r357614 added CTLFLAG_NEEDGIANT to make it easier to find nodes that are
still not MPSAFE (or already are but aren’t properly marked).
Use it in preparation for a general review of all nodes.
This is non-functional change that adds annotations to SYSCTL_NODE and
SYSCTL_PROC nodes using one of the soon-to-be-required flags.
Mark all obvious cases as MPSAFE. All entries that haven't been marked
as MPSAFE before are by default marked as NEEDGIANT
Approved by: kib (mentor, blanket)
Commented by: kib, gallatin, melifaro
Differential Revision: https://reviews.freebsd.org/D23718
This fixes a warning seen when compiling amd64 GENERIC with clang 7.
Also remove the workaround added in r337324. clang 7 and gcc 4.2
generate the same code with or without the code change.
Reviewed by: imp (previous version)
MFC after: 3 days
Differential Revision: https://reviews.freebsd.org/D18603
Remove unused and easy to misuse PNP macro parameter
Inspired by r338025, just remove the element size parameter to the
MODULE_PNP_INFO macro entirely. The 'table' parameter is now required to
have correct pointer (or array) type. Since all invocations of the macro
already had this property and the emitted PNP data continues to include the
element size, there is no functional change.
Mostly done with the coccinelle 'spatch' tool:
$ cat modpnpsize0.cocci
@normaltables@
identifier b,c;
expression a,d,e;
declarer MODULE_PNP_INFO;
@@
MODULE_PNP_INFO(a,b,c,d,
-sizeof(d[0]),
e);
@singletons@
identifier b,c,d;
expression a;
declarer MODULE_PNP_INFO;
@@
MODULE_PNP_INFO(a,b,c,&d,
-sizeof(d),
1);
$ rg -l MODULE_PNP_INFO -- sys | \
xargs spatch --in-place --sp-file modpnpsize0.cocci
(Note that coccinelle invokes diff(1) via a PATH search and expects diff to
tolerate the -B flag, which BSD diff does not. So I had to link gdiff into
PATH as diff to use spatch.)
Tinderbox'd (-DMAKE_JUST_KERNELS).
Approved by: re (glen)
I was not aware Warner was making or planning to make forward progress in
this area and have since been informed of that.
It's easy to apply/reapply when churn dies down.
Inspired by r338025, just remove the element size parameter to the
MODULE_PNP_INFO macro entirely. The 'table' parameter is now required to
have correct pointer (or array) type. Since all invocations of the macro
already had this property and the emitted PNP data continues to include the
element size, there is no functional change.
Mostly done with the coccinelle 'spatch' tool:
$ cat modpnpsize0.cocci
@normaltables@
identifier b,c;
expression a,d,e;
declarer MODULE_PNP_INFO;
@@
MODULE_PNP_INFO(a,b,c,d,
-sizeof(d[0]),
e);
@singletons@
identifier b,c,d;
expression a;
declarer MODULE_PNP_INFO;
@@
MODULE_PNP_INFO(a,b,c,&d,
-sizeof(d),
1);
$ rg -l MODULE_PNP_INFO -- sys | \
xargs spatch --in-place --sp-file modpnpsize0.cocci
(Note that coccinelle invokes diff(1) via a PATH search and expects diff to
tolerate the -B flag, which BSD diff does not. So I had to link gdiff into
PATH as diff to use spatch.)
Tinderbox'd (-DMAKE_JUST_KERNELS).
Mainly focus on files that use BSD 2-Clause license, however the tool I
was using misidentified many licenses so this was mostly a manual - error
prone - task.
The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.
Mainly focus on files that use BSD 3-Clause license.
The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.
Special thanks to Wind River for providing access to "The Duke of
Highlander" tool: an older (2014) run over FreeBSD tree was useful as a
starting point.
- Do not ever set a counter to a value. For those counters
that we don't increment, but return directly from hardware
create cases in if_get_counter() method.
Sponsored by: Netflix
Sponsored by: Nginx, Inc.
and keep both converted to drvapi and non-converted drivers
compilable.
o Make if_t typedef to struct ifnet *.
o Remove shim functions.
Sponsored by: Netflix
Sponsored by: Nginx, Inc.
interface allows the ifnet structure to be defined as an opaque
type in NIC drivers. This then allows the ifnet structure to be
changed without a need to change or recompile NIC drivers.
Put differently, NIC drivers can be written and compiled once and
be used with different network stack implementations, provided of
course that those network stack implementations have an API and
ABI compatible interface.
