some HAL definitions rather than local definitions.
The original source (ath9k) pulled this stuff from the QCA driver and
removed the HAL_* prefix. I'm just restoring the correct order of things.
Obtained from: Qualcomm Atheros
This routine is intended only for commands such as INQUIRY where
the controller may fill out a smaller amount of data than allocated
by the host.
The end result of this bug was that isci(4) would report non-zero
resid for successful SCSI_UNMAP commands.
Sponsored by: Intel
MFC after: 3 days
In fact, bus_dmamem_alloc() happily NULLs the dmat pointer passed in,
before replacing it with its own.
This fixes a MIPS crash when kldload'ing if_ath/if_ath_pci -
bus_dmamap_destroy() was passed in a NULL dmat pointer and was doing
all kinds of very bad things.
Reviewed by: scottl
This is a re-implementation based on the reference carrier code
for the AR5413.
Tested:
* Pulse detection for AR5212 and AR5413, to ensure the
correct behaviour for both chips
PR: kern/170904
Obtained from: Qualcomm Atheros
The comparison assumes maxFirstepLevel is a count, rather than a maximum
value. The array is 3 entries in size however 'maxFirstepLevel' is 2.
This bug also exists in the AR5212 HAL.
MPSAFE.
- Preallocate a full set of QCBs during attach rather than allocating new
ones on demand to avoid allocations in the I/O path.
- Remove the explicit bus space tag/handle and use bus_*() on the
relevant 'struct resource' instead.
- Defer logical drive probing to an intrhook.
- Fix ida_detach() to detach and delete child devices (logical drives).
- Update the DMA handling to support EINPROGRESS by moving the work to
submit a mapped request into the bus_dma callback routine as well as
add support for freezing the queue when EINPROGRESS is encountered.
Tested by: Marco Steinbach coco executive-computing de
Terasic DE-4 board. Allow LED configuration to be set using loader
tunables, not just from userspace, and preconfigure LED 8 as a kernel
heartbeat. For now, this is a Nexus-attached, BERI-only driver, but it
could be used with other hard and soft cores on Altera FPGAs as well, in
principle.
Sponsored by: DARPA, AFRL
used with Terasic's DE-4 and other similar FPGA boards. This display
is 800x480 and includes a capacitive touch screen, multi-touch
gesture recognition, etc. This device driver depends on a Cambridge-
provided IP core that allows the MTL device to be hooked up to the
Altera Avalon SoC bus, and also provides a VGA-like text frame buffer.
Although it is compiled as a single device driver, it actually
implements a number of different device nodes exporting various
aspects of this multi-function device to userspace:
- Simple memory-mapped driver for the MTL 24-bit pixel frame buffer.
- Simple memory-mapped driver for the MTL control register set.
- Simple memory-mapped driver for the MTL text frame buffer.
- syscons attachment for the MTL text frame buffer.
This driver attaches directly to Nexus as is common for SoC device
drivers, and for the time being is considered BERI-specific, although
in principle it might be used with other hard and soft cores on
Altera FPGAs.
Control registers, including touchscreen input, are simply memory
mapped; in the future it would be desirable to hook up a more
conventional device node that can stream events, support kqueue(2)/
poll(2)/select(2), etc.
This is the first use of syscons on MIPS, as far as I can tell, and
there are some loose ends, such as an inability to use the hardware
cursor. More fundamentally, it appears that syscons(4) assumes that
either a host is PC-like (i386, amd64) *or* it must be using a
graphical frame buffer. While the MTL supports a graphical frame
buffer, using the text frame buffer is preferable for console use.
Fixing this issue in syscons(4) requires non-trivial changes, as the
text frame buffer support assumes that direct memory access can be
done to the text frame buffer without using bus accessor methods,
which is not the case on MIPS. As a workaround for this, we instead
double-buffer and pretend to be a graphical frame buffer exposing
text accessor methods, leading to some quirks in syscons behaviour.
Sponsored by: DARPA, AFRL
The driver attempts to support all documented parts, but has only been
tested with the 512Mbit part on the Terasic DE4 FPGA board. It should be
trivial to adapt the driver's attach routine to other embedded boards
using with any parts in the family.
