Tested:
* on IOData WN-G300R. may be same as Sitecom WLR-2100.
Submitted by: Hiroki Mori <yamori813@yahoo.co.jp>
Differential Revision: https://reviews.freebsd.org/D10621
* use ifqmaxlen
* handle (inefficiently for now) meeting padding and alignment requirements for
transmit mbufs.
* change how TX ring handling is done
Submitted by: Hiroki Mori <yamori813@yahoo.co.jp>
Differential Revision: https://reviews.freebsd.org/D10557
This is required for FDT's standard "reg-io-width" property
(similar to "reg-shift" property) found in many DTS files.
This fixes operation on Altera Arria 10 SOC Development Kit,
where standard ns8250 uart allows 4-byte access only.
Reviewed by: kan, marcel
Sponsored by: DARPA, AFRL
Differential Revision: https://reviews.freebsd.org/D9785
Convert PCIe hot plug support over to asking the firmware, if any, for
permission to use the HotPlug hardware. Implement pci_request_feature
for ACPI. All other host pci connections to allowing all valid feature
requests.
Sponsored by: Netflix
As cs is stored in a uint32_t, use the last bit to store the
active high flag as it's unlikely that we will have that much CS.
Reviewed by: loos
MFC after: 2 weeks
Differential Revision: https://reviews.freebsd.org/D8614
This commit corrects print of nomatch (newline was too early) and fix
unit number for new child in ar5315_spi (was 0, now is -1 to calculate it
according to actual system state)
Submitted by: Hiroki Mori <yamori813@yahoo.co.jp>
Reviewed by: ray, loos, mizhka
MFC after: 2 weeks
Differential Revision: https://reviews.freebsd.org/D8749
This commit improves code styles like:
- removing commented code
- format comments as C-style
- add spaces after #define-s
It also bring ability to build kernel without INTRNG and remove RedBoot dependency.
Tested on FON2201
Submitted by: Hiroki Sato <yamori813@yahoo.co.jp>
Reviewed by: adrian, mizhka
Approved by: adrian(mentor)
Differential Revision: https://reviews.freebsd.org/D8557
When detaching device trees parent devices must be detached prior to
detaching its children. This is because parent devices can have
pointers to the child devices in their softcs which are not
invalidated by device_delete_child(). This can cause use after free
issues and panic().
Device drivers implementing trees, must ensure its detach function
detaches or deletes all its children before returning.
While at it remove now redundant device_detach() calls before
device_delete_child() and device_delete_children(), mostly in
the USB controller drivers.
Tested by: Jan Henrik Sylvester <me@janh.de>
Reviewed by: jhb
Differential Revision: https://reviews.freebsd.org/D8070
MFC after: 2 weeks
These are older MIPS4kc parts from Atheros. They typically ran at
sub-200MHz and have 11bg, 11a, or 11abg wifi MAC/PHYs integrated.
This port is the initial non-wifi pieces required to bring up the
chip. I'll commit the redboot and other pieces later, and then
hopefully(!) wifi support will follow.
Submitted by: Mori Hiroki <yamori813@yahoo.co.jp>
Differential Revision: https://reviews.freebsd.org/D7237
* add an ANY debug level which will always echo the message if debugging
is compiled in;
* log MDIO transaction timeouts if debugging is compiled in;
* the argemdio device is different to arge, so turning on MDIO debugging
flags in arge->sc_debug doesn't help. Add a debug sysctl to argemdio
as well so that MDIO transactions can be debugged.
Tested:
* AR9331
For reasons I won't comment on, the AR934x and QCA953x GPIO_OE register
value is inverted - bit set == input, bit clear == output.
So, fix this in the output setting, in reading the initial state from
the boot loader, and also setting any gpiofunc pins that are necessary.
The delta between SENTRY5 and BCM was already small due to BCM being
derived from SENTRY5; re-integrating the two avoids the maintenance
overhead of keeping them both in sync with bhnd(4) changes.
