5943 lines
161 KiB
C
Raw Normal View History

/******************************************************************************
Copyright (c) 2001-2015, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the name of the Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
******************************************************************************/
/*$FreeBSD$*/
#ifndef IXGBE_STANDALONE_BUILD
#include "opt_inet.h"
#include "opt_inet6.h"
Add initial RSS awareness to the ixgbe(4) driver. The ixgbe(4) hardware is capable of RSS hashing RX packets and doing RSS queue selection for up to 8 queues. However, even if multi-queue is enabled for ixgbe(4), the RX path doesn't use the RSS flowid from the received descriptor. It just uses the MSIX queue id. This patch does a handful of things if RSS is enabled: * Instead of using a random key at boot, fetch the RSS key from the RSS code and program that in to the RSS redirection table. That whole chunk of code should be double checked for endian correctness. * Use the RSS queue mapping to CPU ID to figure out where to thread pin the RX swi thread and the taskqueue threads for each queue. * The software queue is now really an "RSS bucket". * When programming the RSS indirection table, use the RSS code to figure out which RSS bucket each slot in the indirection table maps to. * When transmitting, use the flowid RSS mapping if the mbuf has an RSS aware hash. The existing method wasn't guaranteed to align correctly with the destination RSS bucket (and thus CPU ID.) This code warns if the number of RSS buckets isn't the same as the automatically configured number of hardware queues. The administrator will have to tweak one of them for better performance. There's currently no way to re-balance the RSS indirection table after startup. I'll worry about that later. Additionally, it may be worthwhile to always use the full 32 bit flowid if multi-queue is enabled. It'll make things like lagg(4) behave better with respect to traffic distribution.
2014-06-30 04:38:29 +00:00
#include "opt_rss.h"
#endif
#include "ixgbe.h"
Add initial RSS awareness to the ixgbe(4) driver. The ixgbe(4) hardware is capable of RSS hashing RX packets and doing RSS queue selection for up to 8 queues. However, even if multi-queue is enabled for ixgbe(4), the RX path doesn't use the RSS flowid from the received descriptor. It just uses the MSIX queue id. This patch does a handful of things if RSS is enabled: * Instead of using a random key at boot, fetch the RSS key from the RSS code and program that in to the RSS redirection table. That whole chunk of code should be double checked for endian correctness. * Use the RSS queue mapping to CPU ID to figure out where to thread pin the RX swi thread and the taskqueue threads for each queue. * The software queue is now really an "RSS bucket". * When programming the RSS indirection table, use the RSS code to figure out which RSS bucket each slot in the indirection table maps to. * When transmitting, use the flowid RSS mapping if the mbuf has an RSS aware hash. The existing method wasn't guaranteed to align correctly with the destination RSS bucket (and thus CPU ID.) This code warns if the number of RSS buckets isn't the same as the automatically configured number of hardware queues. The administrator will have to tweak one of them for better performance. There's currently no way to re-balance the RSS indirection table after startup. I'll worry about that later. Additionally, it may be worthwhile to always use the full 32 bit flowid if multi-queue is enabled. It'll make things like lagg(4) behave better with respect to traffic distribution.
2014-06-30 04:38:29 +00:00
#ifdef RSS
#include <net/rss_config.h>
#include <netinet/in_rss.h>
Add initial RSS awareness to the ixgbe(4) driver. The ixgbe(4) hardware is capable of RSS hashing RX packets and doing RSS queue selection for up to 8 queues. However, even if multi-queue is enabled for ixgbe(4), the RX path doesn't use the RSS flowid from the received descriptor. It just uses the MSIX queue id. This patch does a handful of things if RSS is enabled: * Instead of using a random key at boot, fetch the RSS key from the RSS code and program that in to the RSS redirection table. That whole chunk of code should be double checked for endian correctness. * Use the RSS queue mapping to CPU ID to figure out where to thread pin the RX swi thread and the taskqueue threads for each queue. * The software queue is now really an "RSS bucket". * When programming the RSS indirection table, use the RSS code to figure out which RSS bucket each slot in the indirection table maps to. * When transmitting, use the flowid RSS mapping if the mbuf has an RSS aware hash. The existing method wasn't guaranteed to align correctly with the destination RSS bucket (and thus CPU ID.) This code warns if the number of RSS buckets isn't the same as the automatically configured number of hardware queues. The administrator will have to tweak one of them for better performance. There's currently no way to re-balance the RSS indirection table after startup. I'll worry about that later. Additionally, it may be worthwhile to always use the full 32 bit flowid if multi-queue is enabled. It'll make things like lagg(4) behave better with respect to traffic distribution.
2014-06-30 04:38:29 +00:00
#endif
/*********************************************************************
* Driver version
*********************************************************************/
char ixgbe_driver_version[] = "3.1.13-k";
/*********************************************************************
* PCI Device ID Table
*
* Used by probe to select devices to load on
* Last field stores an index into ixgbe_strings
* Last entry must be all 0s
*
* { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
*********************************************************************/
static ixgbe_vendor_info_t ixgbe_vendor_info_array[] =
{
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_82598AF_DUAL_PORT, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_82598AF_SINGLE_PORT, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_82598EB_CX4, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_82598AT, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_82598AT2, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_82598, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_82598_DA_DUAL_PORT, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_82598_CX4_DUAL_PORT, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_82598EB_XF_LR, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_82598EB_SFP_LOM, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_82599_KX4, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_82599_KX4_MEZZ, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_82599_SFP, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_82599_XAUI_LOM, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_82599_CX4, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_82599_T3_LOM, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_82599_COMBO_BACKPLANE, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_82599_BACKPLANE_FCOE, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_82599_SFP_SF2, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_82599_SFP_FCOE, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_82599EN_SFP, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_82599_SFP_SF_QP, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_82599_QSFP_SF_QP, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_X540T, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_X540T1, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_X550T, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_X550T1, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_X550EM_X_KR, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_X550EM_X_KX4, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_X550EM_X_10G_T, 0, 0, 0},
{IXGBE_INTEL_VENDOR_ID, IXGBE_DEV_ID_X550EM_X_SFP, 0, 0, 0},
/* required last entry */
{0, 0, 0, 0, 0}
};
/*********************************************************************
* Table of branding strings
*********************************************************************/
static char *ixgbe_strings[] = {
"Intel(R) PRO/10GbE PCI-Express Network Driver"
};
/*********************************************************************
* Function prototypes
*********************************************************************/
static int ixgbe_probe(device_t);
static int ixgbe_attach(device_t);
static int ixgbe_detach(device_t);
static int ixgbe_shutdown(device_t);
static int ixgbe_suspend(device_t);
static int ixgbe_resume(device_t);
static int ixgbe_ioctl(struct ifnet *, u_long, caddr_t);
static void ixgbe_init(void *);
static void ixgbe_init_locked(struct adapter *);
static void ixgbe_stop(void *);
#if __FreeBSD_version >= 1100036
2014-09-28 07:29:45 +00:00
static uint64_t ixgbe_get_counter(struct ifnet *, ift_counter);
#endif
static void ixgbe_add_media_types(struct adapter *);
static void ixgbe_media_status(struct ifnet *, struct ifmediareq *);
static int ixgbe_media_change(struct ifnet *);
static void ixgbe_identify_hardware(struct adapter *);
static int ixgbe_allocate_pci_resources(struct adapter *);
static void ixgbe_get_slot_info(struct adapter *);
static int ixgbe_allocate_msix(struct adapter *);
static int ixgbe_allocate_legacy(struct adapter *);
static int ixgbe_setup_msix(struct adapter *);
static void ixgbe_free_pci_resources(struct adapter *);
static void ixgbe_local_timer(void *);
static int ixgbe_setup_interface(device_t, struct adapter *);
static void ixgbe_config_gpie(struct adapter *);
static void ixgbe_config_dmac(struct adapter *);
static void ixgbe_config_delay_values(struct adapter *);
static void ixgbe_config_link(struct adapter *);
static void ixgbe_check_wol_support(struct adapter *);
static int ixgbe_setup_low_power_mode(struct adapter *);
static void ixgbe_rearm_queues(struct adapter *, u64);
static void ixgbe_initialize_transmit_units(struct adapter *);
static void ixgbe_initialize_receive_units(struct adapter *);
static void ixgbe_enable_rx_drop(struct adapter *);
static void ixgbe_disable_rx_drop(struct adapter *);
static void ixgbe_initialize_rss_mapping(struct adapter *);
static void ixgbe_enable_intr(struct adapter *);
static void ixgbe_disable_intr(struct adapter *);
static void ixgbe_update_stats_counters(struct adapter *);
static void ixgbe_set_promisc(struct adapter *);
static void ixgbe_set_multi(struct adapter *);
static void ixgbe_update_link_status(struct adapter *);
static void ixgbe_set_ivar(struct adapter *, u8, u8, s8);
static void ixgbe_configure_ivars(struct adapter *);
static u8 * ixgbe_mc_array_itr(struct ixgbe_hw *, u8 **, u32 *);
static void ixgbe_setup_vlan_hw_support(struct adapter *);
static void ixgbe_register_vlan(void *, struct ifnet *, u16);
static void ixgbe_unregister_vlan(void *, struct ifnet *, u16);
static void ixgbe_add_device_sysctls(struct adapter *);
static void ixgbe_add_hw_stats(struct adapter *);
/* Sysctl handlers */
static void ixgbe_set_sysctl_value(struct adapter *, const char *,
const char *, int *, int);
static int ixgbe_set_flowcntl(SYSCTL_HANDLER_ARGS);
static int ixgbe_set_advertise(SYSCTL_HANDLER_ARGS);
static int ixgbe_sysctl_thermal_test(SYSCTL_HANDLER_ARGS);
static int ixgbe_sysctl_dmac(SYSCTL_HANDLER_ARGS);
static int ixgbe_sysctl_phy_temp(SYSCTL_HANDLER_ARGS);
static int ixgbe_sysctl_phy_overtemp_occurred(SYSCTL_HANDLER_ARGS);
#ifdef IXGBE_DEBUG
static int ixgbe_sysctl_power_state(SYSCTL_HANDLER_ARGS);
static int ixgbe_sysctl_print_rss_config(SYSCTL_HANDLER_ARGS);
#endif
static int ixgbe_sysctl_wol_enable(SYSCTL_HANDLER_ARGS);
static int ixgbe_sysctl_wufc(SYSCTL_HANDLER_ARGS);
static int ixgbe_sysctl_eee_enable(SYSCTL_HANDLER_ARGS);
static int ixgbe_sysctl_eee_negotiated(SYSCTL_HANDLER_ARGS);
static int ixgbe_sysctl_eee_rx_lpi_status(SYSCTL_HANDLER_ARGS);
static int ixgbe_sysctl_eee_tx_lpi_status(SYSCTL_HANDLER_ARGS);
static int ixgbe_sysctl_eee_tx_lpi_delay(SYSCTL_HANDLER_ARGS);
/* Support for pluggable optic modules */
static bool ixgbe_sfp_probe(struct adapter *);
static void ixgbe_setup_optics(struct adapter *);
/* Legacy (single vector interrupt handler */
static void ixgbe_legacy_irq(void *);
/* The MSI/X Interrupt handlers */
static void ixgbe_msix_que(void *);
static void ixgbe_msix_link(void *);
/* Deferred interrupt tasklets */
static void ixgbe_handle_que(void *, int);
static void ixgbe_handle_link(void *, int);
static void ixgbe_handle_msf(void *, int);
static void ixgbe_handle_mod(void *, int);
static void ixgbe_handle_phy(void *, int);
#ifdef IXGBE_FDIR
static void ixgbe_reinit_fdir(void *, int);
#endif
#ifdef PCI_IOV
static void ixgbe_ping_all_vfs(struct adapter *);
static void ixgbe_handle_mbx(void *, int);
static int ixgbe_init_iov(device_t, u16, const nvlist_t *);
static void ixgbe_uninit_iov(device_t);
static int ixgbe_add_vf(device_t, u16, const nvlist_t *);
static void ixgbe_initialize_iov(struct adapter *);
static void ixgbe_recalculate_max_frame(struct adapter *);
static void ixgbe_init_vf(struct adapter *, struct ixgbe_vf *);
#endif /* PCI_IOV */
/*********************************************************************
* FreeBSD Device Interface Entry Points
*********************************************************************/
static device_method_t ix_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, ixgbe_probe),
DEVMETHOD(device_attach, ixgbe_attach),
DEVMETHOD(device_detach, ixgbe_detach),
DEVMETHOD(device_shutdown, ixgbe_shutdown),
DEVMETHOD(device_suspend, ixgbe_suspend),
DEVMETHOD(device_resume, ixgbe_resume),
#ifdef PCI_IOV
DEVMETHOD(pci_iov_init, ixgbe_init_iov),
DEVMETHOD(pci_iov_uninit, ixgbe_uninit_iov),
DEVMETHOD(pci_iov_add_vf, ixgbe_add_vf),
#endif /* PCI_IOV */
DEVMETHOD_END
};
static driver_t ix_driver = {
"ix", ix_methods, sizeof(struct adapter),
};
devclass_t ix_devclass;
DRIVER_MODULE(ix, pci, ix_driver, ix_devclass, 0, 0);
MODULE_DEPEND(ix, pci, 1, 1, 1);
MODULE_DEPEND(ix, ether, 1, 1, 1);
2015-07-10 05:51:36 +00:00
#ifdef DEV_NETMAP
MODULE_DEPEND(ix, netmap, 1, 1, 1);
#endif /* DEV_NETMAP */
/*
** TUNEABLE PARAMETERS:
*/
static SYSCTL_NODE(_hw, OID_AUTO, ix, CTLFLAG_RD, 0,
"IXGBE driver parameters");
/*
** AIM: Adaptive Interrupt Moderation
** which means that the interrupt rate
** is varied over time based on the
** traffic for that interrupt vector
*/
static int ixgbe_enable_aim = TRUE;
SYSCTL_INT(_hw_ix, OID_AUTO, enable_aim, CTLFLAG_RWTUN, &ixgbe_enable_aim, 0,
"Enable adaptive interrupt moderation");
static int ixgbe_max_interrupt_rate = (4000000 / IXGBE_LOW_LATENCY);
SYSCTL_INT(_hw_ix, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
&ixgbe_max_interrupt_rate, 0, "Maximum interrupts per second");
/* How many packets rxeof tries to clean at a time */
static int ixgbe_rx_process_limit = 256;
SYSCTL_INT(_hw_ix, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN,
&ixgbe_rx_process_limit, 0,
"Maximum number of received packets to process at a time,"
"-1 means unlimited");
/* How many packets txeof tries to clean at a time */
static int ixgbe_tx_process_limit = 256;
SYSCTL_INT(_hw_ix, OID_AUTO, tx_process_limit, CTLFLAG_RDTUN,
&ixgbe_tx_process_limit, 0,
"Maximum number of sent packets to process at a time,"
"-1 means unlimited");
/*
** Smart speed setting, default to on
** this only works as a compile option
** right now as its during attach, set
** this to 'ixgbe_smart_speed_off' to
** disable.
*/
static int ixgbe_smart_speed = ixgbe_smart_speed_on;
/*
* MSIX should be the default for best performance,
* but this allows it to be forced off for testing.
*/
static int ixgbe_enable_msix = 1;
SYSCTL_INT(_hw_ix, OID_AUTO, enable_msix, CTLFLAG_RDTUN, &ixgbe_enable_msix, 0,
"Enable MSI-X interrupts");
/*
* Number of Queues, can be set to 0,
* it then autoconfigures based on the
* number of cpus with a max of 8. This
* can be overriden manually here.
*/
static int ixgbe_num_queues = 0;
SYSCTL_INT(_hw_ix, OID_AUTO, num_queues, CTLFLAG_RDTUN, &ixgbe_num_queues, 0,
"Number of queues to configure, 0 indicates autoconfigure");
/*
** Number of TX descriptors per ring,
** setting higher than RX as this seems
** the better performing choice.
*/
static int ixgbe_txd = PERFORM_TXD;
SYSCTL_INT(_hw_ix, OID_AUTO, txd, CTLFLAG_RDTUN, &ixgbe_txd, 0,
"Number of transmit descriptors per queue");
/* Number of RX descriptors per ring */
static int ixgbe_rxd = PERFORM_RXD;
SYSCTL_INT(_hw_ix, OID_AUTO, rxd, CTLFLAG_RDTUN, &ixgbe_rxd, 0,
"Number of receive descriptors per queue");
/*
** Defining this on will allow the use
** of unsupported SFP+ modules, note that
** doing so you are on your own :)
*/
static int allow_unsupported_sfp = FALSE;
TUNABLE_INT("hw.ix.unsupported_sfp", &allow_unsupported_sfp);
/* Keep running tab on them for sanity check */
static int ixgbe_total_ports;
#ifdef IXGBE_FDIR
/*
** Flow Director actually 'steals'
** part of the packet buffer as its
** filter pool, this variable controls
** how much it uses:
** 0 = 64K, 1 = 128K, 2 = 256K
*/
static int fdir_pballoc = 1;
#endif
1. Fix the handling of link reset while in netmap more. A link reset now is completely transparent for the netmap client: even if the NIC resets its own ring (e.g. restarting from 0), the client will not see any change in the current rx/tx positions, because the driver will keep track of the offset between the two. 2. make the device-specific code more uniform across different drivers There were some inconsistencies in the implementation of the netmap support routines, now drivers have been aligned to a common code structure. 3. import netmap support for ixgbe . This is implemented as a very small patch for ixgbe.c (233 lines, 11 chunks, mostly comments: in total the patch has only 54 lines of new code) , as most of the code is in an external file sys/dev/netmap/ixgbe_netmap.h , following some initial comments from Jack Vogel about making changes less intrusive. (Note, i have emailed Jack multiple times asking if he had comments on this structure of the code; i got no reply so i assume he is fine with it). Support for other drivers (em, lem, re, igb) will come later. "ixgbe" is now the reference driver for netmap support. Both the external file (sys/dev/netmap/ixgbe_netmap.h) and the device-specific patches (in sys/dev/ixgbe/ixgbe.c) are heavily commented and should serve as a reference for other device drivers. Tested on i386 and amd64 with the pkt-gen program in tools/tools/netmap, the sender does 14.88 Mpps at 1050 Mhz and 14.2 Mpps at 900 MHz on an i7-860 with 4 cores and 82599 card. Haven't tried yet more aggressive optimizations such as adding 'prefetch' instructions in the time-critical parts of the code.