This commit introduces the 'if_t' type to replace 'struct ifnet *'
as the type of a network interface. The 'if_t' type is defined as
'void *' to enable the compiler to perform type conversion to
'struct ifnet *' and vice versa where needed and without warnings.
The functions that implement the API are the only functions that
need to have an explicit cast.
The MII code has been converted to use the driver API to avoid
unnecessary code churn. Code churn comes from having to work with
both converted and unconverted drivers in correlation with having
callback functions that take an interface. By converting the MII
code first, the callback functions can be defined so that the
compiler will perform the typecasts automatically.
As soon as all drivers have been converted, the if_t type can be
redefined as needed and the API functions can be fix to not need
an explicit cast.
The immediate benefactors of this change are:
1. Juniper Networks - The network stack implementation in Junos
is entirely different from FreeBSD's one and this change
allows Juniper to build "stock" NIC drivers that can be used
in combination with both the FreeBSD and Junos stacks.
2. FreeBSD - This change opens the door towards changing ifnet
and implementing new features and optimizations in the network
stack without it requiring a change in the many NIC drivers
FreeBSD has.
Submitted by: Anuranjan Shukla <anshukla@juniper.net>
Reviewed by: glebius@
Obtained from: Juniper Networks, Inc.
out 32 is not enough to support a full sized TSO packet.
While I'm here fix a long standing bug introduced in r169632 in
bce(4) where it didn't include L2 header length of TSO packet in
the maximum DMA segment size calculation.
In collaboration with: rmacklem
MFC after: 2 weeks
to this event, adding if_var.h to files that do need it. Also, include
all includes that now are included due to implicit pollution via if_var.h
Sponsored by: Netflix
Sponsored by: Nginx, Inc.
command register. The lazy BAR allocation code in FreeBSD sometimes
disables this bit when it detects a range conflict, and will re-enable
it on demand when a driver allocates the BAR. Thus, the bit is no longer
a reliable indication of capability, and should not be checked. This
results in the elimination of a lot of code from drivers, and also gives
the opportunity to simplify a lot of drivers to use a helper API to set
the busmaster enable bit.
This changes fixes some recent reports of disk controllers and their
associated drives/enclosures disappearing during boot.
Submitted by: jhb
Reviewed by: jfv, marius, achadd, achim
MFC after: 1 day
running state. fxp(4) requires controller reinitialization for the
following cases.
o RX lockup condition on i82557
o promiscuous mode change
o multicast filter change
o WOL configuration
o TSO/VLAN hardware tagging/checksum offloading configuration
o MAC reprogramming after speed/duplex/flow-control resolution
o Any events that result in MAC reprogramming(link UP/DOWN,
remote link partner's restart of auto-negotiation etc)
o Microcode loading/unloading
Apart from above cases which come from hardware limitation, upper
stack also blindly reinitializes controller whenever an IP address
is assigned. After r194573, fxp(4) no longer needs to reinitialize
the controller to program multicast filter after upping the
interface. So keeping track of driver running state should remove
all unnecessary controller reinitializations.
This change will also address endless controller reinitialization
triggered by dhclient(8).
Tested by: hrs, Alban Hertroys <haramrae@gmail.com>
them, please let me know if not). Most of these are of the form:
static const struct bzzt_type {
[...list of members...]
} const bzzt_devs[] = {
[...list of initializers...]
};
The second const is unnecessary, as arrays cannot be modified anyway,
and if the elements are const, the whole thing is const automatically
(e.g. it is placed in .rodata).
I have verified this does not change the binary output of a full kernel
build (except for build timestamps embedded in the object files).
Reviewed by: yongari, marius
MFC after: 1 week
deterministically handled after the corresponding PHY drivers when
loaded as modules. Otherwise, when these MAC/PHY driver pairs are
compiled into a single module probing the PHY driver may fail. This
makes r151438 and r226154 actually work. [1]
Reported and tested by: yongari (fxp(4))
- Use DEVMETHOD_END.
- Use NULL instead of 0 for pointers.
Submitted by: jhb [1]
MFC after: 3 days
violation should be activated unless the system is cold-booted
after updating EEPROM.
The PCI protocol violation happens only when established link is
10Mbps so the workaround should be updated whenever link state
change is detected. Previously the workaround was activated only
when user checks current media status with ifconfig(8).
whether the checksum of EEPROM is valid or not. Because driver
heavily relies on EEPROM information when it selectively enables
features/workarounds, it would be helpful to know whether driver
sees valid EEPROM.
While I'm here remove all other EEPROM accesses since the entire
EEPROM is loaded at device attach time.