- Re-integrate minor SENTRY5 deltas in bcm_machdep.c
- Modify uart_cpu_chipc to allow specifying UART debug/console flags via
kenv and device hints.
- Switch SENTRY5 to std.broadcom
- Enabled CFI flash support for SENTRY5
Reviewed by: Michael Zhilin <mizkha@gmail.com> (Broadcom MIPS support)
Approved by: re (gjb), adrian (mentor)
Differential Revision: https://reviews.freebsd.org/D6897
On some architectures, u_long isn't large enough for resource definitions.
Particularly, powerpc and arm allow 36-bit (or larger) physical addresses, but
type `long' is only 32-bit. This extends rman's resources to uintmax_t. With
this change, any resource can feasibly be placed anywhere in physical memory
(within the constraints of the driver).
Why uintmax_t and not something machine dependent, or uint64_t? Though it's
possible for uintmax_t to grow, it's highly unlikely it will become 128-bit on
32-bit architectures. 64-bit architectures should have plenty of RAM to absorb
the increase on resource sizes if and when this occurs, and the number of
resources on memory-constrained systems should be sufficiently small as to not
pose a drastic overhead. That being said, uintmax_t was chosen for source
clarity. If it's specified as uint64_t, all printf()-like calls would either
need casts to uintmax_t, or be littered with PRI*64 macros. Casts to uintmax_t
aren't horrible, but it would also bake into the API for
resource_list_print_type() either a hidden assumption that entries get cast to
uintmax_t for printing, or these calls would need the PRI*64 macros. Since
source code is meant to be read more often than written, I chose the clearest
path of simply using uintmax_t.
Tested on a PowerPC p5020-based board, which places all device resources in
0xfxxxxxxxx, and has 8GB RAM.
Regression tested on qemu-system-i386
Regression tested on qemu-system-mips (malta profile)
Tested PAE and devinfo on virtualbox (live CD)
Special thanks to bz for his testing on ARM.
Reviewed By: bz, jhb (previous)
Relnotes: Yes
Sponsored by: Alex Perez/Inertial Computing
Differential Revision: https://reviews.freebsd.org/D4544
This simplifies checking for default resource range for bus_alloc_resource(),
and improves readability.
This is part of, and related to, the migration of rman_res_t from u_long to
uintmax_t.
Discussed with: jhb
Suggested by: marcel
Use driver settable callbacks for handling of:
- core post reset
- reading actual port speed
Typically, OTG enabled EHCI cores wants setting of USBMODE register,
but this register is not defined in EHCI specification and different
cores can have it on different offset.
Also, for cores with TT extension, actual port speed must be determinable.
But again, EHCI specification not covers this so this patch provides
function for two most common variant of speed bits layout.
Reviewed by: hselasky
Differential Revision: https://reviews.freebsd.org/D5088
Summary:
Migrate to using the semi-opaque type rman_res_t to specify rman resources. For
now, this is still compatible with u_long.
This is step one in migrating rman to use uintmax_t for resources instead of
u_long.
Going forward, this could feasibly be used to specify architecture-specific
definitions of resource ranges, rather than baking a specific integer type into
the API.
This change has been broken out to facilitate MFC'ing drivers back to 10 without
breaking ABI.
Reviewed By: jhb
Sponsored by: Alex Perez/Inertial Computing
Differential Revision: https://reviews.freebsd.org/D5075
This is a holdover from how reset is handled in the ARGE_MDIO world.
You need to define the mdio bus device if you want to use the ethernet
device or the arge setup path doesn't bring the MAC out of reset.
The QCA953x SoC is an integrated 2x2 2GHz 11n + MIPS24k core, with
a 5 port FE switch, gige WAN port, and all the same stuff you'd find on
its predecessor - the AR9331.
However, buried deep in here somewhere is also a PCIe EP/RC for various
applications and some other weird bits I don't yet know about.