2011-12-05 12:06:53 +00:00
#ifdef DEV_NETMAP
/*
* The #ifdef DEV_NETMAP / #endif blocks in this file are meant to
* be a reference on how to implement netmap support in a driver.
* Additional comments are in ixgbe_netmap.h .
*
2012-05-17 14:36:19 +00:00
* <dev/netmap/ixgbe_netmap.h> contains functions for netmap support
1. Fix the handling of link reset while in netmap more. A link reset now is completely transparent for the netmap client: even if the NIC resets its own ring (e.g. restarting from 0), the client will not see any change in the current rx/tx positions, because the driver will keep track of the offset between the two. 2. make the device-specific code more uniform across different drivers There were some inconsistencies in the implementation of the netmap support routines, now drivers have been aligned to a common code structure. 3. import netmap support for ixgbe . This is implemented as a very small patch for ixgbe.c (233 lines, 11 chunks, mostly comments: in total the patch has only 54 lines of new code) , as most of the code is in an external file sys/dev/netmap/ixgbe_netmap.h , following some initial comments from Jack Vogel about making changes less intrusive. (Note, i have emailed Jack multiple times asking if he had comments on this structure of the code; i got no reply so i assume he is fine with it). Support for other drivers (em, lem, re, igb) will come later. "ixgbe" is now the reference driver for netmap support. Both the external file (sys/dev/netmap/ixgbe_netmap.h) and the device-specific patches (in sys/dev/ixgbe/ixgbe.c) are heavily commented and should serve as a reference for other device drivers. Tested on i386 and amd64 with the pkt-gen program in tools/tools/netmap, the sender does 14.88 Mpps at 1050 Mhz and 14.2 Mpps at 900 MHz on an i7-860 with 4 cores and 82599 card. Haven't tried yet more aggressive optimizations such as adding 'prefetch' instructions in the time-critical parts of the code.
2011-12-05 12:06:53 +00:00
* that extend the standard driver.
*/
#include <dev/netmap/ixgbe_netmap.h>
#endif /* DEV_NETMAP */
static MALLOC_DEFINE(M_IXGBE, "ix", "ix driver allocations");
/*********************************************************************
* Device identification routine
*
* ixgbe_probe determines if the driver should be loaded on
* adapter based on PCI vendor/device id of the adapter.
*
* return BUS_PROBE_DEFAULT on success, positive on failure
*********************************************************************/
static int
ixgbe_probe(device_t dev)
{
ixgbe_vendor_info_t *ent;
u16 pci_vendor_id = 0;
u16 pci_device_id = 0;
u16 pci_subvendor_id = 0;
u16 pci_subdevice_id = 0;
char adapter_name[256];
INIT_DEBUGOUT("ixgbe_probe: begin");
pci_vendor_id = pci_get_vendor(dev);
if (pci_vendor_id != IXGBE_INTEL_VENDOR_ID)
return (ENXIO);
pci_device_id = pci_get_device(dev);
pci_subvendor_id = pci_get_subvendor(dev);
pci_subdevice_id = pci_get_subdevice(dev);
ent = ixgbe_vendor_info_array;
while (ent->vendor_id != 0) {
if ((pci_vendor_id == ent->vendor_id) &&
(pci_device_id == ent->device_id) &&
((pci_subvendor_id == ent->subvendor_id) ||
(ent->subvendor_id == 0)) &&
((pci_subdevice_id == ent->subdevice_id) ||
(ent->subdevice_id == 0))) {
sprintf(adapter_name, "%s, Version - %s",
ixgbe_strings[ent->index],
ixgbe_driver_version);
device_set_desc_copy(dev, adapter_name);
++ixgbe_total_ports;
return (BUS_PROBE_DEFAULT);
}
ent++;
}
return (ENXIO);
}
/*********************************************************************
* Device initialization routine
*
* The attach entry point is called when the driver is being loaded.
* This routine identifies the type of hardware, allocates all resources
* and initializes the hardware.
*
* return 0 on success, positive on failure
*********************************************************************/
static int
ixgbe_attach(device_t dev)
{
struct adapter *adapter;
struct ixgbe_hw *hw;
int error = 0;
u16 csum;
u32 ctrl_ext;
INIT_DEBUGOUT("ixgbe_attach: begin");
/* Allocate, clear, and link in our adapter structure */
adapter = device_get_softc(dev);
adapter->dev = dev;
hw = &adapter->hw;
#ifdef DEV_NETMAP
adapter->init_locked = ixgbe_init_locked;
adapter->stop_locked = ixgbe_stop;
#endif
/* Core Lock Init*/
IXGBE_CORE_LOCK_INIT(adapter, device_get_nameunit(dev));
/* Set up the timer callout */
callout_init_mtx(&adapter->timer, &adapter->core_mtx, 0);
/* Determine hardware revision */
ixgbe_identify_hardware(adapter);
/* Do base PCI setup - map BAR0 */
if (ixgbe_allocate_pci_resources(adapter)) {
device_printf(dev, "Allocation of PCI resources failed\n");
error = ENXIO;
goto err_out;
}
/* Sysctls for limiting the amount of work done in the taskqueues */
ixgbe_set_sysctl_value(adapter, "rx_processing_limit",
"max number of rx packets to process",
&adapter->rx_process_limit, ixgbe_rx_process_limit);
ixgbe_set_sysctl_value(adapter, "tx_processing_limit",
"max number of tx packets to process",
&adapter->tx_process_limit, ixgbe_tx_process_limit);
/* Do descriptor calc and sanity checks */
if (((ixgbe_txd * sizeof(union ixgbe_adv_tx_desc)) % DBA_ALIGN) != 0 ||
ixgbe_txd < MIN_TXD || ixgbe_txd > MAX_TXD) {
device_printf(dev, "TXD config issue, using default!\n");
adapter->num_tx_desc = DEFAULT_TXD;
} else
adapter->num_tx_desc = ixgbe_txd;
/*
** With many RX rings it is easy to exceed the
** system mbuf allocation. Tuning nmbclusters
** can alleviate this.
*/
if (nmbclusters > 0) {
int s;
s = (ixgbe_rxd * adapter->num_queues) * ixgbe_total_ports;
if (s > nmbclusters) {
device_printf(dev, "RX Descriptors exceed "
"system mbuf max, using default instead!\n");
ixgbe_rxd = DEFAULT_RXD;
}
}
if (((ixgbe_rxd * sizeof(union ixgbe_adv_rx_desc)) % DBA_ALIGN) != 0 ||
ixgbe_rxd < MIN_RXD || ixgbe_rxd > MAX_RXD) {
device_printf(dev, "RXD config issue, using default!\n");
adapter->num_rx_desc = DEFAULT_RXD;
} else
adapter->num_rx_desc = ixgbe_rxd;
/* Allocate our TX/RX Queues */
if (ixgbe_allocate_queues(adapter)) {
error = ENOMEM;
goto err_out;
}
/* Allocate multicast array memory. */
adapter->mta = malloc(sizeof(*adapter->mta) *
MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
if (adapter->mta == NULL) {
device_printf(dev, "Can not allocate multicast setup array\n");
error = ENOMEM;
goto err_late;
}
/* Initialize the shared code */
hw->allow_unsupported_sfp = allow_unsupported_sfp;
error = ixgbe_init_shared_code(hw);
if (error == IXGBE_ERR_SFP_NOT_PRESENT) {
/*
** No optics in this port, set up
** so the timer routine will probe
** for later insertion.
*/
adapter->sfp_probe = TRUE;
error = 0;
} else if (error == IXGBE_ERR_SFP_NOT_SUPPORTED) {
device_printf(dev, "Unsupported SFP+ module detected!\n");
error = EIO;
goto err_late;
} else if (error) {
device_printf(dev, "Unable to initialize the shared code\n");
error = EIO;
goto err_late;
}
/* Make sure we have a good EEPROM before we read from it */
if (ixgbe_validate_eeprom_checksum(&adapter->hw, &csum) < 0) {
device_printf(dev, "The EEPROM Checksum Is Not Valid\n");
error = EIO;
goto err_late;
}
error = ixgbe_init_hw(hw);
switch (error) {
case IXGBE_ERR_EEPROM_VERSION:
device_printf(dev, "This device is a pre-production adapter/"
"LOM. Please be aware there may be issues associated "
"with your hardware.\nIf you are experiencing problems "
"please contact your Intel or hardware representative "
"who provided you with this hardware.\n");
break;
case IXGBE_ERR_SFP_NOT_SUPPORTED:
device_printf(dev, "Unsupported SFP+ Module\n");
error = EIO;
goto err_late;
case IXGBE_ERR_SFP_NOT_PRESENT:
device_printf(dev, "No SFP+ Module found\n");
/* falls thru */
default:
break;
}
if ((adapter->msix > 1) && (ixgbe_enable_msix))
error = ixgbe_allocate_msix(adapter);
else
error = ixgbe_allocate_legacy(adapter);
if (error)
goto err_late;
/* Setup OS specific network interface */
if (ixgbe_setup_interface(dev, adapter) != 0)
goto err_late;
/* Initialize statistics */
ixgbe_update_stats_counters(adapter);
/* Register for VLAN events */
adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
ixgbe_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
ixgbe_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
/* Check PCIE slot type/speed/width */
ixgbe_get_slot_info(adapter);
/* Set an initial default flow control & dmac value */
adapter->fc = ixgbe_fc_full;
adapter->dmac = 0;
adapter->eee_enabled = 0;
#ifdef PCI_IOV
if ((hw->mac.type != ixgbe_mac_82598EB) && (adapter->msix > 1)) {
nvlist_t *pf_schema, *vf_schema;
hw->mbx.ops.init_params(hw);
pf_schema = pci_iov_schema_alloc_node();
vf_schema = pci_iov_schema_alloc_node();
pci_iov_schema_add_unicast_mac(vf_schema, "mac-addr", 0, NULL);
pci_iov_schema_add_bool(vf_schema, "mac-anti-spoof",
IOV_SCHEMA_HASDEFAULT, TRUE);
pci_iov_schema_add_bool(vf_schema, "allow-set-mac",
IOV_SCHEMA_HASDEFAULT, FALSE);
pci_iov_schema_add_bool(vf_schema, "allow-promisc",
IOV_SCHEMA_HASDEFAULT, FALSE);
error = pci_iov_attach(dev, pf_schema, vf_schema);
if (error != 0) {
device_printf(dev,
"Error %d setting up SR-IOV\n", error);
}
}
#endif /* PCI_IOV */
/* Check for certain supported features */
ixgbe_check_wol_support(adapter);
/* Add sysctls */
ixgbe_add_device_sysctls(adapter);
ixgbe_add_hw_stats(adapter);
/* let hardware know driver is loaded */
ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
ctrl_ext |= IXGBE_CTRL_EXT_DRV_LOAD;
IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
1. Fix the handling of link reset while in netmap more. A link reset now is completely transparent for the netmap client: even if the NIC resets its own ring (e.g. restarting from 0), the client will not see any change in the current rx/tx positions, because the driver will keep track of the offset between the two. 2. make the device-specific code more uniform across different drivers There were some inconsistencies in the implementation of the netmap support routines, now drivers have been aligned to a common code structure. 3. import netmap support for ixgbe . This is implemented as a very small patch for ixgbe.c (233 lines, 11 chunks, mostly comments: in total the patch has only 54 lines of new code) , as most of the code is in an external file sys/dev/netmap/ixgbe_netmap.h , following some initial comments from Jack Vogel about making changes less intrusive. (Note, i have emailed Jack multiple times asking if he had comments on this structure of the code; i got no reply so i assume he is fine with it). Support for other drivers (em, lem, re, igb) will come later. "ixgbe" is now the reference driver for netmap support. Both the external file (sys/dev/netmap/ixgbe_netmap.h) and the device-specific patches (in sys/dev/ixgbe/ixgbe.c) are heavily commented and should serve as a reference for other device drivers. Tested on i386 and amd64 with the pkt-gen program in tools/tools/netmap, the sender does 14.88 Mpps at 1050 Mhz and 14.2 Mpps at 900 MHz on an i7-860 with 4 cores and 82599 card. Haven't tried yet more aggressive optimizations such as adding 'prefetch' instructions in the time-critical parts of the code.
2011-12-05 12:06:53 +00:00
#ifdef DEV_NETMAP
ixgbe_netmap_attach(adapter);
#endif /* DEV_NETMAP */
INIT_DEBUGOUT("ixgbe_attach: end");
return (0);
err_late:
ixgbe_free_transmit_structures(adapter);
ixgbe_free_receive_structures(adapter);
err_out:
if (adapter->ifp != NULL)
if_free(adapter->ifp);
ixgbe_free_pci_resources(adapter);
free(adapter->mta, M_DEVBUF);
return (error);
}
/*********************************************************************
* Device removal routine
*
* The detach entry point is called when the driver is being removed.
* This routine stops the adapter and deallocates all the resources
* that were allocated for driver operation.
*
* return 0 on success, positive on failure
*********************************************************************/
static int
ixgbe_detach(device_t dev)
{
struct adapter *adapter = device_get_softc(dev);
struct ix_queue *que = adapter->queues;
struct tx_ring *txr = adapter->tx_rings;
u32 ctrl_ext;
INIT_DEBUGOUT("ixgbe_detach: begin");
/* Make sure VLANS are not using driver */
if (adapter->ifp->if_vlantrunk != NULL) {
device_printf(dev,"Vlan in use, detach first\n");
return (EBUSY);
}
#ifdef PCI_IOV
if (pci_iov_detach(dev) != 0) {
device_printf(dev, "SR-IOV in use; detach first.\n");
return (EBUSY);
}
#endif /* PCI_IOV */
ether_ifdetach(adapter->ifp);
/* Stop the adapter */
IXGBE_CORE_LOCK(adapter);
ixgbe_setup_low_power_mode(adapter);
IXGBE_CORE_UNLOCK(adapter);
for (int i = 0; i < adapter->num_queues; i++, que++, txr++) {
if (que->tq) {
#ifndef IXGBE_LEGACY_TX
taskqueue_drain(que->tq, &txr->txq_task);
#endif
taskqueue_drain(que->tq, &que->que_task);
taskqueue_free(que->tq);
}
}
/* Drain the Link queue */
if (adapter->tq) {
taskqueue_drain(adapter->tq, &adapter->link_task);
taskqueue_drain(adapter->tq, &adapter->mod_task);
taskqueue_drain(adapter->tq, &adapter->msf_task);
#ifdef PCI_IOV
taskqueue_drain(adapter->tq, &adapter->mbx_task);
#endif
taskqueue_drain(adapter->tq, &adapter->phy_task);
#ifdef IXGBE_FDIR
taskqueue_drain(adapter->tq, &adapter->fdir_task);
#endif
taskqueue_free(adapter->tq);
}
/* let hardware know driver is unloading */
ctrl_ext = IXGBE_READ_REG(&adapter->hw, IXGBE_CTRL_EXT);
ctrl_ext &= ~IXGBE_CTRL_EXT_DRV_LOAD;
IXGBE_WRITE_REG(&adapter->hw, IXGBE_CTRL_EXT, ctrl_ext);
/* Unregister VLAN events */
if (adapter->vlan_attach != NULL)
EVENTHANDLER_DEREGISTER(vlan_config, adapter->vlan_attach);
if (adapter->vlan_detach != NULL)
EVENTHANDLER_DEREGISTER(vlan_unconfig, adapter->vlan_detach);
callout_drain(&adapter->timer);
1. Fix the handling of link reset while in netmap more. A link reset now is completely transparent for the netmap client: even if the NIC resets its own ring (e.g. restarting from 0), the client will not see any change in the current rx/tx positions, because the driver will keep track of the offset between the two. 2. make the device-specific code more uniform across different drivers There were some inconsistencies in the implementation of the netmap support routines, now drivers have been aligned to a common code structure. 3. import netmap support for ixgbe . This is implemented as a very small patch for ixgbe.c (233 lines, 11 chunks, mostly comments: in total the patch has only 54 lines of new code) , as most of the code is in an external file sys/dev/netmap/ixgbe_netmap.h , following some initial comments from Jack Vogel about making changes less intrusive. (Note, i have emailed Jack multiple times asking if he had comments on this structure of the code; i got no reply so i assume he is fine with it). Support for other drivers (em, lem, re, igb) will come later. "ixgbe" is now the reference driver for netmap support. Both the external file (sys/dev/netmap/ixgbe_netmap.h) and the device-specific patches (in sys/dev/ixgbe/ixgbe.c) are heavily commented and should serve as a reference for other device drivers. Tested on i386 and amd64 with the pkt-gen program in tools/tools/netmap, the sender does 14.88 Mpps at 1050 Mhz and 14.2 Mpps at 900 MHz on an i7-860 with 4 cores and 82599 card. Haven't tried yet more aggressive optimizations such as adding 'prefetch' instructions in the time-critical parts of the code.
2011-12-05 12:06:53 +00:00
#ifdef DEV_NETMAP
netmap_detach(adapter->ifp);
#endif /* DEV_NETMAP */
ixgbe_free_pci_resources(adapter);
bus_generic_detach(dev);
if_free(adapter->ifp);
ixgbe_free_transmit_structures(adapter);
ixgbe_free_receive_structures(adapter);
free(adapter->mta, M_DEVBUF);
IXGBE_CORE_LOCK_DESTROY(adapter);
return (0);
}
/*********************************************************************
*
* Shutdown entry point
*
**********************************************************************/
static int
ixgbe_shutdown(device_t dev)
{
struct adapter *adapter = device_get_softc(dev);
int error = 0;
INIT_DEBUGOUT("ixgbe_shutdown: begin");
IXGBE_CORE_LOCK(adapter);
error = ixgbe_setup_low_power_mode(adapter);
IXGBE_CORE_UNLOCK(adapter);
return (error);
}
/**
* Methods for going from:
* D0 -> D3: ixgbe_suspend
* D3 -> D0: ixgbe_resume
*/
static int
ixgbe_suspend(device_t dev)
{
struct adapter *adapter = device_get_softc(dev);
int error = 0;
INIT_DEBUGOUT("ixgbe_suspend: begin");
IXGBE_CORE_LOCK(adapter);
error = ixgbe_setup_low_power_mode(adapter);
IXGBE_CORE_UNLOCK(adapter);
return (error);
}
static int
ixgbe_resume(device_t dev)
{
struct adapter *adapter = device_get_softc(dev);
struct ifnet *ifp = adapter->ifp;
struct ixgbe_hw *hw = &adapter->hw;
u32 wus;
INIT_DEBUGOUT("ixgbe_resume: begin");
IXGBE_CORE_LOCK(adapter);
/* Read & clear WUS register */
wus = IXGBE_READ_REG(hw, IXGBE_WUS);
if (wus)
device_printf(dev, "Woken up by (WUS): %#010x\n",
IXGBE_READ_REG(hw, IXGBE_WUS));
IXGBE_WRITE_REG(hw, IXGBE_WUS, 0xffffffff);
/* And clear WUFC until next low-power transition */
IXGBE_WRITE_REG(hw, IXGBE_WUFC, 0);
/*
* Required after D3->D0 transition;
* will re-advertise all previous advertised speeds
*/
if (ifp->if_flags & IFF_UP)
ixgbe_init_locked(adapter);
IXGBE_CORE_UNLOCK(adapter);
return (0);
}
/*********************************************************************
* Ioctl entry point
*
* ixgbe_ioctl is called when the user wants to configure the
* interface.
