"
prefetchable registers indicates whether or not a 32-bit or 64-bit
region is supported. The PCI-PCI driver had been assuming that all bridges
supported a 64-bit region (and thus the two upper 32-bit registers). Fix
the driver to only use those registers if the low 4-bits of the "low"
registers indicate that a 64-bit region is supported. The PCI-PCI bridge
in the XBox happens to be a bridge that only supports a 32-bit region.
Reported by: rink
MFC after: 1 week
domain, pribus (the primary bus, eg the bus that this chip is on),
secbus (the secondary bus, eg the bus immediately behind this chip)
and subbus (the number of the highest bus behind this chip).
Normally, this information is reported via bootverbose parameters, but
that's hard to use for debugging in some cases.
This adds reading of pribus to make this happen. In addition, change
the narrow types to u_int to allow for easier reporting via sysctl for
domain, secbus and subbus. This should have no effect, but if it
does, please let me know.
used but MSI to HyperTransport IRQ mapping is enabled, and would act as
if MSI is turned on, resulting in interrupt loss.
This commit will,
1. enable MSI mapping on a device only when MSI is enabled for that
device and the MSI address matches the HT mapping window.
2. enable MSI mapping on a bridge only when a downstream device is
allocated an MSI address in the mapping window
PR: kern/118842
Reviewed by: jhb
MFC after: 1 week
support machines having multiple independently numbered PCI domains
and don't support reenumeration without ambiguity amongst the
devices as seen by the OS and represented by PCI location strings.
This includes introducing a function pci_find_dbsf(9) which works
like pci_find_bsf(9) but additionally takes a domain number argument
and limiting pci_find_bsf(9) to only search devices in domain 0 (the
only domain in single-domain systems). Bge(4) and ofw_pcibus(4) are
changed to use pci_find_dbsf(9) instead of pci_find_bsf(9) in order
to no longer report false positives when searching for siblings and
dupe devices in the same domain respectively.
Along with this change the sole host-PCI bridge driver converted to
actually make use of PCI domain support is uninorth(4), the others
continue to use domain 0 only for now and need to be converted as
appropriate later on.
Note that this means that the format of the location strings as used
by pciconf(8) has been changed and that consumers of <sys/pciio.h>
potentially need to be recompiled.
Suggested by: jhb
Reviewed by: grehan, jhb, marcel
Approved by: re (kensmith), jhb (PCI maintainer hat)
device's, not the bridge's, softc to be used to check the
PCIB_DISABLE_MSI flag. This resulted in randomly allowing
or denying MSI interrupts based on whatever value the driver
happened to store at sizeof(device_t) bytes into its softc.
I noticed this when I stopped getting MSI interrupts
after slighly re-arranging mxge's softc yesterday.
- Simplify the amount of work that has be done for each architecture by
pushing more of the truly MI code down into the PCI bus driver.
- Don't bind MSI-X indicies to IRQs so that we can allow a driver to map
multiple MSI-X messages into a single IRQ when handling a message
shortage.
The changes include:
- Add a new pcib_if method: PCIB_MAP_MSI() which is called by the PCI bus
to calculate the address and data values for a given MSI/MSI-X IRQ.
The x86 nexus drivers map this into a call to a new 'msi_map()' function
in msi.c that does the mapping.
- Retire the pcib_if method PCIB_REMAP_MSIX() and remove the 'index'
parameter from PCIB_ALLOC_MSIX(). MD code no longer has any knowledge
of the MSI-X index for a given MSI-X IRQ.
- The PCI bus driver now stores more MSI-X state in a child's ivars.
Specifically, it now stores an array of IRQs (called "message vectors" in
the code) that have associated address and data values, and a small
virtual version of the MSI-X table that specifies the message vector
that a given MSI-X table entry uses. Sparse mappings are permitted in
the virtual table.
- The PCI bus driver now configures the MSI and MSI-X address/data
registers directly via custom bus_setup_intr() and bus_teardown_intr()
methods. pci_setup_intr() invokes PCIB_MAP_MSI() to determine the
address and data values for a given message as needed. The MD code
no longer has to call back down into the PCI bus code to set these
values from the nexus' bus_setup_intr() handler.
