- Simplify the amount of work that has be done for each architecture by
pushing more of the truly MI code down into the PCI bus driver.
- Don't bind MSI-X indicies to IRQs so that we can allow a driver to map
multiple MSI-X messages into a single IRQ when handling a message
shortage.
The changes include:
- Add a new pcib_if method: PCIB_MAP_MSI() which is called by the PCI bus
to calculate the address and data values for a given MSI/MSI-X IRQ.
The x86 nexus drivers map this into a call to a new 'msi_map()' function
in msi.c that does the mapping.
- Retire the pcib_if method PCIB_REMAP_MSIX() and remove the 'index'
parameter from PCIB_ALLOC_MSIX(). MD code no longer has any knowledge
of the MSI-X index for a given MSI-X IRQ.
- The PCI bus driver now stores more MSI-X state in a child's ivars.
Specifically, it now stores an array of IRQs (called "message vectors" in
the code) that have associated address and data values, and a small
virtual version of the MSI-X table that specifies the message vector
that a given MSI-X table entry uses. Sparse mappings are permitted in
the virtual table.
- The PCI bus driver now configures the MSI and MSI-X address/data
registers directly via custom bus_setup_intr() and bus_teardown_intr()
methods. pci_setup_intr() invokes PCIB_MAP_MSI() to determine the
address and data values for a given message as needed. The MD code
no longer has to call back down into the PCI bus code to set these
values from the nexus' bus_setup_intr() handler.
- The PCI bus code provides a callout (pci_remap_msi_irq()) that the MD
code can call to force the PCI bus to re-invoke PCIB_MAP_MSI() to get
new values of the address and data fields for a given IRQ. The x86
MSI code uses this when an MSI IRQ is moved to a different CPU, requiring
a new value of the 'address' field.
- The x86 MSI psuedo-driver loses a lot of code, and in fact the separate
MSI/MSI-X pseudo-PICs are collapsed down into a single MSI PIC driver
since the only remaining diff between the two is a substring in a
bootverbose printf.
- The PCI bus driver will now restore MSI-X state (including programming
entries in the MSI-X table) on device resume.
- The interface for pci_remap_msix() has changed. Instead of accepting
indices for the allocated vectors, it accepts a mini-virtual table
(with a new length parameter). This table is an array of u_ints, where
each value specifies which allocated message vector to use for the
corresponding MSI-X message. A vector of 0 forces a message to not
have an associated IRQ. The device may choose to only use some of the
IRQs assigned, in which case the unused IRQs must be at the "end" and
will be released back to the system. This allows a driver to use the
same remap table for different shortage values. For example, if a driver
wants 4 messages, it can use the same remap table (which only uses the
first two messages) for the cases when it only gets 2 or 3 messages and
in the latter case the PCI bus will release the 3rd IRQ back to the
system.
MFC after: 1 month
that ints have >= 31 value bits elsewhere. s/int/int32_t/ seems to
have been done too globally for all other files in msun/src before
msun/ was imported into FreeBSD.
Minor fixes in comments.
e_lgamma_r.c:
Describe special cases in more detail:
- exception for lgamma(0) and lgamma(neg.integer)
- lgamma(-Inf) = Inf. This is wrong but is required by C99 Annex F. I
hope to change this.
dependency was introduced because this script had rc.d/localpkg (which is
*after* rc.d/NETWORKING) in its REQUIRE line.
From an examination of its contents it seems that only the availability of
a local filesystem is necessary for this script to function properly.
(1) tgamma(-Inf) returned +Inf and failed to raise any exception, but
should always have raised an exception, and should behave like
tgamma(negative integer).
(2) tgamma(negative integer) returned +Inf and raised divide-by-zero,
but should return NaN and raise "invalid" on any IEEEish system.
(3) About half of the 2**52 negative intgers between -2**53 and -2**52
were misclassified as non-integers by using floor(x + 0.5) to round
to nearest, so tgamma(x) was wrong (+-0 instead of +Inf and now NaN)
on these args. The floor() expression is hard to use since rounding
of (x + 0.5) may give x or x + 1, depending on |x| and the current
rounding mode. The fixed version uses ceil(x) to classify x before
operating on x and ends up being more efficient since ceil(x) is
needed anyway.
(4) On at least the problematic args in (3), tgamma() raised a spurious
inexact.
(5) tgamma(large positive) raised divide-by-zero but should raise overflow.
(6) tgamma(+Inf) raised divide-by-zero but should not raise any exception.
(7) Raise inexact for tiny |x| in a way that has some chance of not being
optimized away.
The fix for (5) and (6), and probably for (2), also prevents -O optimizing
away the exception.
PR: 112180 (2)
Standards: Annex F in C99 (IEC 60559 binding) requires (1), (2) and (6).
values in more detail, and change the style of this comment to be closer
to fdlibm and C99:
- tgamma(-Inf) was undocumented and is wrong (+Inf, should be NaN)
- tgamma(negative integer) is as intended (+Inf) but not best for IEEE-754
(NaN)
- tgamma(-0) was documented as being wrong (+Inf) but was correct (-Inf)
- documentation of setting of exceptions (overflow, etc.) was more
complete here than in most of libm, but was further from matching
the actual setting than in most of libm, due to various bugs here
(primarily, always evaluating +Inf one/zero and getting unwanted
divide-by-zero exceptions from this). Now the actual behaviour with
gcc -O0 is documented. Optimization still breaks setting of exceptions
all over libm, so nothing can depend on this working.
- tgamma(NaN)'s exception was documented as being wrong (invalid) but was
correct (no exception with IEEEish NaNs).
Finish (?) rev.1.5. gamma was not renamed to tgamma in one place.
Finish (?) rev.1.6. errno.h was not completely removed.
set/clear it but would not do it. Now we will.
- Moved to latest socket api for extended sndrcv info struct.
- Moved to support all new levels of fragment interleave (0-2).
- Codenomicon security test updates - length checks and such.
- Bug in stream reset (2 actually).
- setpeerprimary could unlock a null pointer, fixed.
- Added a flag in the pcb so netstat can see if we are listening easier.
Obtained from: (some of the Listen changes from Weongyo Jeong)
pointers. A structure is more readable and less error-prone. It
also avoids problems when a function pointer doesn't have the
same width as a void pointer.
functions with CPUs they apply to only, otherwise default to the
plain C functions. This is modeled in a way so that f.e. a Cheetah
version of these functions can be inserted easily.
Not because I admit they are technically wrong and not because of bug
reports (I receive nothing). But because I surprisingly meets so
strong opposition and resistance so lost any desire to continue that.
Anyone who interested in POSIX can dig out what changes and how
through cvs diffs.
the UPA_IMR2 resource is also shared with/a subset of the Schizo PCI
bus B CSR bank. I'm not entirely sure how this previously managed to
escape testing...
needed to hold the GEOM tree. At this point, pointer 'p' has an improper
value (as it was used previously), and we're getting EFAULT. Fix this
functionality by passing NULL instead of 'p'.
This fixes mdconfig(8) -l output with high number of md(4) devices.
Found by: kris
Reviewed by: phk