*
* return 0 on success, positive on failure
**********************************************************************/
static int
ixgbe_ioctl(struct ifnet * ifp, u_long command, caddr_t data)
{
struct adapter *adapter = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
#if defined(INET) || defined(INET6)
struct ifaddr *ifa = (struct ifaddr *)data;
#endif
int error = 0;
bool avoid_reset = FALSE;
switch (command) {
case SIOCSIFADDR:
#ifdef INET
if (ifa->ifa_addr->sa_family == AF_INET)
avoid_reset = TRUE;
#endif
#ifdef INET6
if (ifa->ifa_addr->sa_family == AF_INET6)
avoid_reset = TRUE;
#endif
/*
** Calling init results in link renegotiation,
** so we avoid doing it when possible.
*/
if (avoid_reset) {
ifp->if_flags |= IFF_UP;
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
ixgbe_init(adapter);
#ifdef INET
if (!(ifp->if_flags & IFF_NOARP))
arp_ifinit(ifp, ifa);
#endif
} else
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFMTU:
IOCTL_DEBUGOUT("ioctl: SIOCSIFMTU (Set Interface MTU)");
if (ifr->ifr_mtu > IXGBE_MAX_MTU) {
error = EINVAL;
} else {
IXGBE_CORE_LOCK(adapter);
ifp->if_mtu = ifr->ifr_mtu;
adapter->max_frame_size =
ifp->if_mtu + IXGBE_MTU_HDR;
ixgbe_init_locked(adapter);
#ifdef PCI_IOV
ixgbe_recalculate_max_frame(adapter);
#endif
IXGBE_CORE_UNLOCK(adapter);
}
break;
case SIOCSIFFLAGS:
IOCTL_DEBUGOUT("ioctl: SIOCSIFFLAGS (Set Interface Flags)");
IXGBE_CORE_LOCK(adapter);
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
if ((ifp->if_flags ^ adapter->if_flags) &
(IFF_PROMISC | IFF_ALLMULTI)) {
ixgbe_set_promisc(adapter);
}
} else
ixgbe_init_locked(adapter);
} else
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
ixgbe_stop(adapter);
adapter->if_flags = ifp->if_flags;
IXGBE_CORE_UNLOCK(adapter);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
IOCTL_DEBUGOUT("ioctl: SIOC(ADD|DEL)MULTI");
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
IXGBE_CORE_LOCK(adapter);
ixgbe_disable_intr(adapter);
ixgbe_set_multi(adapter);
ixgbe_enable_intr(adapter);
IXGBE_CORE_UNLOCK(adapter);
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
IOCTL_DEBUGOUT("ioctl: SIOCxIFMEDIA (Get/Set Interface Media)");
error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
break;
case SIOCSIFCAP:
{
IOCTL_DEBUGOUT("ioctl: SIOCSIFCAP (Set Capabilities)");
int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if (!mask)
break;
/* HW cannot turn these on/off separately */
if (mask & (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6)) {
ifp->if_capenable ^= IFCAP_RXCSUM;
ifp->if_capenable ^= IFCAP_RXCSUM_IPV6;
}
if (mask & IFCAP_TXCSUM)
ifp->if_capenable ^= IFCAP_TXCSUM;
if (mask & IFCAP_TXCSUM_IPV6)
ifp->if_capenable ^= IFCAP_TXCSUM_IPV6;
if (mask & IFCAP_TSO4)
ifp->if_capenable ^= IFCAP_TSO4;
if (mask & IFCAP_TSO6)
ifp->if_capenable ^= IFCAP_TSO6;
if (mask & IFCAP_LRO)
ifp->if_capenable ^= IFCAP_LRO;
if (mask & IFCAP_VLAN_HWTAGGING)
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
if (mask & IFCAP_VLAN_HWFILTER)
ifp->if_capenable ^= IFCAP_VLAN_HWFILTER;
if (mask & IFCAP_VLAN_HWTSO)
ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
IXGBE_CORE_LOCK(adapter);
ixgbe_init_locked(adapter);
IXGBE_CORE_UNLOCK(adapter);
}
VLAN_CAPABILITIES(ifp);
break;
}
#if __FreeBSD_version >= 1100036
case SIOCGI2C:
{
struct ixgbe_hw *hw = &adapter->hw;
struct ifi2creq i2c;
int i;
IOCTL_DEBUGOUT("ioctl: SIOCGI2C (Get I2C Data)");
error = copyin(ifr->ifr_data, &i2c, sizeof(i2c));
if (error != 0)
break;
if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
error = EINVAL;
break;
}
if (i2c.len > sizeof(i2c.data)) {
error = EINVAL;
break;
}
for (i = 0; i < i2c.len; i++)
hw->phy.ops.read_i2c_byte(hw, i2c.offset + i,
i2c.dev_addr, &i2c.data[i]);
error = copyout(&i2c, ifr->ifr_data, sizeof(i2c));
break;
}
#endif
default:
IOCTL_DEBUGOUT1("ioctl: UNKNOWN (0x%X)\n", (int)command);
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
/*
* Set the various hardware offload abilities.
*
* This takes the ifnet's if_capenable flags (e.g. set by the user using
* ifconfig) and indicates to the OS via the ifnet's if_hwassist field what
* mbuf offload flags the driver will understand.
*/
static void
ixgbe_set_if_hwassist(struct adapter *adapter)
{
struct ifnet *ifp = adapter->ifp;
ifp->if_hwassist = 0;
#if __FreeBSD_version >= 1000000
if (ifp->if_capenable & IFCAP_TSO4)
ifp->if_hwassist |= CSUM_IP_TSO;
if (ifp->if_capenable & IFCAP_TSO6)
ifp->if_hwassist |= CSUM_IP6_TSO;
if (ifp->if_capenable & IFCAP_TXCSUM)
ifp->if_hwassist |= (CSUM_IP | CSUM_IP_UDP | CSUM_IP_TCP |
CSUM_IP_SCTP);
if (ifp->if_capenable & IFCAP_TXCSUM_IPV6)
ifp->if_hwassist |= (CSUM_IP6_UDP | CSUM_IP6_TCP |
CSUM_IP6_SCTP);
#else
if (ifp->if_capenable & IFCAP_TSO)
ifp->if_hwassist |= CSUM_TSO;
if (ifp->if_capenable & IFCAP_TXCSUM) {
ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP);
struct ixgbe_hw *hw = &adapter->hw;
if (hw->mac.type != ixgbe_mac_82598EB)
ifp->if_hwassist |= CSUM_SCTP;
}
#endif
}
/*********************************************************************
* Init entry point
*
* This routine is used in two ways. It is used by the stack as
* init entry point in network interface structure. It is also used
* by the driver as a hw/sw initialization routine to get to a
* consistent state.
*
* return 0 on success, positive on failure
**********************************************************************/
#define IXGBE_MHADD_MFS_SHIFT 16
static void
ixgbe_init_locked(struct adapter *adapter)
{
struct ifnet *ifp = adapter->ifp;
device_t dev = adapter->dev;
struct ixgbe_hw *hw = &adapter->hw;
struct tx_ring *txr;
struct rx_ring *rxr;
u32 txdctl, mhadd;
u32 rxdctl, rxctrl;
int err = 0;
#ifdef PCI_IOV
enum ixgbe_iov_mode mode;
#endif
mtx_assert(&adapter->core_mtx, MA_OWNED);
INIT_DEBUGOUT("ixgbe_init_locked: begin");
hw->adapter_stopped = FALSE;
ixgbe_stop_adapter(hw);
callout_stop(&adapter->timer);
#ifdef PCI_IOV
mode = ixgbe_get_iov_mode(adapter);
adapter->pool = ixgbe_max_vfs(mode);
/* Queue indices may change with IOV mode */
for (int i = 0; i < adapter->num_queues; i++) {
adapter->rx_rings[i].me = ixgbe_pf_que_index(mode, i);
adapter->tx_rings[i].me = ixgbe_pf_que_index(mode, i);
}
#endif
/* reprogram the RAR[0] in case user changed it. */
ixgbe_set_rar(hw, 0, hw->mac.addr, adapter->pool, IXGBE_RAH_AV);
/* Get the latest mac address, User can use a LAA */
bcopy(IF_LLADDR(ifp), hw->mac.addr, IXGBE_ETH_LENGTH_OF_ADDRESS);
ixgbe_set_rar(hw, 0, hw->mac.addr, adapter->pool, 1);
hw->addr_ctrl.rar_used_count = 1;
/* Set hardware offload abilities from ifnet flags */
ixgbe_set_if_hwassist(adapter);
/* Prepare transmit descriptors and buffers */
if (ixgbe_setup_transmit_structures(adapter)) {
device_printf(dev, "Could not setup transmit structures\n");
ixgbe_stop(adapter);
return;
}
ixgbe_init_hw(hw);
#ifdef PCI_IOV
ixgbe_initialize_iov(adapter);
#endif
ixgbe_initialize_transmit_units(adapter);
/* Setup Multicast table */
ixgbe_set_multi(adapter);
/* Determine the correct mbuf pool, based on frame size */
if (adapter->max_frame_size <= MCLBYTES)
adapter->rx_mbuf_sz = MCLBYTES;
else
adapter->rx_mbuf_sz = MJUMPAGESIZE;
/* Prepare receive descriptors and buffers */
if (ixgbe_setup_receive_structures(adapter)) {
device_printf(dev, "Could not setup receive structures\n");
ixgbe_stop(adapter);
return;
}
/* Configure RX settings */
ixgbe_initialize_receive_units(adapter);
/* Enable SDP & MSIX interrupts based on adapter */
ixgbe_config_gpie(adapter);
/* Set MTU size */
if (ifp->if_mtu > ETHERMTU) {
/* aka IXGBE_MAXFRS on 82599 and newer */
mhadd = IXGBE_READ_REG(hw, IXGBE_MHADD);
mhadd &= ~IXGBE_MHADD_MFS_MASK;
mhadd |= adapter->max_frame_size << IXGBE_MHADD_MFS_SHIFT;
IXGBE_WRITE_REG(hw, IXGBE_MHADD, mhadd);
}
/* Now enable all the queues */
for (int i = 0; i < adapter->num_queues; i++) {
txr = &adapter->tx_rings[i];
txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txr->me));
txdctl |= IXGBE_TXDCTL_ENABLE;
/* Set WTHRESH to 8, burst writeback */
txdctl |= (8 << 16);
/*
* When the internal queue falls below PTHRESH (32),
* start prefetching as long as there are at least
* HTHRESH (1) buffers ready. The values are taken
* from the Intel linux driver 3.8.21.
* Prefetching enables tx line rate even with 1 queue.
*/
txdctl |= (32 << 0) | (1 << 8);
IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txr->me), txdctl);
}
for (int i = 0, j = 0; i < adapter->num_queues; i++) {
rxr = &adapter->rx_rings[i];
rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxr->me));
if (hw->mac.type == ixgbe_mac_82598EB) {
/*
** PTHRESH = 21
** HTHRESH = 4
** WTHRESH = 8
*/
rxdctl &= ~0x3FFFFF;
rxdctl |= 0x080420;
}
rxdctl |= IXGBE_RXDCTL_ENABLE;
IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(rxr->me), rxdctl);
for (; j < 10; j++) {
if (IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxr->me)) &
IXGBE_RXDCTL_ENABLE)
break;
else
msec_delay(1);
}
wmb();
#ifdef DEV_NETMAP
/*
* In netmap mode, we must preserve the buffers made
* available to userspace before the if_init()
* (this is true by default on the TX side, because
* init makes all buffers available to userspace).
*
* netmap_reset() and the device specific routines
* (e.g. ixgbe_setup_receive_rings()) map these
* buffers at the end of the NIC ring, so here we
* must set the RDT (tail) register to make sure
* they are not overwritten.
*
* In this driver the NIC ring starts at RDH = 0,
* RDT points to the last slot available for reception (?),
* so RDT = num_rx_desc - 1 means the whole ring is available.
*/
if (ifp->if_capenable & IFCAP_NETMAP) {
struct netmap_adapter *na = NA(adapter->ifp);
struct netmap_kring *kring = &na->rx_rings[i];
int t = na->num_rx_desc - 1 - nm_kr_rxspace(kring);
IXGBE_WRITE_REG(hw, IXGBE_RDT(rxr->me), t);
} else
#endif /* DEV_NETMAP */
IXGBE_WRITE_REG(hw, IXGBE_RDT(rxr->me), adapter->num_rx_desc - 1);
}
/* Enable Receive engine */
rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
if (hw->mac.type == ixgbe_mac_82598EB)
rxctrl |= IXGBE_RXCTRL_DMBYPS;
rxctrl |= IXGBE_RXCTRL_RXEN;
ixgbe_enable_rx_dma(hw, rxctrl);
callout_reset(&adapter->timer, hz, ixgbe_local_timer, adapter);
/* Set up MSI/X routing */
if (ixgbe_enable_msix) {
ixgbe_configure_ivars(adapter);
/* Set up auto-mask */
if (hw->mac.type == ixgbe_mac_82598EB)
IXGBE_WRITE_REG(hw, IXGBE_EIAM, IXGBE_EICS_RTX_QUEUE);
else {
IXGBE_WRITE_REG(hw, IXGBE_EIAM_EX(0), 0xFFFFFFFF);
IXGBE_WRITE_REG(hw, IXGBE_EIAM_EX(1), 0xFFFFFFFF);
}
} else { /* Simple settings for Legacy/MSI */
ixgbe_set_ivar(adapter, 0, 0, 0);
ixgbe_set_ivar(adapter, 0, 0, 1);
IXGBE_WRITE_REG(hw, IXGBE_EIAM, IXGBE_EICS_RTX_QUEUE);
}
#ifdef IXGBE_FDIR
/* Init Flow director */
if (hw->mac.type != ixgbe_mac_82598EB) {
u32 hdrm = 32 << fdir_pballoc;
hw->mac.ops.setup_rxpba(hw, 0, hdrm, PBA_STRATEGY_EQUAL);
ixgbe_init_fdir_signature_82599(&adapter->hw, fdir_pballoc);
}
#endif
/*
* Check on any SFP devices that
* need to be kick-started
*/
if (hw->phy.type == ixgbe_phy_none) {
err = hw->phy.ops.identify(hw);
if (err == IXGBE_ERR_SFP_NOT_SUPPORTED) {
device_printf(dev,
"Unsupported SFP+ module type was detected.\n");
return;
}
}
/* Set moderation on the Link interrupt */
IXGBE_WRITE_REG(hw, IXGBE_EITR(adapter->vector), IXGBE_LINK_ITR);
/* Configure Energy Efficient Ethernet for supported devices */
if (hw->mac.ops.setup_eee) {
err = hw->mac.ops.setup_eee(hw, adapter->eee_enabled);
if (err)
device_printf(dev, "Error setting up EEE: %d\n", err);
}
/* Config/Enable Link */
ixgbe_config_link(adapter);
/* Hardware Packet Buffer & Flow Control setup */
ixgbe_config_delay_values(adapter);
/* Initialize the FC settings */
ixgbe_start_hw(hw);
/* Set up VLAN support and filter */
ixgbe_setup_vlan_hw_support(adapter);
/* Setup DMA Coalescing */
ixgbe_config_dmac(adapter);
/* And now turn on interrupts */
ixgbe_enable_intr(adapter);
#ifdef PCI_IOV
/* Enable the use of the MBX by the VF's */
{
u32 reg = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
reg |= IXGBE_CTRL_EXT_PFRSTD;
IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, reg);
}
#endif
/* Now inform the stack we're ready */
ifp->if_drv_flags |= IFF_DRV_RUNNING;
return;
}
static void
ixgbe_init(void *arg)
{
struct adapter *adapter = arg;
IXGBE_CORE_LOCK(adapter);
ixgbe_init_locked(adapter);
IXGBE_CORE_UNLOCK(adapter);
return;
}
static void
ixgbe_config_gpie(struct adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
u32 gpie;
gpie = IXGBE_READ_REG(hw, IXGBE_GPIE);
/* Fan Failure Interrupt */
if (hw->device_id == IXGBE_DEV_ID_82598AT)
gpie |= IXGBE_SDP1_GPIEN;
/*
* Module detection (SDP2)
* Media ready (SDP1)
*/
if (hw->mac.type == ixgbe_mac_82599EB) {
gpie |= IXGBE_SDP2_GPIEN;
if (hw->device_id != IXGBE_DEV_ID_82599_QSFP_SF_QP)
gpie |= IXGBE_SDP1_GPIEN;
}
/*
* Thermal Failure Detection (X540)
* Link Detection (X552 SFP+, X552/X557-AT)
*/
if (hw->mac.type == ixgbe_mac_X540 ||
hw->device_id == IXGBE_DEV_ID_X550EM_X_SFP ||
hw->device_id == IXGBE_DEV_ID_X550EM_X_10G_T)
gpie |= IXGBE_SDP0_GPIEN_X540;
if (adapter->msix > 1) {
/* Enable Enhanced MSIX mode */
gpie |= IXGBE_GPIE_MSIX_MODE;
gpie |= IXGBE_GPIE_EIAME | IXGBE_GPIE_PBA_SUPPORT |
IXGBE_GPIE_OCD;
}
IXGBE_WRITE_REG(hw, IXGBE_GPIE, gpie);
return;
}
/*
* Requires adapter->max_frame_size to be set.