This is enough to get the reference board up and booting. I haven't yet
had it pass lots of packets - I need to finalise the ethernet switch
bits and the GMAC configuration (ie, how the ethernet ports and switch
are wired up) and I'll bring that in when I commit the base configuration
files to use the thing.
The wifi stuff will come much later. I have to port that support from
Linux ath9k and extend our vendor HAL to support it.
The reference board (AP143) comes with 32MB RAM and 4MB flash, so in order
to use it I need to get USB working fully so I can run root from there.
Thankyou to Qualcomm Atheros for access to the reference design board.
Details:
* Add register definitions from openwrt;
* It looks like a QCA955x but shrunk down to a QCA933x footprint, so
use the QCA955x bits and fix up the clock detection code to do the
QCA953x bits (they're very subtly different);
* Teach GPIO about it;
* Teach EHCI about it;
* Teach if_arge about it;
* Teach the CPU detection code about it.
Tested:
* AP143, QCA9533v2 SoC
Obtained from: Linux, Linux OpenWRT
* use barriers in a slightly better fashion. You can blame this
glass of whiskey on putting barriers in the wrong spot. Grr adrian.
* steal/rewrite the mdio busy check from ag7100 from openwrt and
refactor the existing code out. This is .. more correct.
This seems to fix the boot-to-boot variation that I've been seeing
and it quietens the switch port status flapping.
Tested:
* QCA9558 SoC (AP135.)
Obtained from: Linux OpenWRT
This driver and the linux ag71xx driver both treat the transmit ring
as a circular linked list of descriptors. There's no "end" pointer
that is ever NULL - instead, it expects the MAC to hit a finished
descriptor (ARGE_DESC_EMPTY) and stop.
Now, since it's a circular buffer, we may end up with the hardware
hitting the beginning of our multi-descriptor frame before we've finished
setting it up. It then DMA's it in, starts sending it, and we finish
writing out the new descriptor. The hardware may then write its
completion for the next descriptor out; then we do, and when we next
read it it'll show up as "not done" and transmit completion stops.
This unfortunately manifests itself as the transmit queue always
being active and a massive TX interrupt storm. We need to actively
ACK packets back from the transmit engine and if we don't (eg because
we think the transmit isn't finished but it is) then the unit will
just keep generating interrupts.
I hit this finally with the below testing setup. This fixed it for me.
Strictly speaking I should put in a sync in between writing out all of
the descriptors and writing out that final descriptor.
Tested:
* QCA9558 SoC (AP135 reference board) w/ arge1 + vlans acting as a
router, and iperf -d (tcp, bidirectional traffic.)
Obtained from: Linux OpenWRT (ag71xx_main.c.)
The MIPS busdma sync operations currently are a big no-op on coherent memory.
This isn't strictly correct behaviour as we need a SYNC in here to ensure that
the writes have finished and are visible in main memory before the MMIO accesses
occur. This will have to be addressed in a later commit.
But, before that happens, let's at least do a flush here to make things
more "correct".
This is required for even remotely sensible behaviour on mips74k with
write-through memory enabled.
The mips74k programmers guide notes that reads can be re-ordered, even
uncached ones, so we need an explicit SYNC between them.
Yes, this is a case of a driver author actively doing a bus barrier
operation.
This ends up being necessary when the mips74k core is run in write-back
mode rather than write-through mode. That's coming in an upcoming
commit.
Tested:
* mips74k, QCA9558 SoC (AP135 reference board), arge<->arge interface
routing traffic tests.
send frames.
This matches the other check for space.
"enough" is a misnomer, for "reasons". The biggest reason is that
the TX ring is actually a circular linked list, with no head/tail pointers.
This is just a bit more headroom between head/tail so we have time to
schedule frames before we hit where the hardware is at.
Ideally this would be tunable and a little larger.
This flushes out the write to the system before anything continues.