Also import isfctl(8) which can be used to erase sections of the flash.
Sponsored by: DARPA, AFRL
which presents a UART-like interface over the Avalon bus that can be
addressed over JTAG. This IP core proves extremely useful, allowing us to
connect trivially to the FreeBSD console over JTAG for FPGA-embedded hard
and soft cores. As interrupts are optionally configured for this soft
core, we support both interrupt-driven and polled modes of operation,
which must be selected using device.hints. UART instances appear in /dev
as ttyu0, ttyu1, etc.
However, it also contains a number of quirks, which make it difficult to
tell when JTAG is connected, and some buffering issues. We work around
these as best we can, using various heuristics.
While the majority of this device driver is not only not BERI-specific,
but also not MIPS-specific, for now add its defines in the BERI files
list, as the console-level parts are aware of where the first JTAG UART
is mapped on Avalon, and contain MIPS-specific address translation, to
use before Newbus and device.hints are available.
Sponsored by: DARPA, AFRL
which can be synthesised in Altera FPGAs. An altera_sdcardc device
probes during the boot, and /dev/altera_sdcard devices come and go as
inserted and removed. The device driver attaches directly to the
Nexus, as is common for system-on-chip device drivers.
This IP core suffers a number of significant limitations, including a
lack of interrupt-driven I/O -- we must implement timer-driven polling,
only CSD 0 cards (up to 2G) are supported, there are serious memory
access issues that require the driver to verify writes to memory-mapped
buffers, undocumented alignment requirements, and erroneous error
returns. The driver must therefore work quite hard, despite a fairly
simple hardware-software interface. The IP core also supports at most
one outstanding I/O at a time, so is not a speed demon.
However, with the above workarounds, and subject to performance
problems, it works quite reliably in practice, and we can use it for
read-write mounts of root file systems, etc.
Sponsored by: DARPA, AFRL
CPU cores on Altera FPGAs. The device driver allows memory-mapped devices
on Altera's Avalon SoC bus to be exported to userspace via device nodes.
device.hints directories dictate device name, permissible access methods,
physical address and length, and I/O alignment. Devices can be accessed
using read(2)/write(2), but also memory mapped in userspace using mmap(2).
Devices attach directly to the Nexus, as is common for embedded device
drivers; in the future something more mature might be desirable. There is
currently no facility to support directing device-originated interrupts to
userspace.
In the future, this device driver may be renamed to socgen(4), as it can
in principle also be used with other system-on-chip (SoC) busses, such as
Axi on ASICs and FPGAs. However, we have only tested it on Avalon busses
with memory-mapped ROMs, frame buffers, etc.
Sponsored by: DARPA, AFRL
on PowerPC support. This was clearly not something syscons was
designed to do (very specific assumptions about the nature of VGA
consoles on PCs), but fortunately others have long since blazed
the way on making it work regardless of that.
Sponsored by: DARPA, AFRL
relative priority of the gxemul console in line with its role as a
"seiral console". This allows it to override video console drivers
that might otherwise take precdence, subject to that boot flag.
Sponsored by: DARPA, AFRL
This ensures that any ccbs which immediately start during the call to
xpt_release_devq see an accurate picture of the frozen_lun_mask.
Sponsored by: Intel
MFC after: 3 days
DFS parameters fetched from the HAL.
Check whether the specific chipset supports RADAR reporting before
enabling DFS; or some of the (unset) DFS methods may fail.
Tested:
* AR5210 (correctly didn't enable radar PHY reporting)
* AR5212 (correctly enabled radar PHY reporting w/ the correct default
parameters.)
TODO:
* Now that I have this capability check in place, I could remove the
(empty) DFS methods from AR5210/AR5211.
* Test on AR5416, AR9160, AR9280.
PR: kern/170904
* mfp support;
* 4.9ghz support in the HAL;
* device type - specifically, the bus type and whether it's a HB63
NIC (which requires some subtle chainmask handling differences
in the AR5416 HAL.)
Obtained from: Qualcomm Atheros
Report errors indicated by the transport. If this is too chatty, I'll
throw it behind a debug write.
Remove commented out debugs that are no longer useful.