*/
static void
ixgbe_config_delay_values(struct adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
u32 rxpb, frame, size, tmp;
frame = adapter->max_frame_size;
/* Calculate High Water */
switch (hw->mac.type) {
case ixgbe_mac_X540:
case ixgbe_mac_X550:
case ixgbe_mac_X550EM_x:
tmp = IXGBE_DV_X540(frame, frame);
break;
default:
tmp = IXGBE_DV(frame, frame);
break;
}
size = IXGBE_BT2KB(tmp);
rxpb = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(0)) >> 10;
hw->fc.high_water[0] = rxpb - size;
/* Now calculate Low Water */
switch (hw->mac.type) {
case ixgbe_mac_X540:
case ixgbe_mac_X550:
case ixgbe_mac_X550EM_x:
tmp = IXGBE_LOW_DV_X540(frame);
break;
default:
tmp = IXGBE_LOW_DV(frame);
break;
}
hw->fc.low_water[0] = IXGBE_BT2KB(tmp);
hw->fc.requested_mode = adapter->fc;
hw->fc.pause_time = IXGBE_FC_PAUSE;
hw->fc.send_xon = TRUE;
}
/*
**
** MSIX Interrupt Handlers and Tasklets
**
*/
static inline void
ixgbe_enable_queue(struct adapter *adapter, u32 vector)
{
struct ixgbe_hw *hw = &adapter->hw;
u64 queue = (u64)(1 << vector);
u32 mask;
if (hw->mac.type == ixgbe_mac_82598EB) {
mask = (IXGBE_EIMS_RTX_QUEUE & queue);
IXGBE_WRITE_REG(hw, IXGBE_EIMS, mask);
} else {
mask = (queue & 0xFFFFFFFF);
if (mask)
IXGBE_WRITE_REG(hw, IXGBE_EIMS_EX(0), mask);
mask = (queue >> 32);
if (mask)
IXGBE_WRITE_REG(hw, IXGBE_EIMS_EX(1), mask);
}
}
static inline void
ixgbe_disable_queue(struct adapter *adapter, u32 vector)
{
struct ixgbe_hw *hw = &adapter->hw;
u64 queue = (u64)(1 << vector);
u32 mask;
if (hw->mac.type == ixgbe_mac_82598EB) {
mask = (IXGBE_EIMS_RTX_QUEUE & queue);
IXGBE_WRITE_REG(hw, IXGBE_EIMC, mask);
} else {
mask = (queue & 0xFFFFFFFF);
if (mask)
IXGBE_WRITE_REG(hw, IXGBE_EIMC_EX(0), mask);
mask = (queue >> 32);
if (mask)
IXGBE_WRITE_REG(hw, IXGBE_EIMC_EX(1), mask);
}
}
static void
ixgbe_handle_que(void *context, int pending)
{
struct ix_queue *que = context;
struct adapter *adapter = que->adapter;
struct tx_ring *txr = que->txr;
struct ifnet *ifp = adapter->ifp;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
ixgbe_rxeof(que);
IXGBE_TX_LOCK(txr);
ixgbe_txeof(txr);
#ifndef IXGBE_LEGACY_TX
if (!drbr_empty(ifp, txr->br))
ixgbe_mq_start_locked(ifp, txr);
#else
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
ixgbe_start_locked(txr, ifp);
#endif
IXGBE_TX_UNLOCK(txr);
}
/* Reenable this interrupt */
if (que->res != NULL)
ixgbe_enable_queue(adapter, que->msix);
else
ixgbe_enable_intr(adapter);
return;
}
/*********************************************************************
*
* Legacy Interrupt Service routine
*
**********************************************************************/
static void
ixgbe_legacy_irq(void *arg)
{
struct ix_queue *que = arg;
struct adapter *adapter = que->adapter;
struct ixgbe_hw *hw = &adapter->hw;
struct ifnet *ifp = adapter->ifp;
struct tx_ring *txr = adapter->tx_rings;
bool more;
u32 reg_eicr;
reg_eicr = IXGBE_READ_REG(hw, IXGBE_EICR);
++que->irqs;
if (reg_eicr == 0) {
ixgbe_enable_intr(adapter);
return;
}
more = ixgbe_rxeof(que);
IXGBE_TX_LOCK(txr);
ixgbe_txeof(txr);
#ifdef IXGBE_LEGACY_TX
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
ixgbe_start_locked(txr, ifp);
#else
if (!drbr_empty(ifp, txr->br))
ixgbe_mq_start_locked(ifp, txr);
#endif
IXGBE_TX_UNLOCK(txr);
/* Check for fan failure */
if ((hw->device_id == IXGBE_DEV_ID_82598AT) &&
(reg_eicr & IXGBE_EICR_GPI_SDP1)) {
device_printf(adapter->dev, "\nCRITICAL: FAN FAILURE!! "
"REPLACE IMMEDIATELY!!\n");
IXGBE_WRITE_REG(hw, IXGBE_EIMS, IXGBE_EICR_GPI_SDP1_BY_MAC(hw));
}
/* Link status change */
if (reg_eicr & IXGBE_EICR_LSC)
taskqueue_enqueue(adapter->tq, &adapter->link_task);
/* External PHY interrupt */
if (hw->device_id == IXGBE_DEV_ID_X550EM_X_10G_T &&
(reg_eicr & IXGBE_EICR_GPI_SDP0_X540))
taskqueue_enqueue(adapter->tq, &adapter->phy_task);
if (more)
taskqueue_enqueue(que->tq, &que->que_task);
else
ixgbe_enable_intr(adapter);
return;
}
/*********************************************************************
*
* MSIX Queue Interrupt Service routine
*
**********************************************************************/
void
ixgbe_msix_que(void *arg)
{
struct ix_queue *que = arg;
struct adapter *adapter = que->adapter;
struct ifnet *ifp = adapter->ifp;
struct tx_ring *txr = que->txr;
struct rx_ring *rxr = que->rxr;
bool more;
u32 newitr = 0;
/* Protect against spurious interrupts */
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return;
ixgbe_disable_queue(adapter, que->msix);
++que->irqs;
more = ixgbe_rxeof(que);
IXGBE_TX_LOCK(txr);
ixgbe_txeof(txr);
#ifdef IXGBE_LEGACY_TX
if (!IFQ_DRV_IS_EMPTY(ifp->if_snd))
ixgbe_start_locked(txr, ifp);
#else
if (!drbr_empty(ifp, txr->br))
ixgbe_mq_start_locked(ifp, txr);
#endif
IXGBE_TX_UNLOCK(txr);
/* Do AIM now? */
if (ixgbe_enable_aim == FALSE)
goto no_calc;
/*
** Do Adaptive Interrupt Moderation:
** - Write out last calculated setting
** - Calculate based on average size over
** the last interval.
*/
if (que->eitr_setting)
IXGBE_WRITE_REG(&adapter->hw,
IXGBE_EITR(que->msix), que->eitr_setting);
que->eitr_setting = 0;
/* Idle, do nothing */
if ((txr->bytes == 0) && (rxr->bytes == 0))
goto no_calc;
if ((txr->bytes) && (txr->packets))
newitr = txr->bytes/txr->packets;
if ((rxr->bytes) && (rxr->packets))
newitr = max(newitr,
(rxr->bytes / rxr->packets));
newitr += 24; /* account for hardware frame, crc */
/* set an upper boundary */
newitr = min(newitr, 3000);
/* Be nice to the mid range */
if ((newitr > 300) && (newitr < 1200))
newitr = (newitr / 3);
else
newitr = (newitr / 2);
if (adapter->hw.mac.type == ixgbe_mac_82598EB)
newitr |= newitr << 16;
else
newitr |= IXGBE_EITR_CNT_WDIS;
/* save for next interrupt */
que->eitr_setting = newitr;
/* Reset state */
txr->bytes = 0;
txr->packets = 0;
rxr->bytes = 0;
rxr->packets = 0;
no_calc:
if (more)
taskqueue_enqueue(que->tq, &que->que_task);
else
ixgbe_enable_queue(adapter, que->msix);
return;
}
static void
ixgbe_msix_link(void *arg)
{
struct adapter *adapter = arg;
struct ixgbe_hw *hw = &adapter->hw;
u32 reg_eicr, mod_mask;
++adapter->link_irq;
/* Pause other interrupts */
IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_EIMC_OTHER);
/* First get the cause */
reg_eicr = IXGBE_READ_REG(hw, IXGBE_EICS);
/* Be sure the queue bits are not cleared */
reg_eicr &= ~IXGBE_EICR_RTX_QUEUE;
/* Clear interrupt with write */
IXGBE_WRITE_REG(hw, IXGBE_EICR, reg_eicr);
/* Link status change */
if (reg_eicr & IXGBE_EICR_LSC) {
IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_EIMC_LSC);
taskqueue_enqueue(adapter->tq, &adapter->link_task);
}
if (adapter->hw.mac.type != ixgbe_mac_82598EB) {
#ifdef IXGBE_FDIR
if (reg_eicr & IXGBE_EICR_FLOW_DIR) {
/* This is probably overkill :) */
if (!atomic_cmpset_int(&adapter->fdir_reinit, 0, 1))
return;
/* Disable the interrupt */
IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_EICR_FLOW_DIR);
taskqueue_enqueue(adapter->tq, &adapter->fdir_task);
} else
#endif
if (reg_eicr & IXGBE_EICR_ECC) {
device_printf(adapter->dev, "CRITICAL: ECC ERROR!! "
"Please Reboot!!\n");
IXGBE_WRITE_REG(hw, IXGBE_EICR, IXGBE_EICR_ECC);
}
/* Check for over temp condition */
if (reg_eicr & IXGBE_EICR_TS) {
device_printf(adapter->dev, "CRITICAL: OVER TEMP!! "
"PHY IS SHUT DOWN!!\n");
device_printf(adapter->dev, "System shutdown required!\n");
IXGBE_WRITE_REG(hw, IXGBE_EICR, IXGBE_EICR_TS);
}
#ifdef PCI_IOV
if (reg_eicr & IXGBE_EICR_MAILBOX)
taskqueue_enqueue(adapter->tq, &adapter->mbx_task);
#endif
}
/* Pluggable optics-related interrupt */
if (hw->device_id == IXGBE_DEV_ID_X550EM_X_SFP)
mod_mask = IXGBE_EICR_GPI_SDP0_X540;
else
mod_mask = IXGBE_EICR_GPI_SDP2_BY_MAC(hw);
if (ixgbe_is_sfp(hw)) {
if (reg_eicr & IXGBE_EICR_GPI_SDP1_BY_MAC(hw)) {
IXGBE_WRITE_REG(hw, IXGBE_EICR, IXGBE_EICR_GPI_SDP1_BY_MAC(hw));
taskqueue_enqueue(adapter->tq, &adapter->msf_task);
} else if (reg_eicr & mod_mask) {
IXGBE_WRITE_REG(hw, IXGBE_EICR, mod_mask);
taskqueue_enqueue(adapter->tq, &adapter->mod_task);
}
}
/* Check for fan failure */
if ((hw->device_id == IXGBE_DEV_ID_82598AT) &&
(reg_eicr & IXGBE_EICR_GPI_SDP1)) {
IXGBE_WRITE_REG(hw, IXGBE_EICR, IXGBE_EICR_GPI_SDP1);
device_printf(adapter->dev, "\nCRITICAL: FAN FAILURE!! "
"REPLACE IMMEDIATELY!!\n");
}
/* External PHY interrupt */
if (hw->device_id == IXGBE_DEV_ID_X550EM_X_10G_T &&
(reg_eicr & IXGBE_EICR_GPI_SDP0_X540)) {
IXGBE_WRITE_REG(hw, IXGBE_EICR, IXGBE_EICR_GPI_SDP0_X540);
taskqueue_enqueue(adapter->tq, &adapter->phy_task);
}
/* Re-enable other interrupts */
IXGBE_WRITE_REG(&adapter->hw, IXGBE_EIMS, IXGBE_EIMS_OTHER);
return;
}
/*********************************************************************
*
* Media Ioctl callback
*
* This routine is called whenever the user queries the status of
* the interface using ifconfig.
*
**********************************************************************/
static void
ixgbe_media_status(struct ifnet * ifp, struct ifmediareq * ifmr)
{
struct adapter *adapter = ifp->if_softc;
struct ixgbe_hw *hw = &adapter->hw;
int layer;
INIT_DEBUGOUT("ixgbe_media_status: begin");
IXGBE_CORE_LOCK(adapter);
ixgbe_update_link_status(adapter);
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
if (!adapter->link_active) {
IXGBE_CORE_UNLOCK(adapter);
return;
}
ifmr->ifm_status |= IFM_ACTIVE;
layer = adapter->phy_layer;
if (layer & IXGBE_PHYSICAL_LAYER_10GBASE_T ||
layer & IXGBE_PHYSICAL_LAYER_1000BASE_T ||
layer & IXGBE_PHYSICAL_LAYER_100BASE_TX)
switch (adapter->link_speed) {
case IXGBE_LINK_SPEED_10GB_FULL:
ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
break;
case IXGBE_LINK_SPEED_1GB_FULL:
ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
break;
case IXGBE_LINK_SPEED_100_FULL:
ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
break;
}
if (layer & IXGBE_PHYSICAL_LAYER_SFP_PLUS_CU ||
layer & IXGBE_PHYSICAL_LAYER_SFP_ACTIVE_DA)
switch (adapter->link_speed) {
case IXGBE_LINK_SPEED_10GB_FULL:
ifmr->ifm_active |= IFM_10G_TWINAX | IFM_FDX;
break;
}
if (layer & IXGBE_PHYSICAL_LAYER_10GBASE_LR)
switch (adapter->link_speed) {
case IXGBE_LINK_SPEED_10GB_FULL:
ifmr->ifm_active |= IFM_10G_LR | IFM_FDX;
break;
case IXGBE_LINK_SPEED_1GB_FULL:
ifmr->ifm_active |= IFM_1000_LX | IFM_FDX;
break;
}
if (layer & IXGBE_PHYSICAL_LAYER_10GBASE_LRM)
switch (adapter->link_speed) {
case IXGBE_LINK_SPEED_10GB_FULL:
ifmr->ifm_active |= IFM_10G_LRM | IFM_FDX;
break;
case IXGBE_LINK_SPEED_1GB_FULL:
ifmr->ifm_active |= IFM_1000_LX | IFM_FDX;
break;
}
if (layer & IXGBE_PHYSICAL_LAYER_10GBASE_SR ||
layer & IXGBE_PHYSICAL_LAYER_1000BASE_SX)
switch (adapter->link_speed) {
case IXGBE_LINK_SPEED_10GB_FULL:
ifmr->ifm_active |= IFM_10G_SR | IFM_FDX;
break;
case IXGBE_LINK_SPEED_1GB_FULL:
ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
break;
}
if (layer & IXGBE_PHYSICAL_LAYER_10GBASE_CX4)
switch (adapter->link_speed) {
case IXGBE_LINK_SPEED_10GB_FULL:
ifmr->ifm_active |= IFM_10G_CX4 | IFM_FDX;
break;
}
/*
** XXX: These need to use the proper media types once
** they're added.
*/
#ifndef IFM_ETH_XTYPE
if (layer & IXGBE_PHYSICAL_LAYER_10GBASE_KR)
switch (adapter->link_speed) {
case IXGBE_LINK_SPEED_10GB_FULL:
ifmr->ifm_active |= IFM_10G_SR | IFM_FDX;
break;
case IXGBE_LINK_SPEED_2_5GB_FULL:
ifmr->ifm_active |= IFM_2500_SX | IFM_FDX;
break;
case IXGBE_LINK_SPEED_1GB_FULL:
ifmr->ifm_active |= IFM_1000_CX | IFM_FDX;
break;
}
else if (layer & IXGBE_PHYSICAL_LAYER_10GBASE_KX4
|| layer & IXGBE_PHYSICAL_LAYER_1000BASE_KX)
switch (adapter->link_speed) {
case IXGBE_LINK_SPEED_10GB_FULL:
ifmr->ifm_active |= IFM_10G_CX4 | IFM_FDX;
break;
case IXGBE_LINK_SPEED_2_5GB_FULL:
ifmr->ifm_active |= IFM_2500_SX | IFM_FDX;
break;
case IXGBE_LINK_SPEED_1GB_FULL:
ifmr->ifm_active |= IFM_1000_CX | IFM_FDX;
break;
}
#else
if (layer & IXGBE_PHYSICAL_LAYER_10GBASE_KR)
switch (adapter->link_speed) {
case IXGBE_LINK_SPEED_10GB_FULL:
ifmr->ifm_active |= IFM_10G_KR | IFM_FDX;
break;
case IXGBE_LINK_SPEED_2_5GB_FULL:
ifmr->ifm_active |= IFM_2500_KX | IFM_FDX;
break;
case IXGBE_LINK_SPEED_1GB_FULL:
ifmr->ifm_active |= IFM_1000_KX | IFM_FDX;
break;
}
else if (layer & IXGBE_PHYSICAL_LAYER_10GBASE_KX4
|| layer & IXGBE_PHYSICAL_LAYER_1000BASE_KX)
switch (adapter->link_speed) {
case IXGBE_LINK_SPEED_10GB_FULL:
ifmr->ifm_active |= IFM_10G_KX4 | IFM_FDX;
break;
case IXGBE_LINK_SPEED_2_5GB_FULL:
ifmr->ifm_active |= IFM_2500_KX | IFM_FDX;
break;
case IXGBE_LINK_SPEED_1GB_FULL:
ifmr->ifm_active |= IFM_1000_KX | IFM_FDX;
break;
}
#endif
/* If nothing is recognized... */
if (IFM_SUBTYPE(ifmr->ifm_active) == 0)
ifmr->ifm_active |= IFM_UNKNOWN;
#if __FreeBSD_version >= 900025
/* Display current flow control setting used on link */
if (hw->fc.current_mode == ixgbe_fc_rx_pause ||
hw->fc.current_mode == ixgbe_fc_full)
ifmr->ifm_active |= IFM_ETH_RXPAUSE;
if (hw->fc.current_mode == ixgbe_fc_tx_pause ||
hw->fc.current_mode == ixgbe_fc_full)
ifmr->ifm_active |= IFM_ETH_TXPAUSE;
#endif
IXGBE_CORE_UNLOCK(adapter);
return;
}
/*********************************************************************
*
* Media Ioctl callback
*
* This routine is called when the user changes speed/duplex using
* media/mediopt option with ifconfig.