- The PCI bus code provides a callout (pci_remap_msi_irq()) that the MD
code can call to force the PCI bus to re-invoke PCIB_MAP_MSI() to get
new values of the address and data fields for a given IRQ. The x86
MSI code uses this when an MSI IRQ is moved to a different CPU, requiring
a new value of the 'address' field.
- The x86 MSI psuedo-driver loses a lot of code, and in fact the separate
MSI/MSI-X pseudo-PICs are collapsed down into a single MSI PIC driver
since the only remaining diff between the two is a substring in a
bootverbose printf.
- The PCI bus driver will now restore MSI-X state (including programming
entries in the MSI-X table) on device resume.
- The interface for pci_remap_msix() has changed. Instead of accepting
indices for the allocated vectors, it accepts a mini-virtual table
(with a new length parameter). This table is an array of u_ints, where
each value specifies which allocated message vector to use for the
corresponding MSI-X message. A vector of 0 forces a message to not
have an associated IRQ. The device may choose to only use some of the
IRQs assigned, in which case the unused IRQs must be at the "end" and
will be released back to the system. This allows a driver to use the
same remap table for different shortage values. For example, if a driver
wants 4 messages, it can use the same remap table (which only uses the
first two messages) for the cases when it only gets 2 or 3 messages and
in the latter case the PCI bus will release the 3rd IRQ back to the
system.
MFC after: 1 month
- First off, device drivers really do need to know if they are allocating
MSI or MSI-X messages. MSI requires allocating powerof2() messages for
example where MSI-X does not. To address this, split out the MSI-X
support from pci_msi_count() and pci_alloc_msi() into new driver-visible
functions pci_msix_count() and pci_alloc_msix(). As a result,
pci_msi_count() now just returns a count of the max supported MSI
messages for the device, and pci_alloc_msi() only tries to allocate MSI
messages. To get a count of the max supported MSI-X messages, use
pci_msix_count(). To allocate MSI-X messages, use pci_alloc_msix().
pci_release_msi() still handles both MSI and MSI-X messages, however.
As a result of this change, drivers using the existing API will only
use MSI messages and will no longer try to use MSI-X messages.
- Because MSI-X allows for each message to have its own data and address
values (and thus does not require all of the messages to have their
MD vectors allocated as a group), some devices allow for "sparse" use
of MSI-X message slots. For example, if a device supports 8 messages
but the OS is only able to allocate 2 messages, the device may make the
best use of 2 IRQs if it enables the messages at slots 1 and 4 rather
than default of using the first N slots (or indicies) at 1 and 2. To
support this, add a new pci_remap_msix() function that a driver may call
after a successful pci_alloc_msix() (but before allocating any of the
SYS_RES_IRQ resources) to allow the allocated IRQ resources to be
assigned to different message indices. For example, from the earlier
example, after pci_alloc_msix() returned a value of 2, the driver would
call pci_remap_msix() passing in array of integers { 1, 4 } as the
new message indices to use. The rid's for the SYS_RES_IRQ resources
will always match the message indices. Thus, after the call to
pci_remap_msix() the driver would be able to access the first message
in slot 1 at SYS_RES_IRQ rid 1, and the second message at slot 4 at
SYS_RES_IRQ rid 4. Note that the message slots/indices are 1-based
rather than 0-based so that they will always correspond to the rid
values (SYS_RES_IRQ rid 0 is reserved for the legacy INTx interrupt).
To support this API, a new PCIB_REMAP_MSIX() method was added to the
pcib interface to change the message index for a single IRQ.
Tested by: scottl
bridge if it doesn't pass MSI messages up correctly. We set the flag
in pcib_attach() if the device ID is disabled via a PCI quirk.
- Disable MSI for devices behind the AMD 8131 HT-PCIX bridge. Linux has
the same quirk.