MFC after: 2 weeks
for 82550C. For 82550 controllers this change restores CPUSaver
microcode loading. Due to silicon bug on 82550 and 82550C with
server extension, these controllers seem to require CPUSaver
microcode to receive fragmented UDP datagrams. However the
microcode shouldn't be used on client featured 82550C as it locks
up the controller. In addition, client featured 82550C does not
have the silicon bug. Also clear temporary memory used for
microcode loading since the same memory area is used for other
commands.
While I'm here use 82550C in probe message instead of generic
82550.
Reported by: Andreas Longwitz <longwitz <> incore de>
Tested by: Andreas Longwitz <longwitz <> incore de>
MFC after: 2 weeks
driver is running driver would have already completed flow control
configuration. This change removes unnecessary media changes in
controller reconfiguration cases such that it does not trigger link
reestablishment for configuration change requests like promiscuous
mode change.
Reported by: Many
Tested by: Mike Tancsa <mike <> sentex dot net>
MFC after: 1 week
Fix the TCP header size calculation such that makes TSO engine
cache all header(ethernet/IP/TCP) bytes to its internal buffer.
While here, remove extra pull up for TCP payload. Unlike some
em(4) controllers, fxp(4) does not require such work around for
TSO.
The two limitations are ethernet/IP/TCP header size should be less
than or equal to the size of controller's internal buffer(80 bytes)
and these header information should be found in the first fragment
of a TSO frame.
drivers that only ever attach to a particular MAC driver, i.e. inphy(4),
ruephy(4) and xlphy(4), to the directory where the respective MAC driver
lives and only compile it into the kernel when the latter is also there,
also removing it from miibus.ko and moving it into the module of the
respective MAC driver.
- While at it, rename exphy.c, which comes from NetBSD where the MAC driver
it corresponds to also is named ex(4) instead of xl(4) but that in FreeBSD
actually identifies itself as xlphy(4), and its function names accordingly
for consistency.
- Additionally while at it, fix some minor style issues like whitespace
in the register headers and add multi-inclusion protection to inphyreg.h.
the microcode caused SCB timeouts. Linux driver does not allow
microcode loading for these controllers and jfv also confirmed that
there is no need to do and it shouldn't.
PR: kern/103332
Additional confirmation from: jfv
MFC after: 1 week
(reporting IFM_LOOP based on BMCR_LOOP is left in place though as
it might provide useful for debugging). For most mii(4) drivers it
was unclear whether the PHYs driven by them actually support
loopback or not. Moreover, typically loopback mode also needs to
be activated on the MAC, which none of the Ethernet drivers using
mii(4) implements. Given that loopback media has no real use (and
obviously hardly had a chance to actually work) besides for driver
development (which just loopback mode should be sufficient for
though, i.e one doesn't necessary need support for loopback media)
support for it is just dropped as both NetBSD and OpenBSD already
did quite some time ago.
- Let mii_phy_add_media() also announce the support of IFM_NONE.
- Restructure the PHY entry points to use a structure of entry points
instead of discrete function pointers, and extend this to include
a "reset" entry point. Make sure any PHY-specific reset routine is
always used, and provide one for lxtphy(4) which disables MII
interrupts (as is done for a few other PHYs we have drivers for).
This includes changing NIC drivers which previously just called the
generic mii_phy_reset() to now actually call the PHY-specific reset
routine, which might be crucial in some cases. While at it, the
redundant checks in these NIC drivers for mii->mii_instance not being
zero before calling the reset routines were removed because as soon
as one PHY driver attaches mii->mii_instance is incremented and we
hardly can end up in their media change callbacks etc if no PHY driver
has attached as mii_attach() would have failed in that case and not
attach a miibus(4) instance.
Consequently, NIC drivers now no longer should call mii_phy_reset()
directly, so it was removed from EXPORT_SYMS.
- Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe().
The purpose of that function is to perform the common steps to attach
a PHY driver instance and to hook it up to the miibus(4) instance and to
optionally also handle the probing, addition and initialization of the
supported media. So all a PHY driver without any special requirements
has to do in its bus attach method is to call mii_phy_dev_attach()
along with PHY-specific MIIF_* flags, a pointer to its PHY functions
and the add_media set to one. All PHY drivers were updated to take
advantage of mii_phy_dev_attach() as appropriate. Along with these
changes the capability mask was added to the mii_softc structure so
PHY drivers taking advantage of mii_phy_dev_attach() but still
handling media on their own do not need to fiddle with the MII attach
arguments anyway.
- Keep track of the PHY offset in the mii_softc structure. This is done
for compatibility with NetBSD/OpenBSD.