*
**********************************************************************/
static int
ixgbe_media_change(struct ifnet * ifp)
{
struct adapter *adapter = ifp->if_softc;
struct ifmedia *ifm = &adapter->media;
struct ixgbe_hw *hw = &adapter->hw;
ixgbe_link_speed speed = 0;
INIT_DEBUGOUT("ixgbe_media_change: begin");
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return (EINVAL);
if (hw->phy.media_type == ixgbe_media_type_backplane)
return (ENODEV);
/*
** We don't actually need to check against the supported
** media types of the adapter; ifmedia will take care of
** that for us.
*/
#ifndef IFM_ETH_XTYPE
switch (IFM_SUBTYPE(ifm->ifm_media)) {
case IFM_AUTO:
case IFM_10G_T:
speed |= IXGBE_LINK_SPEED_100_FULL;
case IFM_10G_LRM:
case IFM_10G_SR: /* KR, too */
case IFM_10G_LR:
case IFM_10G_CX4: /* KX4 */
speed |= IXGBE_LINK_SPEED_1GB_FULL;
case IFM_10G_TWINAX:
speed |= IXGBE_LINK_SPEED_10GB_FULL;
break;
case IFM_1000_T:
speed |= IXGBE_LINK_SPEED_100_FULL;
case IFM_1000_LX:
case IFM_1000_SX:
case IFM_1000_CX: /* KX */
speed |= IXGBE_LINK_SPEED_1GB_FULL;
break;
case IFM_100_TX:
speed |= IXGBE_LINK_SPEED_100_FULL;
break;
default:
goto invalid;
}
#else
switch (IFM_SUBTYPE(ifm->ifm_media)) {
case IFM_AUTO:
case IFM_10G_T:
speed |= IXGBE_LINK_SPEED_100_FULL;
case IFM_10G_LRM:
case IFM_10G_KR:
case IFM_10G_LR:
case IFM_10G_KX4:
speed |= IXGBE_LINK_SPEED_1GB_FULL;
case IFM_10G_TWINAX:
speed |= IXGBE_LINK_SPEED_10GB_FULL;
break;
case IFM_1000_T:
speed |= IXGBE_LINK_SPEED_100_FULL;
case IFM_1000_LX:
case IFM_1000_SX:
case IFM_1000_KX:
speed |= IXGBE_LINK_SPEED_1GB_FULL;
break;
case IFM_100_TX:
speed |= IXGBE_LINK_SPEED_100_FULL;
break;
default:
goto invalid;
}
#endif
hw->mac.autotry_restart = TRUE;
hw->mac.ops.setup_link(hw, speed, TRUE);
adapter->advertise =
((speed & IXGBE_LINK_SPEED_10GB_FULL) << 2) |
((speed & IXGBE_LINK_SPEED_1GB_FULL) << 1) |
((speed & IXGBE_LINK_SPEED_100_FULL) << 0);
return (0);
invalid:
device_printf(adapter->dev, "Invalid media type!\n");
return (EINVAL);
}
static void
ixgbe_set_promisc(struct adapter *adapter)
{
u_int32_t reg_rctl;
struct ifnet *ifp = adapter->ifp;
int mcnt = 0;
reg_rctl = IXGBE_READ_REG(&adapter->hw, IXGBE_FCTRL);
reg_rctl &= (~IXGBE_FCTRL_UPE);
if (ifp->if_flags & IFF_ALLMULTI)
mcnt = MAX_NUM_MULTICAST_ADDRESSES;
else {
struct ifmultiaddr *ifma;
#if __FreeBSD_version < 800000
IF_ADDR_LOCK(ifp);
#else
if_maddr_rlock(ifp);
#endif
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
break;
mcnt++;
}
#if __FreeBSD_version < 800000
IF_ADDR_UNLOCK(ifp);
#else
if_maddr_runlock(ifp);
#endif
}
if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
reg_rctl &= (~IXGBE_FCTRL_MPE);
IXGBE_WRITE_REG(&adapter->hw, IXGBE_FCTRL, reg_rctl);
if (ifp->if_flags & IFF_PROMISC) {
reg_rctl |= (IXGBE_FCTRL_UPE | IXGBE_FCTRL_MPE);
IXGBE_WRITE_REG(&adapter->hw, IXGBE_FCTRL, reg_rctl);
} else if (ifp->if_flags & IFF_ALLMULTI) {
reg_rctl |= IXGBE_FCTRL_MPE;
reg_rctl &= ~IXGBE_FCTRL_UPE;
IXGBE_WRITE_REG(&adapter->hw, IXGBE_FCTRL, reg_rctl);
}
return;
}
/*********************************************************************
* Multicast Update
*
* This routine is called whenever multicast address list is updated.
*
**********************************************************************/
#define IXGBE_RAR_ENTRIES 16
static void
ixgbe_set_multi(struct adapter *adapter)
{
u32 fctrl;
u8 *update_ptr;
struct ifmultiaddr *ifma;
struct ixgbe_mc_addr *mta;
int mcnt = 0;
struct ifnet *ifp = adapter->ifp;
IOCTL_DEBUGOUT("ixgbe_set_multi: begin");
mta = adapter->mta;
bzero(mta, sizeof(*mta) * MAX_NUM_MULTICAST_ADDRESSES);
#if __FreeBSD_version < 800000
IF_ADDR_LOCK(ifp);
#else
if_maddr_rlock(ifp);
#endif
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
break;
bcopy(LLADDR((struct sockaddr_dl *) ifma->ifma_addr),
mta[mcnt].addr, IXGBE_ETH_LENGTH_OF_ADDRESS);
mta[mcnt].vmdq = adapter->pool;
mcnt++;
}
#if __FreeBSD_version < 800000
IF_ADDR_UNLOCK(ifp);
#else
if_maddr_runlock(ifp);
#endif
fctrl = IXGBE_READ_REG(&adapter->hw, IXGBE_FCTRL);
fctrl |= (IXGBE_FCTRL_UPE | IXGBE_FCTRL_MPE);
if (ifp->if_flags & IFF_PROMISC)
fctrl |= (IXGBE_FCTRL_UPE | IXGBE_FCTRL_MPE);
else if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES ||
ifp->if_flags & IFF_ALLMULTI) {
fctrl |= IXGBE_FCTRL_MPE;
fctrl &= ~IXGBE_FCTRL_UPE;
} else
fctrl &= ~(IXGBE_FCTRL_UPE | IXGBE_FCTRL_MPE);
IXGBE_WRITE_REG(&adapter->hw, IXGBE_FCTRL, fctrl);
if (mcnt < MAX_NUM_MULTICAST_ADDRESSES) {
update_ptr = (u8 *)mta;
ixgbe_update_mc_addr_list(&adapter->hw,
update_ptr, mcnt, ixgbe_mc_array_itr, TRUE);
}
return;
}
/*
* This is an iterator function now needed by the multicast
* shared code. It simply feeds the shared code routine the
* addresses in the array of ixgbe_set_multi() one by one.
*/
static u8 *
ixgbe_mc_array_itr(struct ixgbe_hw *hw, u8 **update_ptr, u32 *vmdq)
{
struct ixgbe_mc_addr *mta;
mta = (struct ixgbe_mc_addr *)*update_ptr;
*vmdq = mta->vmdq;
*update_ptr = (u8*)(mta + 1);;
return (mta->addr);
}
/*********************************************************************
* Timer routine
*
* This routine checks for link status,updates statistics,
* and runs the watchdog check.
*
**********************************************************************/
static void
ixgbe_local_timer(void *arg)
{
struct adapter *adapter = arg;
device_t dev = adapter->dev;
struct ix_queue *que = adapter->queues;
u64 queues = 0;
int hung = 0;
mtx_assert(&adapter->core_mtx, MA_OWNED);
/* Check for pluggable optics */
if (adapter->sfp_probe)
if (!ixgbe_sfp_probe(adapter))
goto out; /* Nothing to do */
ixgbe_update_link_status(adapter);
ixgbe_update_stats_counters(adapter);
/*
** Check the TX queues status
** - mark hung queues so we don't schedule on them
** - watchdog only if all queues show hung
*/
for (int i = 0; i < adapter->num_queues; i++, que++) {
/* Keep track of queues with work for soft irq */
if (que->txr->busy)
queues |= ((u64)1 << que->me);
/*
** Each time txeof runs without cleaning, but there
** are uncleaned descriptors it increments busy. If
** we get to the MAX we declare it hung.
*/
if (que->busy == IXGBE_QUEUE_HUNG) {
++hung;
/* Mark the queue as inactive */
adapter->active_queues &= ~((u64)1 << que->me);
continue;
} else {
/* Check if we've come back from hung */
if ((adapter->active_queues & ((u64)1 << que->me)) == 0)
adapter->active_queues |= ((u64)1 << que->me);
}
if (que->busy >= IXGBE_MAX_TX_BUSY) {
device_printf(dev,"Warning queue %d "
"appears to be hung!\n", i);
que->txr->busy = IXGBE_QUEUE_HUNG;
++hung;
}
}
/* Only truly watchdog if all queues show hung */
if (hung == adapter->num_queues)
goto watchdog;
else if (queues != 0) { /* Force an IRQ on queues with work */
ixgbe_rearm_queues(adapter, queues);
}
out:
callout_reset(&adapter->timer, hz, ixgbe_local_timer, adapter);
return;
watchdog:
device_printf(adapter->dev, "Watchdog timeout -- resetting\n");
adapter->ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
adapter->watchdog_events++;
ixgbe_init_locked(adapter);
}
/*
** Note: this routine updates the OS on the link state
** the real check of the hardware only happens with
** a link interrupt.
*/
static void
ixgbe_update_link_status(struct adapter *adapter)
{
struct ifnet *ifp = adapter->ifp;
device_t dev = adapter->dev;
if (adapter->link_up){
if (adapter->link_active == FALSE) {
if (bootverbose)
device_printf(dev,"Link is up %d Gbps %s \n",
((adapter->link_speed == 128)? 10:1),
"Full Duplex");
adapter->link_active = TRUE;
/* Update any Flow Control changes */
ixgbe_fc_enable(&adapter->hw);
/* Update DMA coalescing config */
ixgbe_config_dmac(adapter);
if_link_state_change(ifp, LINK_STATE_UP);
#ifdef PCI_IOV
ixgbe_ping_all_vfs(adapter);
#endif
}
} else { /* Link down */
if (adapter->link_active == TRUE) {
if (bootverbose)
device_printf(dev,"Link is Down\n");
if_link_state_change(ifp, LINK_STATE_DOWN);
adapter->link_active = FALSE;
#ifdef PCI_IOV
ixgbe_ping_all_vfs(adapter);
#endif
}
}
return;
}
/*********************************************************************
*
* This routine disables all traffic on the adapter by issuing a
* global reset on the MAC and deallocates TX/RX buffers.
*
**********************************************************************/
static void
ixgbe_stop(void *arg)
{
struct ifnet *ifp;
struct adapter *adapter = arg;
struct ixgbe_hw *hw = &adapter->hw;
ifp = adapter->ifp;
mtx_assert(&adapter->core_mtx, MA_OWNED);
INIT_DEBUGOUT("ixgbe_stop: begin\n");
ixgbe_disable_intr(adapter);
callout_stop(&adapter->timer);
/* Let the stack know...*/
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
ixgbe_reset_hw(hw);
hw->adapter_stopped = FALSE;
ixgbe_stop_adapter(hw);
if (hw->mac.type == ixgbe_mac_82599EB)
ixgbe_stop_mac_link_on_d3_82599(hw);
/* Turn off the laser - noop with no optics */
ixgbe_disable_tx_laser(hw);
/* Update the stack */
adapter->link_up = FALSE;
ixgbe_update_link_status(adapter);
/* reprogram the RAR[0] in case user changed it. */
ixgbe_set_rar(&adapter->hw, 0, adapter->hw.mac.addr, 0, IXGBE_RAH_AV);
return;
}
/*********************************************************************
*
* Determine hardware revision.
*
**********************************************************************/
static void
ixgbe_identify_hardware(struct adapter *adapter)
{
device_t dev = adapter->dev;
struct ixgbe_hw *hw = &adapter->hw;
/* Save off the information about this board */
hw->vendor_id = pci_get_vendor(dev);
hw->device_id = pci_get_device(dev);
hw->revision_id = pci_read_config(dev, PCIR_REVID, 1);
hw->subsystem_vendor_id =
pci_read_config(dev, PCIR_SUBVEND_0, 2);
hw->subsystem_device_id =
pci_read_config(dev, PCIR_SUBDEV_0, 2);
/*
** Make sure BUSMASTER is set
*/
pci_enable_busmaster(dev);
/* We need this here to set the num_segs below */
ixgbe_set_mac_type(hw);
/* Pick up the 82599 settings */
if (hw->mac.type != ixgbe_mac_82598EB) {
hw->phy.smart_speed = ixgbe_smart_speed;
adapter->num_segs = IXGBE_82599_SCATTER;
} else
adapter->num_segs = IXGBE_82598_SCATTER;
return;
}
/*********************************************************************
*
* Determine optic type
*
**********************************************************************/
static void
ixgbe_setup_optics(struct adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
int layer;
layer = adapter->phy_layer = ixgbe_get_supported_physical_layer(hw);
if (layer & IXGBE_PHYSICAL_LAYER_10GBASE_T) {
adapter->optics = IFM_10G_T;
return;
}
if (layer & IXGBE_PHYSICAL_LAYER_1000BASE_T) {
adapter->optics = IFM_1000_T;
return;
}
if (layer & IXGBE_PHYSICAL_LAYER_1000BASE_SX) {
adapter->optics = IFM_1000_SX;
return;
}
if (layer & (IXGBE_PHYSICAL_LAYER_10GBASE_LR |
IXGBE_PHYSICAL_LAYER_10GBASE_LRM)) {
adapter->optics = IFM_10G_LR;
return;
}
if (layer & IXGBE_PHYSICAL_LAYER_10GBASE_SR) {
adapter->optics = IFM_10G_SR;
return;
}
if (layer & IXGBE_PHYSICAL_LAYER_SFP_PLUS_CU) {
adapter->optics = IFM_10G_TWINAX;
return;
}
if (layer & (IXGBE_PHYSICAL_LAYER_10GBASE_KX4 |
IXGBE_PHYSICAL_LAYER_10GBASE_CX4)) {
adapter->optics = IFM_10G_CX4;
return;
}
/* If we get here just set the default */
adapter->optics = IFM_ETHER | IFM_AUTO;
return;
}
/*********************************************************************
*
* Setup the Legacy or MSI Interrupt handler
*
**********************************************************************/
static int
ixgbe_allocate_legacy(struct adapter *adapter)
{
device_t dev = adapter->dev;
struct ix_queue *que = adapter->queues;
#ifndef IXGBE_LEGACY_TX
struct tx_ring *txr = adapter->tx_rings;
#endif
int error, rid = 0;
/* MSI RID at 1 */
if (adapter->msix == 1)
rid = 1;
/* We allocate a single interrupt resource */
adapter->res = bus_alloc_resource_any(dev,
SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE);
if (adapter->res == NULL) {
device_printf(dev, "Unable to allocate bus resource: "
"interrupt\n");
return (ENXIO);
}
/*
* Try allocating a fast interrupt and the associated deferred
* processing contexts.
*/
#ifndef IXGBE_LEGACY_TX
TASK_INIT(&txr->txq_task, 0, ixgbe_deferred_mq_start, txr);
#endif
TASK_INIT(&que->que_task, 0, ixgbe_handle_que, que);
que->tq = taskqueue_create_fast("ixgbe_que", M_NOWAIT,
taskqueue_thread_enqueue, &que->tq);
taskqueue_start_threads(&que->tq, 1, PI_NET, "%s ixq",
device_get_nameunit(adapter->dev));
/* Tasklets for Link, SFP and Multispeed Fiber */
TASK_INIT(&adapter->link_task, 0, ixgbe_handle_link, adapter);
TASK_INIT(&adapter->mod_task, 0, ixgbe_handle_mod, adapter);
TASK_INIT(&adapter->msf_task, 0, ixgbe_handle_msf, adapter);
TASK_INIT(&adapter->phy_task, 0, ixgbe_handle_phy, adapter);
#ifdef IXGBE_FDIR
TASK_INIT(&adapter->fdir_task, 0, ixgbe_reinit_fdir, adapter);
#endif
adapter->tq = taskqueue_create_fast("ixgbe_link", M_NOWAIT,
taskqueue_thread_enqueue, &adapter->tq);
taskqueue_start_threads(&adapter->tq, 1, PI_NET, "%s linkq",
device_get_nameunit(adapter->dev));
if ((error = bus_setup_intr(dev, adapter->res,
INTR_TYPE_NET | INTR_MPSAFE, NULL, ixgbe_legacy_irq,
que, &adapter->tag)) != 0) {
device_printf(dev, "Failed to register fast interrupt "
"handler: %d\n", error);
taskqueue_free(que->tq);
taskqueue_free(adapter->tq);
que->tq = NULL;
adapter->tq = NULL;
return (error);
}
/* For simplicity in the handlers */
adapter->active_queues = IXGBE_EIMS_ENABLE_MASK;
return (0);
}
/*********************************************************************
*
* Setup MSIX Interrupt resources and handlers
*
**********************************************************************/
static int
ixgbe_allocate_msix(struct adapter *adapter)
{
device_t dev = adapter->dev;
struct ix_queue *que = adapter->queues;
struct tx_ring *txr = adapter->tx_rings;
int error, rid, vector = 0;
int cpu_id = 0;
#ifdef RSS
cpuset_t cpu_mask;
#endif
Add initial RSS awareness to the ixgbe(4) driver. The ixgbe(4) hardware is capable of RSS hashing RX packets and doing RSS queue selection for up to 8 queues. However, even if multi-queue is enabled for ixgbe(4), the RX path doesn't use the RSS flowid from the received descriptor. It just uses the MSIX queue id. This patch does a handful of things if RSS is enabled: * Instead of using a random key at boot, fetch the RSS key from the RSS code and program that in to the RSS redirection table. That whole chunk of code should be double checked for endian correctness. * Use the RSS queue mapping to CPU ID to figure out where to thread pin the RX swi thread and the taskqueue threads for each queue. * The software queue is now really an "RSS bucket". * When programming the RSS indirection table, use the RSS code to figure out which RSS bucket each slot in the indirection table maps to. * When transmitting, use the flowid RSS mapping if the mbuf has an RSS aware hash. The existing method wasn't guaranteed to align correctly with the destination RSS bucket (and thus CPU ID.) This code warns if the number of RSS buckets isn't the same as the automatically configured number of hardware queues. The administrator will have to tweak one of them for better performance. There's currently no way to re-balance the RSS indirection table after startup. I'll worry about that later. Additionally, it may be worthwhile to always use the full 32 bit flowid if multi-queue is enabled. It'll make things like lagg(4) behave better with respect to traffic distribution.