The mips74k guide, chapter 3.3.3 (write gathering) notes that writes
can be buffered in FIFOs - even uncached ones - so we can't guarantee
the device has felt its effects. Now, since we're all lazy driver
authors and don't pepper read/write barriers everywhere, fake it here.
tested:
* mips74k - QCA9558 SoC (AP135 reference board)
This should make it easier to track down interrupt storms from arge.
Tested:
* AP135 (QCA955x) SoC - defaults to ARGE_DEBUG enabled
* Carambola2 (AR9331 SoC) - defaults to ARGE_DEBUG disabled
I couldn't test arge0->arge1 bridging, only arge0 VLAN bridging.
The DIR-825C1 only hooks up arge0 to the switch GMAC0 and so
you need to abuse VLANs to test.
Tested:
* DIR-825C1 (AR9344)
This part seems to work bug-free with single byte TX/RX buffer alignment.
This drops the CPU requirement to bridge 100mbit iperf from 100% CPU
to ~ 50% CPU.
Tested:
* AP121 (AR9330) SoC, highly magic netbooted kernel + USB rootfs
due to 4mb flash, 16mb RAM; doing bridging between arge0 and arge1.
Notes:
* Yes, I likely can also turn this on for the AR934x SoC family now.
But since hardware design apparently follows similar branching
strategies to software design, I'll go and make sure all the AR934x's
that made it out into shipping products work before I flip it on.
This was triggering when using it as an AP bridge rather than an ethernet
bridge.
The code is unclear but it works; I'll fix it to be clearer and test
performance at a later stage.
The existing code meets the "alignment" requirement for the l3 payload
by offsetting the mbuf by uint64_t and then calling an rx fixup routine
to copy the frame backwards by 2 bytes. This DWORD aligns the
L3 payload so tcp, etc doesn't panic on unaligned access.
This is .. slow.
For arge MACs that support 1 byte TX/RX address alignment, we can do
the "other" hack: offset the RX address of the mbuf so the L3 payload
again is hopefully DWORD aligned.
This is much cheaper - since TX/RX is both 1 byte align ready (thanks
to the previous commit) there's no bounce buffering going on and there
is no rx fixup copying.
This gets bridging performance up from 180mbit/sec -> 410mbit/sec.
There's around 10% of CPU cycles spent in _bus_dmamap_sync(); I'll
investigate that later.
Tested:
* QCA955x SoC (AP135 reference board), bridging arge0/arge1
by programming the switch to have two vlangroups in dot1q mode:
# ifconfig bridge0 inet 192.168.2.20/24
# etherswitchcfg config vlan_mode dot1q
# etherswitchcfg vlangroup0 members 0,1,2,3,4
# etherswitchcfg vlangroup1 vlan 2 members 5,6
# etherswitchcfg port5 pvid 2
# etherswitchcfg port6 pvid 2
# ifconfig arge1 up
# ifconfig bridge0 addm arge1
The early ethernet MACs (I think AR71xx and AR913x) require that both
TX and RX require 4-byte alignment for all packets.
The later MACs have started relaxing the requirements.
For now, the 1-byte TX and 1-byte RX alignment requirements are only for
the QCA955x SoCs. I'll add in the relaxed requirements as I review the
datasheets and do testing.
* Add a hardware flags field and 1-byte / 4-byte TX/RX alignment.
* .. defaulting to 4-byte TX and 4-byte RX alignment.
* Only enforce the TX alignment fixup if the hardware requires a 4-byte
TX alignment. This avoids a call to m_defrag().
* Add counters for various situations for further debugging.
* Set the 1-byte and 4-byte busdma alignment requirement when
the tag is created.
This improves the straight bridging performance from 130mbit/sec
to 180mbit/sec, purely by removing the need for TX path bounce buffers.
The main performance issue is the RX alignment requirement and any RX
bounce buffering that's occuring. (In a local test, removing the RX
fixup path and just aligning buffers raises the performance to above
400mbit/sec.
In theory it's a no-op for SoCs before the QCA955x.
Tested:
* QCA9558 SoC in AP135 board, using software bridging between arge0/arge1.