Tested by: no one despite repeated calls for testers
- Add 3 new functions to the pci_if interface along with suitable wrappers
to provide the device driver visible API:
- pci_alloc_msi(dev, int *count) backed by PCI_ALLOC_MSI(). '*count'
here is an in and out parameter. The driver stores the desired number
of messages in '*count' before calling the function. On success,
'*count' holds the number of messages allocated to the device. Also on
success, the driver can access the messages as SYS_RES_IRQ resources
starting at rid 1. Note that the legacy INTx interrupt resource will
not be available when using MSI. Note that this function will allocate
either MSI or MSI-X messages depending on the devices capabilities and
the 'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. Also note
that the driver should activate the memory resource that holds the
MSI-X table and pending bit array (PBA) before calling this function
if the device supports MSI-X.
- pci_release_msi(dev) backed by PCI_RELEASE_MSI(). This function
releases the messages allocated for this device. All of the
SYS_RES_IRQ resources need to be released for this function to succeed.
- pci_msi_count(dev) backed by PCI_MSI_COUNT(). This function returns
the maximum number of MSI or MSI-X messages supported by this device.
MSI-X is preferred if present, but this function will honor the
'hw.pci.enable_msix' and 'hw.pci.enable_msi' tunables. This function
should return the largest value that pci_alloc_msi() can return
(assuming the MD code is able to allocate sufficient backing resources
for all of the messages).
- Add default implementations for these 3 methods to the pci_driver generic
PCI bus driver. (The various other PCI bus drivers such as for ACPI and
OFW will inherit these default implementations.) This default
implementation depends on 4 new pcib_if methods that bubble up through
the PCI bridges to the MD code to allocate IRQ values and perform any
needed MD setup code needed:
- PCIB_ALLOC_MSI() attempts to allocate a group of MSI messages.
- PCIB_RELEASE_MSI() releases a group of MSI messages.
- PCIB_ALLOC_MSIX() attempts to allocate a single MSI-X message.
- PCIB_RELEASE_MSIX() releases a single MSI-X message.
- Add default implementations for these 4 methods that just pass the
request up to the parent bus's parent bridge driver and use the
default implementation in the various MI PCI bridge drivers.
- Add MI functions for use by MD code when managing MSI and MSI-X
interrupts:
- pci_enable_msi(dev, address, data) programs the MSI capability address
and data registers for a group of MSI messages
- pci_enable_msix(dev, index, address, data) initializes a single MSI-X
message in the MSI-X table
- pci_mask_msix(dev, index) masks a single MSI-X message
- pci_unmask_msix(dev, index) unmasks a single MSI-X message
- pci_pending_msix(dev, index) returns true if the specified MSI-X
message is currently pending
- Save the MSI capability address and data registers in the pci_cfgreg
block in a PCI devices ivars and restore the values when a device is
resumed. Note that the MSI-X table is not currently restored during
resume.
- Add constants for MSI-X register offsets and fields.
- Record interesting data about any MSI-X capability blocks we come
across in the pci_cfgreg block in the ivars for PCI devices.
Tested on: em (i386, MSI), bce (amd64/i386, MSI), mpt (amd64, MSI-X)
Reviewed by: scottl, grehan, jfv
MFC after: 2 months
only those bars that had addresses assigned by the BIOS and where the
bridges were properly programmed. Now even unprogrammed ones work.
This was needed for sun4v. We still only implement up to 2GB memory
ranges, even for 64-bit bars. PCI standards at least through 2.2 say
that this is the max (or 1GB is, I only know it is < 32bits).
o Always define pci_addr_t as uint64_t. A pci address is always 64-bits,
but some hosts can't address all of them.
o Preserve the upper half of the 64-bit word during resource probing.
o Test to make sure that 64-bit values can fit in a u_long (true on some
platforms, but not others). Don't use those that can't.
o minor pedantry about data sizes.
o Better bridge resource reporting in bootverbose case.
o Minor formatting changes to cope with different data types on different
platforms.
Submitted by: jmg, with many changes by me to fully support 64-bit
addresses.
various pcib drivers to use their own private devclass_t variables for
their modules.
- Use the DEFINE_CLASS_0() macro to declare drivers for the various pcib
drivers while I'm here.
theoretically unload pci bridges or pci drivers. It will also allow
detach to work if one needed to detach a subtree.
This is inspired by looking at the p4 commits from bms to his 5.4
tree, but I didn't look at the final results.