2014-06-30 04:38:29 +00:00
#ifdef RSS
/*
* If we're doing RSS, the number of queues needs to
* match the number of RSS buckets that are configured.
*
* + If there's more queues than RSS buckets, we'll end
* up with queues that get no traffic.
*
* + If there's more RSS buckets than queues, we'll end
* up having multiple RSS buckets map to the same queue,
* so there'll be some contention.
*/
if (adapter->num_queues != rss_getnumbuckets()) {
device_printf(dev,
"%s: number of queues (%d) != number of RSS buckets (%d)"
"; performance will be impacted.\n",
__func__,
adapter->num_queues,
rss_getnumbuckets());
}
#endif
for (int i = 0; i < adapter->num_queues; i++, vector++, que++, txr++) {
rid = vector + 1;
que->res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (que->res == NULL) {
device_printf(dev,"Unable to allocate"
" bus resource: que interrupt [%d]\n", vector);
return (ENXIO);
}
/* Set the handler function */
error = bus_setup_intr(dev, que->res,
INTR_TYPE_NET | INTR_MPSAFE, NULL,
ixgbe_msix_que, que, &que->tag);
if (error) {
que->res = NULL;
device_printf(dev, "Failed to register QUE handler");
return (error);
}
#if __FreeBSD_version >= 800504
bus_describe_intr(dev, que->res, que->tag, "q%d", i);
#endif
que->msix = vector;
adapter->active_queues |= (u64)(1 << que->msix);
Add initial RSS awareness to the ixgbe(4) driver. The ixgbe(4) hardware is capable of RSS hashing RX packets and doing RSS queue selection for up to 8 queues. However, even if multi-queue is enabled for ixgbe(4), the RX path doesn't use the RSS flowid from the received descriptor. It just uses the MSIX queue id. This patch does a handful of things if RSS is enabled: * Instead of using a random key at boot, fetch the RSS key from the RSS code and program that in to the RSS redirection table. That whole chunk of code should be double checked for endian correctness. * Use the RSS queue mapping to CPU ID to figure out where to thread pin the RX swi thread and the taskqueue threads for each queue. * The software queue is now really an "RSS bucket". * When programming the RSS indirection table, use the RSS code to figure out which RSS bucket each slot in the indirection table maps to. * When transmitting, use the flowid RSS mapping if the mbuf has an RSS aware hash. The existing method wasn't guaranteed to align correctly with the destination RSS bucket (and thus CPU ID.) This code warns if the number of RSS buckets isn't the same as the automatically configured number of hardware queues. The administrator will have to tweak one of them for better performance. There's currently no way to re-balance the RSS indirection table after startup. I'll worry about that later. Additionally, it may be worthwhile to always use the full 32 bit flowid if multi-queue is enabled. It'll make things like lagg(4) behave better with respect to traffic distribution.
2014-06-30 04:38:29 +00:00
#ifdef RSS
/*
Add initial RSS awareness to the ixgbe(4) driver. The ixgbe(4) hardware is capable of RSS hashing RX packets and doing RSS queue selection for up to 8 queues. However, even if multi-queue is enabled for ixgbe(4), the RX path doesn't use the RSS flowid from the received descriptor. It just uses the MSIX queue id. This patch does a handful of things if RSS is enabled: * Instead of using a random key at boot, fetch the RSS key from the RSS code and program that in to the RSS redirection table. That whole chunk of code should be double checked for endian correctness. * Use the RSS queue mapping to CPU ID to figure out where to thread pin the RX swi thread and the taskqueue threads for each queue. * The software queue is now really an "RSS bucket". * When programming the RSS indirection table, use the RSS code to figure out which RSS bucket each slot in the indirection table maps to. * When transmitting, use the flowid RSS mapping if the mbuf has an RSS aware hash. The existing method wasn't guaranteed to align correctly with the destination RSS bucket (and thus CPU ID.) This code warns if the number of RSS buckets isn't the same as the automatically configured number of hardware queues. The administrator will have to tweak one of them for better performance. There's currently no way to re-balance the RSS indirection table after startup. I'll worry about that later. Additionally, it may be worthwhile to always use the full 32 bit flowid if multi-queue is enabled. It'll make things like lagg(4) behave better with respect to traffic distribution.
2014-06-30 04:38:29 +00:00
* The queue ID is used as the RSS layer bucket ID.
* We look up the queue ID -> RSS CPU ID and select
* that.
*/
cpu_id = rss_getcpu(i % rss_getnumbuckets());
#else
/*
* Bind the msix vector, and thus the
* rings to the corresponding cpu.
*
* This just happens to match the default RSS round-robin
* bucket -> queue -> CPU allocation.
*/
if (adapter->num_queues > 1)
Add initial RSS awareness to the ixgbe(4) driver. The ixgbe(4) hardware is capable of RSS hashing RX packets and doing RSS queue selection for up to 8 queues. However, even if multi-queue is enabled for ixgbe(4), the RX path doesn't use the RSS flowid from the received descriptor. It just uses the MSIX queue id. This patch does a handful of things if RSS is enabled: * Instead of using a random key at boot, fetch the RSS key from the RSS code and program that in to the RSS redirection table. That whole chunk of code should be double checked for endian correctness. * Use the RSS queue mapping to CPU ID to figure out where to thread pin the RX swi thread and the taskqueue threads for each queue. * The software queue is now really an "RSS bucket". * When programming the RSS indirection table, use the RSS code to figure out which RSS bucket each slot in the indirection table maps to. * When transmitting, use the flowid RSS mapping if the mbuf has an RSS aware hash. The existing method wasn't guaranteed to align correctly with the destination RSS bucket (and thus CPU ID.) This code warns if the number of RSS buckets isn't the same as the automatically configured number of hardware queues. The administrator will have to tweak one of them for better performance. There's currently no way to re-balance the RSS indirection table after startup. I'll worry about that later. Additionally, it may be worthwhile to always use the full 32 bit flowid if multi-queue is enabled. It'll make things like lagg(4) behave better with respect to traffic distribution.
2014-06-30 04:38:29 +00:00
cpu_id = i;
#endif
if (adapter->num_queues > 1)
bus_bind_intr(dev, que->res, cpu_id);
#ifdef IXGBE_DEBUG
Add initial RSS awareness to the ixgbe(4) driver. The ixgbe(4) hardware is capable of RSS hashing RX packets and doing RSS queue selection for up to 8 queues. However, even if multi-queue is enabled for ixgbe(4), the RX path doesn't use the RSS flowid from the received descriptor. It just uses the MSIX queue id. This patch does a handful of things if RSS is enabled: * Instead of using a random key at boot, fetch the RSS key from the RSS code and program that in to the RSS redirection table. That whole chunk of code should be double checked for endian correctness. * Use the RSS queue mapping to CPU ID to figure out where to thread pin the RX swi thread and the taskqueue threads for each queue. * The software queue is now really an "RSS bucket". * When programming the RSS indirection table, use the RSS code to figure out which RSS bucket each slot in the indirection table maps to. * When transmitting, use the flowid RSS mapping if the mbuf has an RSS aware hash. The existing method wasn't guaranteed to align correctly with the destination RSS bucket (and thus CPU ID.) This code warns if the number of RSS buckets isn't the same as the automatically configured number of hardware queues. The administrator will have to tweak one of them for better performance. There's currently no way to re-balance the RSS indirection table after startup. I'll worry about that later. Additionally, it may be worthwhile to always use the full 32 bit flowid if multi-queue is enabled. It'll make things like lagg(4) behave better with respect to traffic distribution.
2014-06-30 04:38:29 +00:00
#ifdef RSS
device_printf(dev,
"Bound RSS bucket %d to CPU %d\n",
i, cpu_id);
#else
device_printf(dev,
"Bound queue %d to cpu %d\n",
i, cpu_id);
#endif
#endif /* IXGBE_DEBUG */
#ifndef IXGBE_LEGACY_TX
TASK_INIT(&txr->txq_task, 0, ixgbe_deferred_mq_start, txr);
#endif
TASK_INIT(&que->que_task, 0, ixgbe_handle_que, que);
que->tq = taskqueue_create_fast("ixgbe_que", M_NOWAIT,
taskqueue_thread_enqueue, &que->tq);
Add initial RSS awareness to the ixgbe(4) driver. The ixgbe(4) hardware is capable of RSS hashing RX packets and doing RSS queue selection for up to 8 queues. However, even if multi-queue is enabled for ixgbe(4), the RX path doesn't use the RSS flowid from the received descriptor. It just uses the MSIX queue id. This patch does a handful of things if RSS is enabled: * Instead of using a random key at boot, fetch the RSS key from the RSS code and program that in to the RSS redirection table. That whole chunk of code should be double checked for endian correctness. * Use the RSS queue mapping to CPU ID to figure out where to thread pin the RX swi thread and the taskqueue threads for each queue. * The software queue is now really an "RSS bucket". * When programming the RSS indirection table, use the RSS code to figure out which RSS bucket each slot in the indirection table maps to. * When transmitting, use the flowid RSS mapping if the mbuf has an RSS aware hash. The existing method wasn't guaranteed to align correctly with the destination RSS bucket (and thus CPU ID.) This code warns if the number of RSS buckets isn't the same as the automatically configured number of hardware queues. The administrator will have to tweak one of them for better performance. There's currently no way to re-balance the RSS indirection table after startup. I'll worry about that later. Additionally, it may be worthwhile to always use the full 32 bit flowid if multi-queue is enabled. It'll make things like lagg(4) behave better with respect to traffic distribution.
2014-06-30 04:38:29 +00:00
#ifdef RSS
CPU_SETOF(cpu_id, &cpu_mask);
taskqueue_start_threads_cpuset(&que->tq, 1, PI_NET,
&cpu_mask,
Add initial RSS awareness to the ixgbe(4) driver. The ixgbe(4) hardware is capable of RSS hashing RX packets and doing RSS queue selection for up to 8 queues. However, even if multi-queue is enabled for ixgbe(4), the RX path doesn't use the RSS flowid from the received descriptor. It just uses the MSIX queue id. This patch does a handful of things if RSS is enabled: * Instead of using a random key at boot, fetch the RSS key from the RSS code and program that in to the RSS redirection table. That whole chunk of code should be double checked for endian correctness. * Use the RSS queue mapping to CPU ID to figure out where to thread pin the RX swi thread and the taskqueue threads for each queue. * The software queue is now really an "RSS bucket". * When programming the RSS indirection table, use the RSS code to figure out which RSS bucket each slot in the indirection table maps to. * When transmitting, use the flowid RSS mapping if the mbuf has an RSS aware hash. The existing method wasn't guaranteed to align correctly with the destination RSS bucket (and thus CPU ID.) This code warns if the number of RSS buckets isn't the same as the automatically configured number of hardware queues. The administrator will have to tweak one of them for better performance. There's currently no way to re-balance the RSS indirection table after startup. I'll worry about that later. Additionally, it may be worthwhile to always use the full 32 bit flowid if multi-queue is enabled. It'll make things like lagg(4) behave better with respect to traffic distribution.
2014-06-30 04:38:29 +00:00
"%s (bucket %d)",
device_get_nameunit(adapter->dev),
cpu_id);
#else
taskqueue_start_threads(&que->tq, 1, PI_NET, "%s:q%d",
device_get_nameunit(adapter->dev), i);
Add initial RSS awareness to the ixgbe(4) driver. The ixgbe(4) hardware is capable of RSS hashing RX packets and doing RSS queue selection for up to 8 queues. However, even if multi-queue is enabled for ixgbe(4), the RX path doesn't use the RSS flowid from the received descriptor. It just uses the MSIX queue id. This patch does a handful of things if RSS is enabled: * Instead of using a random key at boot, fetch the RSS key from the RSS code and program that in to the RSS redirection table. That whole chunk of code should be double checked for endian correctness. * Use the RSS queue mapping to CPU ID to figure out where to thread pin the RX swi thread and the taskqueue threads for each queue. * The software queue is now really an "RSS bucket". * When programming the RSS indirection table, use the RSS code to figure out which RSS bucket each slot in the indirection table maps to. * When transmitting, use the flowid RSS mapping if the mbuf has an RSS aware hash. The existing method wasn't guaranteed to align correctly with the destination RSS bucket (and thus CPU ID.) This code warns if the number of RSS buckets isn't the same as the automatically configured number of hardware queues. The administrator will have to tweak one of them for better performance. There's currently no way to re-balance the RSS indirection table after startup. I'll worry about that later. Additionally, it may be worthwhile to always use the full 32 bit flowid if multi-queue is enabled. It'll make things like lagg(4) behave better with respect to traffic distribution.
2014-06-30 04:38:29 +00:00
#endif
}
/* and Link */
rid = vector + 1;
adapter->res = bus_alloc_resource_any(dev,
SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE);
if (!adapter->res) {
device_printf(dev,"Unable to allocate"
" bus resource: Link interrupt [%d]\n", rid);
return (ENXIO);
}
/* Set the link handler function */
error = bus_setup_intr(dev, adapter->res,
INTR_TYPE_NET | INTR_MPSAFE, NULL,
ixgbe_msix_link, adapter, &adapter->tag);
if (error) {
adapter->res = NULL;
device_printf(dev, "Failed to register LINK handler");
return (error);
}
#if __FreeBSD_version >= 800504
bus_describe_intr(dev, adapter->res, adapter->tag, "link");
#endif
adapter->vector = vector;
/* Tasklets for Link, SFP and Multispeed Fiber */
TASK_INIT(&adapter->link_task, 0, ixgbe_handle_link, adapter);
TASK_INIT(&adapter->mod_task, 0, ixgbe_handle_mod, adapter);
TASK_INIT(&adapter->msf_task, 0, ixgbe_handle_msf, adapter);
#ifdef PCI_IOV
TASK_INIT(&adapter->mbx_task, 0, ixgbe_handle_mbx, adapter);
#endif
TASK_INIT(&adapter->phy_task, 0, ixgbe_handle_phy, adapter);
#ifdef IXGBE_FDIR
TASK_INIT(&adapter->fdir_task, 0, ixgbe_reinit_fdir, adapter);
#endif
adapter->tq = taskqueue_create_fast("ixgbe_link", M_NOWAIT,
taskqueue_thread_enqueue, &adapter->tq);
taskqueue_start_threads(&adapter->tq, 1, PI_NET, "%s linkq",
device_get_nameunit(adapter->dev));
return (0);
}
/*
* Setup Either MSI/X or MSI
*/
static int
ixgbe_setup_msix(struct adapter *adapter)
{
device_t dev = adapter->dev;
int rid, want, queues, msgs;
/* Override by tuneable */
if (ixgbe_enable_msix == 0)
goto msi;
/* First try MSI/X */
msgs = pci_msix_count(dev);
if (msgs == 0)
goto msi;
rid = PCIR_BAR(MSIX_82598_BAR);
adapter->msix_mem = bus_alloc_resource_any(dev,
SYS_RES_MEMORY, &rid, RF_ACTIVE);
if (adapter->msix_mem == NULL) {
rid += 4; /* 82599 maps in higher BAR */
adapter->msix_mem = bus_alloc_resource_any(dev,
SYS_RES_MEMORY, &rid, RF_ACTIVE);
}
if (adapter->msix_mem == NULL) {
/* May not be enabled */
device_printf(adapter->dev,
"Unable to map MSIX table \n");
goto msi;
}
/* Figure out a reasonable auto config value */
queues = (mp_ncpus > (msgs - 1)) ? (msgs - 1) : mp_ncpus;
Add initial RSS awareness to the ixgbe(4) driver. The ixgbe(4) hardware is capable of RSS hashing RX packets and doing RSS queue selection for up to 8 queues. However, even if multi-queue is enabled for ixgbe(4), the RX path doesn't use the RSS flowid from the received descriptor. It just uses the MSIX queue id. This patch does a handful of things if RSS is enabled: * Instead of using a random key at boot, fetch the RSS key from the RSS code and program that in to the RSS redirection table. That whole chunk of code should be double checked for endian correctness. * Use the RSS queue mapping to CPU ID to figure out where to thread pin the RX swi thread and the taskqueue threads for each queue. * The software queue is now really an "RSS bucket". * When programming the RSS indirection table, use the RSS code to figure out which RSS bucket each slot in the indirection table maps to. * When transmitting, use the flowid RSS mapping if the mbuf has an RSS aware hash. The existing method wasn't guaranteed to align correctly with the destination RSS bucket (and thus CPU ID.) This code warns if the number of RSS buckets isn't the same as the automatically configured number of hardware queues. The administrator will have to tweak one of them for better performance. There's currently no way to re-balance the RSS indirection table after startup. I'll worry about that later. Additionally, it may be worthwhile to always use the full 32 bit flowid if multi-queue is enabled. It'll make things like lagg(4) behave better with respect to traffic distribution.