- Keep track of the PHY's OUI, model and revision in the mii_softc
structure. Several PHY drivers require this information also after
attaching and previously had to wrap their own softc around mii_softc.
NetBSD/OpenBSD also keep track of the model and revision on their
mii_softc structure. All PHY drivers were updated to take advantage
as appropriate.
- Convert the mebers of the MII data structure to unsigned where
appropriate. This is partly inspired by NetBSD/OpenBSD.
- According to IEEE 802.3-2002 the bits actually have to be reversed
when mapping an OUI to the MII ID registers. All PHY drivers and
miidevs where changed as necessary. Actually this now again allows to
largely share miidevs with NetBSD, which fixed this problem already
9 years ago. Consequently miidevs was synced as far as possible.
- Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that
weren't explicitly converted to support flow control before. It's
unclear whether flow control actually works with these but typically
it should and their net behavior should be more correct with these
changes in place than without if the MAC driver sets MIIF_DOPAUSE.
Obtained from: NetBSD (partially)
Reviewed by: yongari (earlier version), silence on arch@ and net@
makes controller to receive bad frames and i82557 will also receive
bad frames since fxp(4) have to receive VLAN oversized frames. If
fxp(4) encounter DMA overrun error, the received frame size would
be 0 so the actual frame size after checksum field extraction the
length would be negative(-2). Due to signed/unsigned comparison
used in driver, frame length check did not work for DMA overrun
frames. Correct this by casting it to int.
While I'm here explicitly check DMA overrun error and discard the
frame regardless of result of received frame length check.
Reported by: n_hibma
Tested by: n_hibma
MFC after: 1 week
caused link re-negotiation whenever application joins or leaves a
multicast group. If driver is running, it would have established a
link so there is no need to start re-negotiation. The re-negotiation
broke established link which in turn stopped multicast application
working while re-negotiation is in progress.
PR: kern/154667
MFC after: 1 week
the controller to workaround silicon bug of i82557. Each reset will
re-establish link which in turn triggers MII status change
callback. The callback will try to reconfigure controller if the
controller is not i82557 to enable flow-control. This caused
endless link UP/DOWN when the workaround was enabled on non-i82557
controller.
To fix the issue, apply RX lockup workaround only for i82557.
Previously it blindly checked undocumented EEPROM location such
that it sometimes enabled the workaround for other controllers. At
this time, only i82557 is known to have the silicon bug.
This fixes a regression introduced in r215906 which enabled flow
control support for all controllers except i82557.
Reported by: Karl Denninger (karl <> denninger dot net)
Tested by: Karl Denninger (karl <> denninger dot net)
MFC after: 3 days
the dev.fxp.%d.noflow tunable as the same effect can now be achieved with
ifconfig(8) by setting the flowcontrol media option as desired (besides
the tunable never having a chance to actually enable flow control support
so far).
In joint forces with: yongari
VLAN hardware tagging to make TSO work over VLAN. So if VLAN
hardware tagging is disabled explicitly clear TSO over VLAN. While
I'm here allow disabling VLAN TX checksum offloading.
Tested by: Liudas < liudasb <> centras dot lt >
MFC after: 10 days
the NIC drivers as well as the PHY drivers to take advantage of the
mii_attach() introduced in r213878 to get rid of certain hacks. For
the most part these were:
- Artificially limiting miibus_{read,write}reg methods to certain PHY
addresses; we now let mii_attach() only probe the PHY at the desired
address(es) instead.
- PHY drivers setting MIIF_* flags based on the NIC driver they hang
off from, partly even based on grabbing and using the softc of the
parent; we now pass these flags down from the NIC to the PHY drivers
via mii_attach(). This got us rid of all such hacks except those of
brgphy() in combination with bce(4) and bge(4), which is way beyond
what can be expressed with simple flags.
While at it, I took the opportunity to change the NIC drivers to pass
up the error returned by mii_attach() (previously by mii_phy_probe())
and unify the error message used in this case where and as appropriate
as mii_attach() actually can fail for a number of reasons, not just
because of no PHY(s) being present at the expected address(es).
Reviewed by: jhb, yongari
header parser uses m_pullup(9) to get access to mbuf chain.
m_pullup(9) can allocate new mbuf chain and free old one if the
space left in the mbuf chain is not enough to hold requested
contiguous bytes. Previously drivers can use stale ip/tcp header
pointer if m_pullup(9) returned new mbuf chain.
Reported by: Andrew Boyer (aboyer <> averesystems dot com)
MFC after: 10 days