2014-06-30 04:38:29 +00:00
#ifdef RSS
/* If we're doing RSS, clamp at the number of RSS buckets */
if (queues > rss_getnumbuckets())
queues = rss_getnumbuckets();
#endif
if (ixgbe_num_queues != 0)
queues = ixgbe_num_queues;
/* Set max queues to 8 when autoconfiguring */
else if ((ixgbe_num_queues == 0) && (queues > 8))
queues = 8;
/* reflect correct sysctl value */
ixgbe_num_queues = queues;
/*
** Want one vector (RX/TX pair) per queue
** plus an additional for Link.
*/
want = queues + 1;
if (msgs >= want)
msgs = want;
else {
device_printf(adapter->dev,
"MSIX Configuration Problem, "
"%d vectors but %d queues wanted!\n",
msgs, want);
goto msi;
}
if ((pci_alloc_msix(dev, &msgs) == 0) && (msgs == want)) {
device_printf(adapter->dev,
"Using MSIX interrupts with %d vectors\n", msgs);
adapter->num_queues = queues;
return (msgs);
}
/*
** If MSIX alloc failed or provided us with
** less than needed, free and fall through to MSI
*/
pci_release_msi(dev);
msi:
if (adapter->msix_mem != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY,
rid, adapter->msix_mem);
adapter->msix_mem = NULL;
}
msgs = 1;
if (pci_alloc_msi(dev, &msgs) == 0) {
device_printf(adapter->dev, "Using an MSI interrupt\n");
return (msgs);
}
device_printf(adapter->dev, "Using a Legacy interrupt\n");
return (0);
}
static int
ixgbe_allocate_pci_resources(struct adapter *adapter)
{
int rid;
device_t dev = adapter->dev;
rid = PCIR_BAR(0);
adapter->pci_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&rid, RF_ACTIVE);
if (!(adapter->pci_mem)) {
device_printf(dev, "Unable to allocate bus resource: memory\n");
return (ENXIO);
}
/* Save bus_space values for READ/WRITE_REG macros */
adapter->osdep.mem_bus_space_tag =
rman_get_bustag(adapter->pci_mem);
adapter->osdep.mem_bus_space_handle =
rman_get_bushandle(adapter->pci_mem);
/* Set hw values for shared code */
adapter->hw.hw_addr = (u8 *) &adapter->osdep.mem_bus_space_handle;
adapter->hw.back = adapter;
/* Default to 1 queue if MSI-X setup fails */
adapter->num_queues = 1;
/*
** Now setup MSI or MSI-X, should
** return us the number of supported
** vectors. (Will be 1 for MSI)
*/
adapter->msix = ixgbe_setup_msix(adapter);
return (0);
}
static void
ixgbe_free_pci_resources(struct adapter * adapter)
{
struct ix_queue *que = adapter->queues;
device_t dev = adapter->dev;
int rid, memrid;
if (adapter->hw.mac.type == ixgbe_mac_82598EB)
memrid = PCIR_BAR(MSIX_82598_BAR);
else
memrid = PCIR_BAR(MSIX_82599_BAR);
/*
** There is a slight possibility of a failure mode
** in attach that will result in entering this function
** before interrupt resources have been initialized, and
** in that case we do not want to execute the loops below
** We can detect this reliably by the state of the adapter
** res pointer.
*/
if (adapter->res == NULL)
goto mem;
/*
** Release all msix queue resources:
*/
for (int i = 0; i < adapter->num_queues; i++, que++) {
rid = que->msix + 1;
if (que->tag != NULL) {
bus_teardown_intr(dev, que->res, que->tag);
que->tag = NULL;
}
if (que->res != NULL)
bus_release_resource(dev, SYS_RES_IRQ, rid, que->res);
}
/* Clean the Legacy or Link interrupt last */
if (adapter->vector) /* we are doing MSIX */
rid = adapter->vector + 1;
else
(adapter->msix != 0) ? (rid = 1):(rid = 0);
if (adapter->tag != NULL) {
bus_teardown_intr(dev, adapter->res, adapter->tag);
adapter->tag = NULL;
}
if (adapter->res != NULL)
bus_release_resource(dev, SYS_RES_IRQ, rid, adapter->res);
mem:
if (adapter->msix)
pci_release_msi(dev);
if (adapter->msix_mem != NULL)
bus_release_resource(dev, SYS_RES_MEMORY,
memrid, adapter->msix_mem);
if (adapter->pci_mem != NULL)
bus_release_resource(dev, SYS_RES_MEMORY,
PCIR_BAR(0), adapter->pci_mem);
return;
}
/*********************************************************************
*
* Setup networking device structure and register an interface.
*
**********************************************************************/
static int
ixgbe_setup_interface(device_t dev, struct adapter *adapter)
{
struct ifnet *ifp;
INIT_DEBUGOUT("ixgbe_setup_interface: begin");
ifp = adapter->ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not allocate ifnet structure\n");
return (-1);
}
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_baudrate = IF_Gbps(10);
ifp->if_init = ixgbe_init;
ifp->if_softc = adapter;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = ixgbe_ioctl;
#if __FreeBSD_version >= 1100036
if_setgetcounterfn(ifp, ixgbe_get_counter);
#endif
#if __FreeBSD_version >= 1100045
/* TSO parameters */
ifp->if_hw_tsomax = 65518;
ifp->if_hw_tsomaxsegcount = IXGBE_82599_SCATTER;
ifp->if_hw_tsomaxsegsize = 2048;
#endif
#ifndef IXGBE_LEGACY_TX
ifp->if_transmit = ixgbe_mq_start;
ifp->if_qflush = ixgbe_qflush;
#else
ifp->if_start = ixgbe_start;
IFQ_SET_MAXLEN(&ifp->if_snd, adapter->num_tx_desc - 2);
ifp->if_snd.ifq_drv_maxlen = adapter->num_tx_desc - 2;
IFQ_SET_READY(&ifp->if_snd);
#endif
ether_ifattach(ifp, adapter->hw.mac.addr);
adapter->max_frame_size =
ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
/*
* Tell the upper layer(s) we support long frames.
*/
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
/* Set capability flags */
ifp->if_capabilities |= IFCAP_RXCSUM
| IFCAP_TXCSUM
| IFCAP_RXCSUM_IPV6
| IFCAP_TXCSUM_IPV6
| IFCAP_TSO4
| IFCAP_TSO6
| IFCAP_LRO
| IFCAP_VLAN_HWTAGGING
| IFCAP_VLAN_HWTSO
| IFCAP_VLAN_HWCSUM
| IFCAP_JUMBO_MTU
| IFCAP_VLAN_MTU
| IFCAP_HWSTATS;
/* Enable the above capabilities by default */
ifp->if_capenable = ifp->if_capabilities;
/*
** Don't turn this on by default, if vlans are
** created on another pseudo device (eg. lagg)
** then vlan events are not passed thru, breaking
** operation, but with HW FILTER off it works. If
** using vlans directly on the ixgbe driver you can
** enable this and get full hardware tag filtering.
*/
ifp->if_capabilities |= IFCAP_VLAN_HWFILTER;
/*
* Specify the media types supported by this adapter and register
* callbacks to update media and link information
*/
ifmedia_init(&adapter->media, IFM_IMASK, ixgbe_media_change,
ixgbe_media_status);
adapter->phy_layer = ixgbe_get_supported_physical_layer(&adapter->hw);
ixgbe_add_media_types(adapter);
/* Set autoselect media by default */
ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
return (0);
}
static void
ixgbe_add_media_types(struct adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
device_t dev = adapter->dev;
int layer;
layer = adapter->phy_layer;
/* Media types with matching FreeBSD media defines */
if (layer & IXGBE_PHYSICAL_LAYER_10GBASE_T)
ifmedia_add(&adapter->media, IFM_ETHER | IFM_10G_T, 0, NULL);
if (layer & IXGBE_PHYSICAL_LAYER_1000BASE_T)
ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
if (layer & IXGBE_PHYSICAL_LAYER_100BASE_TX)
ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL);
if (layer & IXGBE_PHYSICAL_LAYER_SFP_PLUS_CU ||
layer & IXGBE_PHYSICAL_LAYER_SFP_ACTIVE_DA)
ifmedia_add(&adapter->media, IFM_ETHER | IFM_10G_TWINAX, 0, NULL);
if (layer & IXGBE_PHYSICAL_LAYER_10GBASE_LR) {
ifmedia_add(&adapter->media, IFM_ETHER | IFM_10G_LR, 0, NULL);
if (hw->phy.multispeed_fiber)
ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_LX, 0, NULL);
}
if (layer & IXGBE_PHYSICAL_LAYER_10GBASE_SR) {
ifmedia_add(&adapter->media, IFM_ETHER | IFM_10G_SR, 0, NULL);
if (hw->phy.multispeed_fiber)
ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
} else if (layer & IXGBE_PHYSICAL_LAYER_1000BASE_SX)
ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
if (layer & IXGBE_PHYSICAL_LAYER_10GBASE_CX4)
ifmedia_add(&adapter->media, IFM_ETHER | IFM_10G_CX4, 0, NULL);
#ifdef IFM_ETH_XTYPE
if (layer & IXGBE_PHYSICAL_LAYER_10GBASE_KR)
ifmedia_add(&adapter->media, IFM_ETHER | IFM_10G_KR, 0, NULL);
if (layer & IXGBE_PHYSICAL_LAYER_10GBASE_KX4)
ifmedia_add(&adapter->media, IFM_ETHER | IFM_10G_KX4, 0, NULL);
if (layer & IXGBE_PHYSICAL_LAYER_1000BASE_KX)
ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_KX, 0, NULL);
#else
if (layer & IXGBE_PHYSICAL_LAYER_10GBASE_KR) {
device_printf(dev, "Media supported: 10GbaseKR\n");
device_printf(dev, "10GbaseKR mapped to 10GbaseSR\n");
ifmedia_add(&adapter->media, IFM_ETHER | IFM_10G_SR, 0, NULL);
}
if (layer & IXGBE_PHYSICAL_LAYER_10GBASE_KX4) {
device_printf(dev, "Media supported: 10GbaseKX4\n");
device_printf(dev, "10GbaseKX4 mapped to 10GbaseCX4\n");
ifmedia_add(&adapter->media, IFM_ETHER | IFM_10G_CX4, 0, NULL);
}
if (layer & IXGBE_PHYSICAL_LAYER_1000BASE_KX) {
device_printf(dev, "Media supported: 1000baseKX\n");
device_printf(dev, "1000baseKX mapped to 1000baseCX\n");
ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_CX, 0, NULL);
}
#endif
if (layer & IXGBE_PHYSICAL_LAYER_1000BASE_BX)
device_printf(dev, "Media supported: 1000baseBX\n");
if (hw->device_id == IXGBE_DEV_ID_82598AT) {
ifmedia_add(&adapter->media,
IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
ifmedia_add(&adapter->media,
IFM_ETHER | IFM_1000_T, 0, NULL);
}
ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
}
static void
ixgbe_config_link(struct adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
u32 autoneg, err = 0;
bool sfp, negotiate;
sfp = ixgbe_is_sfp(hw);
if (sfp) {
taskqueue_enqueue(adapter->tq, &adapter->mod_task);
} else {
if (hw->mac.ops.check_link)
err = ixgbe_check_link(hw, &adapter->link_speed,
&adapter->link_up, FALSE);
if (err)
goto out;
autoneg = hw->phy.autoneg_advertised;
if ((!autoneg) && (hw->mac.ops.get_link_capabilities))
err = hw->mac.ops.get_link_capabilities(hw,
&autoneg, &negotiate);
if (err)
goto out;
if (hw->mac.ops.setup_link)
err = hw->mac.ops.setup_link(hw,
autoneg, adapter->link_up);
}
out:
return;
}
/*********************************************************************
*
* Enable transmit units.
*
**********************************************************************/
static void
ixgbe_initialize_transmit_units(struct adapter *adapter)
{
struct tx_ring *txr = adapter->tx_rings;
struct ixgbe_hw *hw = &adapter->hw;
/* Setup the Base and Length of the Tx Descriptor Ring */
for (int i = 0; i < adapter->num_queues; i++, txr++) {
u64 tdba = txr->txdma.dma_paddr;
u32 txctrl = 0;
int j = txr->me;
IXGBE_WRITE_REG(hw, IXGBE_TDBAL(j),
(tdba & 0x00000000ffffffffULL));
IXGBE_WRITE_REG(hw, IXGBE_TDBAH(j), (tdba >> 32));
IXGBE_WRITE_REG(hw, IXGBE_TDLEN(j),
adapter->num_tx_desc * sizeof(union ixgbe_adv_tx_desc));
/* Setup the HW Tx Head and Tail descriptor pointers */
IXGBE_WRITE_REG(hw, IXGBE_TDH(j), 0);
IXGBE_WRITE_REG(hw, IXGBE_TDT(j), 0);
/* Cache the tail address */
txr->tail = IXGBE_TDT(j);
/* Disable Head Writeback */
/*
* Note: for X550 series devices, these registers are actually
* prefixed with TPH_ isntead of DCA_, but the addresses and
* fields remain the same.
*/
switch (hw->mac.type) {
case ixgbe_mac_82598EB:
txctrl = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL(j));
break;
default:
txctrl = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(j));
break;
}
txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
switch (hw->mac.type) {
case ixgbe_mac_82598EB:
IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL(j), txctrl);
break;
default:
IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(j), txctrl);
break;
}
}
if (hw->mac.type != ixgbe_mac_82598EB) {
u32 dmatxctl, rttdcs;
#ifdef PCI_IOV
enum ixgbe_iov_mode mode = ixgbe_get_iov_mode(adapter);
#endif
dmatxctl = IXGBE_READ_REG(hw, IXGBE_DMATXCTL);
dmatxctl |= IXGBE_DMATXCTL_TE;
IXGBE_WRITE_REG(hw, IXGBE_DMATXCTL, dmatxctl);
/* Disable arbiter to set MTQC */
rttdcs = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
rttdcs |= IXGBE_RTTDCS_ARBDIS;
IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, rttdcs);
#ifdef PCI_IOV
IXGBE_WRITE_REG(hw, IXGBE_MTQC, ixgbe_get_mtqc(mode));
#else
IXGBE_WRITE_REG(hw, IXGBE_MTQC, IXGBE_MTQC_64Q_1PB);
#endif
rttdcs &= ~IXGBE_RTTDCS_ARBDIS;
IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, rttdcs);
}
return;
}
Add initial RSS awareness to the ixgbe(4) driver. The ixgbe(4) hardware is capable of RSS hashing RX packets and doing RSS queue selection for up to 8 queues. However, even if multi-queue is enabled for ixgbe(4), the RX path doesn't use the RSS flowid from the received descriptor. It just uses the MSIX queue id. This patch does a handful of things if RSS is enabled: * Instead of using a random key at boot, fetch the RSS key from the RSS code and program that in to the RSS redirection table. That whole chunk of code should be double checked for endian correctness. * Use the RSS queue mapping to CPU ID to figure out where to thread pin the RX swi thread and the taskqueue threads for each queue. * The software queue is now really an "RSS bucket". * When programming the RSS indirection table, use the RSS code to figure out which RSS bucket each slot in the indirection table maps to. * When transmitting, use the flowid RSS mapping if the mbuf has an RSS aware hash. The existing method wasn't guaranteed to align correctly with the destination RSS bucket (and thus CPU ID.) This code warns if the number of RSS buckets isn't the same as the automatically configured number of hardware queues. The administrator will have to tweak one of them for better performance. There's currently no way to re-balance the RSS indirection table after startup. I'll worry about that later. Additionally, it may be worthwhile to always use the full 32 bit flowid if multi-queue is enabled. It'll make things like lagg(4) behave better with respect to traffic distribution.
2014-06-30 04:38:29 +00:00
static void
ixgbe_initialize_rss_mapping(struct adapter *adapter)
Add initial RSS awareness to the ixgbe(4) driver. The ixgbe(4) hardware is capable of RSS hashing RX packets and doing RSS queue selection for up to 8 queues. However, even if multi-queue is enabled for ixgbe(4), the RX path doesn't use the RSS flowid from the received descriptor. It just uses the MSIX queue id. This patch does a handful of things if RSS is enabled: * Instead of using a random key at boot, fetch the RSS key from the RSS code and program that in to the RSS redirection table. That whole chunk of code should be double checked for endian correctness. * Use the RSS queue mapping to CPU ID to figure out where to thread pin the RX swi thread and the taskqueue threads for each queue. * The software queue is now really an "RSS bucket". * When programming the RSS indirection table, use the RSS code to figure out which RSS bucket each slot in the indirection table maps to. * When transmitting, use the flowid RSS mapping if the mbuf has an RSS aware hash. The existing method wasn't guaranteed to align correctly with the destination RSS bucket (and thus CPU ID.) This code warns if the number of RSS buckets isn't the same as the automatically configured number of hardware queues. The administrator will have to tweak one of them for better performance. There's currently no way to re-balance the RSS indirection table after startup. I'll worry about that later. Additionally, it may be worthwhile to always use the full 32 bit flowid if multi-queue is enabled. It'll make things like lagg(4) behave better with respect to traffic distribution.
2014-06-30 04:38:29 +00:00
{
struct ixgbe_hw *hw = &adapter->hw;
u32 reta = 0, mrqc, rss_key[10];
int queue_id, table_size, index_mult;
#ifdef RSS
u32 rss_hash_config;
#endif
#ifdef PCI_IOV
enum ixgbe_iov_mode mode;
#endif
Add initial RSS awareness to the ixgbe(4) driver. The ixgbe(4) hardware is capable of RSS hashing RX packets and doing RSS queue selection for up to 8 queues. However, even if multi-queue is enabled for ixgbe(4), the RX path doesn't use the RSS flowid from the received descriptor. It just uses the MSIX queue id. This patch does a handful of things if RSS is enabled: * Instead of using a random key at boot, fetch the RSS key from the RSS code and program that in to the RSS redirection table. That whole chunk of code should be double checked for endian correctness. * Use the RSS queue mapping to CPU ID to figure out where to thread pin the RX swi thread and the taskqueue threads for each queue. * The software queue is now really an "RSS bucket". * When programming the RSS indirection table, use the RSS code to figure out which RSS bucket each slot in the indirection table maps to. * When transmitting, use the flowid RSS mapping if the mbuf has an RSS aware hash. The existing method wasn't guaranteed to align correctly with the destination RSS bucket (and thus CPU ID.) This code warns if the number of RSS buckets isn't the same as the automatically configured number of hardware queues. The administrator will have to tweak one of them for better performance. There's currently no way to re-balance the RSS indirection table after startup. I'll worry about that later. Additionally, it may be worthwhile to always use the full 32 bit flowid if multi-queue is enabled. It'll make things like lagg(4) behave better with respect to traffic distribution.
2014-06-30 04:38:29 +00:00
#ifdef RSS
/* Fetch the configured RSS key */
rss_getkey((uint8_t *) &rss_key);
#else
/* set up random bits */
arc4rand(&rss_key, sizeof(rss_key), 0);
#endif
/* Set multiplier for RETA setup and table size based on MAC */
index_mult = 0x1;
table_size = 128;
switch (adapter->hw.mac.type) {
case ixgbe_mac_82598EB:
index_mult = 0x11;
break;
case ixgbe_mac_X550:
case ixgbe_mac_X550EM_x:
table_size = 512;
break;
default:
break;
}
Add initial RSS awareness to the ixgbe(4) driver. The ixgbe(4) hardware is capable of RSS hashing RX packets and doing RSS queue selection for up to 8 queues. However, even if multi-queue is enabled for ixgbe(4), the RX path doesn't use the RSS flowid from the received descriptor. It just uses the MSIX queue id. This patch does a handful of things if RSS is enabled: * Instead of using a random key at boot, fetch the RSS key from the RSS code and program that in to the RSS redirection table. That whole chunk of code should be double checked for endian correctness. * Use the RSS queue mapping to CPU ID to figure out where to thread pin the RX swi thread and the taskqueue threads for each queue. * The software queue is now really an "RSS bucket". * When programming the RSS indirection table, use the RSS code to figure out which RSS bucket each slot in the indirection table maps to. * When transmitting, use the flowid RSS mapping if the mbuf has an RSS aware hash. The existing method wasn't guaranteed to align correctly with the destination RSS bucket (and thus CPU ID.) This code warns if the number of RSS buckets isn't the same as the automatically configured number of hardware queues. The administrator will have to tweak one of them for better performance. There's currently no way to re-balance the RSS indirection table after startup. I'll worry about that later. Additionally, it may be worthwhile to always use the full 32 bit flowid if multi-queue is enabled. It'll make things like lagg(4) behave better with respect to traffic distribution.
2014-06-30 04:38:29 +00:00
/* Set up the redirection table */
for (int i = 0, j = 0; i < table_size; i++, j++) {
Add initial RSS awareness to the ixgbe(4) driver. The ixgbe(4) hardware is capable of RSS hashing RX packets and doing RSS queue selection for up to 8 queues. However, even if multi-queue is enabled for ixgbe(4), the RX path doesn't use the RSS flowid from the received descriptor. It just uses the MSIX queue id. This patch does a handful of things if RSS is enabled: * Instead of using a random key at boot, fetch the RSS key from the RSS code and program that in to the RSS redirection table. That whole chunk of code should be double checked for endian correctness. * Use the RSS queue mapping to CPU ID to figure out where to thread pin the RX swi thread and the taskqueue threads for each queue. * The software queue is now really an "RSS bucket". * When programming the RSS indirection table, use the RSS code to figure out which RSS bucket each slot in the indirection table maps to. * When transmitting, use the flowid RSS mapping if the mbuf has an RSS aware hash. The existing method wasn't guaranteed to align correctly with the destination RSS bucket (and thus CPU ID.) This code warns if the number of RSS buckets isn't the same as the automatically configured number of hardware queues. The administrator will have to tweak one of them for better performance. There's currently no way to re-balance the RSS indirection table after startup. I'll worry about that later. Additionally, it may be worthwhile to always use the full 32 bit flowid if multi-queue is enabled. It'll make things like lagg(4) behave better with respect to traffic distribution.
2014-06-30 04:38:29 +00:00
if (j == adapter->num_queues) j = 0;
#ifdef RSS
/*
* Fetch the RSS bucket id for the given indirection entry.
* Cap it at the number of configured buckets (which is
* num_queues.)
*/
queue_id = rss_get_indirection_to_bucket(i);
queue_id = queue_id % adapter->num_queues;
#else
queue_id = (j * index_mult);
Add initial RSS awareness to the ixgbe(4) driver. The ixgbe(4) hardware is capable of RSS hashing RX packets and doing RSS queue selection for up to 8 queues. However, even if multi-queue is enabled for ixgbe(4), the RX path doesn't use the RSS flowid from the received descriptor. It just uses the MSIX queue id. This patch does a handful of things if RSS is enabled: * Instead of using a random key at boot, fetch the RSS key from the RSS code and program that in to the RSS redirection table. That whole chunk of code should be double checked for endian correctness. * Use the RSS queue mapping to CPU ID to figure out where to thread pin the RX swi thread and the taskqueue threads for each queue. * The software queue is now really an "RSS bucket". * When programming the RSS indirection table, use the RSS code to figure out which RSS bucket each slot in the indirection table maps to. * When transmitting, use the flowid RSS mapping if the mbuf has an RSS aware hash. The existing method wasn't guaranteed to align correctly with the destination RSS bucket (and thus CPU ID.) This code warns if the number of RSS buckets isn't the same as the automatically configured number of hardware queues. The administrator will have to tweak one of them for better performance. There's currently no way to re-balance the RSS indirection table after startup. I'll worry about that later. Additionally, it may be worthwhile to always use the full 32 bit flowid if multi-queue is enabled. It'll make things like lagg(4) behave better with respect to traffic distribution.
2014-06-30 04:38:29 +00:00
#endif
/*
* The low 8 bits are for hash value (n+0);
* The next 8 bits are for hash value (n+1), etc.
*/
reta = reta >> 8;
reta = reta | ( ((uint32_t) queue_id) << 24);
if ((i & 3) == 3) {
if (i < 128)
IXGBE_WRITE_REG(hw, IXGBE_RETA(i >> 2), reta);
else
IXGBE_WRITE_REG(hw, IXGBE_ERETA((i >> 2) - 32), reta);
reta = 0;
}
Add initial RSS awareness to the ixgbe(4) driver. The ixgbe(4) hardware is capable of RSS hashing RX packets and doing RSS queue selection for up to 8 queues. However, even if multi-queue is enabled for ixgbe(4), the RX path doesn't use the RSS flowid from the received descriptor. It just uses the MSIX queue id. This patch does a handful of things if RSS is enabled: * Instead of using a random key at boot, fetch the RSS key from the RSS code and program that in to the RSS redirection table. That whole chunk of code should be double checked for endian correctness. * Use the RSS queue mapping to CPU ID to figure out where to thread pin the RX swi thread and the taskqueue threads for each queue. * The software queue is now really an "RSS bucket". * When programming the RSS indirection table, use the RSS code to figure out which RSS bucket each slot in the indirection table maps to. * When transmitting, use the flowid RSS mapping if the mbuf has an RSS aware hash. The existing method wasn't guaranteed to align correctly with the destination RSS bucket (and thus CPU ID.) This code warns if the number of RSS buckets isn't the same as the automatically configured number of hardware queues. The administrator will have to tweak one of them for better performance. There's currently no way to re-balance the RSS indirection table after startup. I'll worry about that later. Additionally, it may be worthwhile to always use the full 32 bit flowid if multi-queue is enabled. It'll make things like lagg(4) behave better with respect to traffic distribution.
2014-06-30 04:38:29 +00:00
}
/* Now fill our hash function seeds */
for (int i = 0; i < 10; i++)
IXGBE_WRITE_REG(hw, IXGBE_RSSRK(i), rss_key[i]);
/* Perform hash on these packet types */
#ifdef RSS
mrqc = IXGBE_MRQC_RSSEN;
rss_hash_config = rss_gethashconfig();
if (rss_hash_config & RSS_HASHTYPE_RSS_IPV4)
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4;
if (rss_hash_config & RSS_HASHTYPE_RSS_TCP_IPV4)
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4_TCP;
if (rss_hash_config & RSS_HASHTYPE_RSS_IPV6)
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6;
if (rss_hash_config & RSS_HASHTYPE_RSS_TCP_IPV6)
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_TCP;
if (rss_hash_config & RSS_HASHTYPE_RSS_IPV6_EX)
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX;
if (rss_hash_config & RSS_HASHTYPE_RSS_TCP_IPV6_EX)
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX_TCP;
if (rss_hash_config & RSS_HASHTYPE_RSS_UDP_IPV4)
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4_UDP;
if (rss_hash_config & RSS_HASHTYPE_RSS_UDP_IPV4_EX)
device_printf(adapter->dev,
"%s: RSS_HASHTYPE_RSS_UDP_IPV4_EX defined, "
"but not supported\n", __func__);
if (rss_hash_config & RSS_HASHTYPE_RSS_UDP_IPV6)
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_UDP;
if (rss_hash_config & RSS_HASHTYPE_RSS_UDP_IPV6_EX)
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX_UDP;
#else
/*
* Disable UDP - IP fragments aren't currently being handled
* and so we end up with a mix of 2-tuple and 4-tuple
* traffic.
*/
Add initial RSS awareness to the ixgbe(4) driver. The ixgbe(4) hardware is capable of RSS hashing RX packets and doing RSS queue selection for up to 8 queues. However, even if multi-queue is enabled for ixgbe(4), the RX path doesn't use the RSS flowid from the received descriptor. It just uses the MSIX queue id. This patch does a handful of things if RSS is enabled: * Instead of using a random key at boot, fetch the RSS key from the RSS code and program that in to the RSS redirection table. That whole chunk of code should be double checked for endian correctness. * Use the RSS queue mapping to CPU ID to figure out where to thread pin the RX swi thread and the taskqueue threads for each queue. * The software queue is now really an "RSS bucket". * When programming the RSS indirection table, use the RSS code to figure out which RSS bucket each slot in the indirection table maps to. * When transmitting, use the flowid RSS mapping if the mbuf has an RSS aware hash. The existing method wasn't guaranteed to align correctly with the destination RSS bucket (and thus CPU ID.) This code warns if the number of RSS buckets isn't the same as the automatically configured number of hardware queues. The administrator will have to tweak one of them for better performance. There's currently no way to re-balance the RSS indirection table after startup. I'll worry about that later. Additionally, it may be worthwhile to always use the full 32 bit flowid if multi-queue is enabled. It'll make things like lagg(4) behave better with respect to traffic distribution.
2014-06-30 04:38:29 +00:00
mrqc = IXGBE_MRQC_RSSEN
| IXGBE_MRQC_RSS_FIELD_IPV4
| IXGBE_MRQC_RSS_FIELD_IPV4_TCP
| IXGBE_MRQC_RSS_FIELD_IPV6_EX_TCP
| IXGBE_MRQC_RSS_FIELD_IPV6_EX
| IXGBE_MRQC_RSS_FIELD_IPV6
| IXGBE_MRQC_RSS_FIELD_IPV6_TCP
;
#endif /* RSS */
#ifdef PCI_IOV
mode = ixgbe_get_iov_mode(adapter);
mrqc |= ixgbe_get_mrqc(mode);
#endif
Add initial RSS awareness to the ixgbe(4) driver. The ixgbe(4) hardware is capable of RSS hashing RX packets and doing RSS queue selection for up to 8 queues. However, even if multi-queue is enabled for ixgbe(4), the RX path doesn't use the RSS flowid from the received descriptor. It just uses the MSIX queue id. This patch does a handful of things if RSS is enabled: * Instead of using a random key at boot, fetch the RSS key from the RSS code and program that in to the RSS redirection table. That whole chunk of code should be double checked for endian correctness. * Use the RSS queue mapping to CPU ID to figure out where to thread pin the RX swi thread and the taskqueue threads for each queue. * The software queue is now really an "RSS bucket". * When programming the RSS indirection table, use the RSS code to figure out which RSS bucket each slot in the indirection table maps to. * When transmitting, use the flowid RSS mapping if the mbuf has an RSS aware hash. The existing method wasn't guaranteed to align correctly with the destination RSS bucket (and thus CPU ID.) This code warns if the number of RSS buckets isn't the same as the automatically configured number of hardware queues. The administrator will have to tweak one of them for better performance. There's currently no way to re-balance the RSS indirection table after startup. I'll worry about that later. Additionally, it may be worthwhile to always use the full 32 bit flowid if multi-queue is enabled. It'll make things like lagg(4) behave better with respect to traffic distribution.
2014-06-30 04:38:29 +00:00
IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
}
/*********************************************************************
*
* Setup receive registers and features.
*
**********************************************************************/
#define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
#define BSIZEPKT_ROUNDUP ((1<<IXGBE_SRRCTL_BSIZEPKT_SHIFT)-1)
static void
ixgbe_initialize_receive_units(struct adapter *adapter)
{
struct rx_ring *rxr = adapter->rx_rings;
struct ixgbe_hw *hw = &adapter->hw;
struct ifnet *ifp = adapter->ifp;
u32 bufsz, fctrl, srrctl, rxcsum;
Add initial RSS awareness to the ixgbe(4) driver. The ixgbe(4) hardware is capable of RSS hashing RX packets and doing RSS queue selection for up to 8 queues. However, even if multi-queue is enabled for ixgbe(4), the RX path doesn't use the RSS flowid from the received descriptor. It just uses the MSIX queue id. This patch does a handful of things if RSS is enabled: * Instead of using a random key at boot, fetch the RSS key from the RSS code and program that in to the RSS redirection table. That whole chunk of code should be double checked for endian correctness. * Use the RSS queue mapping to CPU ID to figure out where to thread pin the RX swi thread and the taskqueue threads for each queue. * The software queue is now really an "RSS bucket". * When programming the RSS indirection table, use the RSS code to figure out which RSS bucket each slot in the indirection table maps to. * When transmitting, use the flowid RSS mapping if the mbuf has an RSS aware hash. The existing method wasn't guaranteed to align correctly with the destination RSS bucket (and thus CPU ID.) This code warns if the number of RSS buckets isn't the same as the automatically configured number of hardware queues. The administrator will have to tweak one of them for better performance. There's currently no way to re-balance the RSS indirection table after startup. I'll worry about that later. Additionally, it may be worthwhile to always use the full 32 bit flowid if multi-queue is enabled. It'll make things like lagg(4) behave better with respect to traffic distribution.
2014-06-30 04:38:29 +00:00
u32 hlreg;
/*
* Make sure receives are disabled while
* setting up the descriptor ring
*/
ixgbe_disable_rx(hw);
/* Enable broadcasts */
fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
fctrl |= IXGBE_FCTRL_BAM;
if (adapter->hw.mac.type == ixgbe_mac_82598EB) {
fctrl |= IXGBE_FCTRL_DPF;
fctrl |= IXGBE_FCTRL_PMCF;
}
IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
/* Set for Jumbo Frames? */
hlreg = IXGBE_READ_REG(hw, IXGBE_HLREG0);
if (ifp->if_mtu > ETHERMTU)
hlreg |= IXGBE_HLREG0_JUMBOEN;
else
hlreg &= ~IXGBE_HLREG0_JUMBOEN;
#ifdef DEV_NETMAP
/* crcstrip is conditional in netmap (in RDRXCTL too ?) */
if (ifp->if_capenable & IFCAP_NETMAP && !ix_crcstrip)
hlreg &= ~IXGBE_HLREG0_RXCRCSTRP;
else
hlreg |= IXGBE_HLREG0_RXCRCSTRP;
#endif /* DEV_NETMAP */
IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg);
bufsz = (adapter->rx_mbuf_sz +
BSIZEPKT_ROUNDUP) >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
for (int i = 0; i < adapter->num_queues; i++, rxr++) {
u64 rdba = rxr->rxdma.dma_paddr;
int j = rxr->me;
/* Setup the Base and Length of the Rx Descriptor Ring */
IXGBE_WRITE_REG(hw, IXGBE_RDBAL(j),
(rdba & 0x00000000ffffffffULL));
IXGBE_WRITE_REG(hw, IXGBE_RDBAH(j), (rdba >> 32));
IXGBE_WRITE_REG(hw, IXGBE_RDLEN(j),
adapter->num_rx_desc * sizeof(union ixgbe_adv_rx_desc));
/* Set up the SRRCTL register */
srrctl = IXGBE_READ_REG(hw, IXGBE_SRRCTL(j));
srrctl &= ~IXGBE_SRRCTL_BSIZEHDR_MASK;
srrctl &= ~IXGBE_SRRCTL_BSIZEPKT_MASK;
srrctl |= bufsz;
srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
/*
* Set DROP_EN iff we have no flow control and >1 queue.
* Note that srrctl was cleared shortly before during reset,
* so we do not need to clear the bit, but do it just in case
* this code is moved elsewhere.
*/
if (adapter->num_queues > 1 &&
adapter->hw.fc.requested_mode == ixgbe_fc_none) {
srrctl |= IXGBE_SRRCTL_DROP_EN;
} else {
srrctl &= ~IXGBE_SRRCTL_DROP_EN;
}
IXGBE_WRITE_REG(hw, IXGBE_SRRCTL(j), srrctl);
/* Setup the HW Rx Head and Tail Descriptor Pointers */
IXGBE_WRITE_REG(hw, IXGBE_RDH(j), 0);
IXGBE_WRITE_REG(hw, IXGBE_RDT(j), 0);
/* Set the driver rx tail address */
rxr->tail = IXGBE_RDT(rxr->me);
}
if (adapter->hw.mac.type != ixgbe_mac_82598EB) {
u32 psrtype = IXGBE_PSRTYPE_TCPHDR |
IXGBE_PSRTYPE_UDPHDR |
IXGBE_PSRTYPE_IPV4HDR |
IXGBE_PSRTYPE_IPV6HDR;
IXGBE_WRITE_REG(hw, IXGBE_PSRTYPE(0), psrtype);
}
rxcsum = IXGBE_READ_REG(hw, IXGBE_RXCSUM);
ixgbe_initialize_rss_mapping(adapter);
Add initial RSS awareness to the ixgbe(4) driver. The ixgbe(4) hardware is capable of RSS hashing RX packets and doing RSS queue selection for up to 8 queues. However, even if multi-queue is enabled for ixgbe(4), the RX path doesn't use the RSS flowid from the received descriptor. It just uses the MSIX queue id. This patch does a handful of things if RSS is enabled: * Instead of using a random key at boot, fetch the RSS key from the RSS code and program that in to the RSS redirection table. That whole chunk of code should be double checked for endian correctness. * Use the RSS queue mapping to CPU ID to figure out where to thread pin the RX swi thread and the taskqueue threads for each queue. * The software queue is now really an "RSS bucket". * When programming the RSS indirection table, use the RSS code to figure out which RSS bucket each slot in the indirection table maps to. * When transmitting, use the flowid RSS mapping if the mbuf has an RSS aware hash. The existing method wasn't guaranteed to align correctly with the destination RSS bucket (and thus CPU ID.) This code warns if the number of RSS buckets isn't the same as the automatically configured number of hardware queues. The administrator will have to tweak one of them for better performance. There's currently no way to re-balance the RSS indirection table after startup. I'll worry about that later. Additionally, it may be worthwhile to always use the full 32 bit flowid if multi-queue is enabled. It'll make things like lagg(4) behave better with respect to traffic distribution.
2014-06-30 04:38:29 +00:00
if (adapter->num_queues > 1) {
/* RSS and RX IPP Checksum are mutually exclusive */
rxcsum |= IXGBE_RXCSUM_PCSD;
}
if (ifp->if_capenable & IFCAP_RXCSUM)
rxcsum |= IXGBE_RXCSUM_PCSD;
/* This is useful for calculating UDP/IP fragment checksums */
if (!(rxcsum & IXGBE_RXCSUM_PCSD))
rxcsum |= IXGBE_RXCSUM_IPPCSE;
IXGBE_WRITE_REG(hw, IXGBE_RXCSUM, rxcsum);
return;
}
/*
** This routine is run via an vlan config EVENT,
** it enables us to use the HW Filter table since
** we can get the vlan id. This just creates the
** entry in the soft version of the VFTA, init will
** repopulate the real table.
*/
static void
ixgbe_register_vlan(void *arg, struct ifnet *ifp, u16 vtag)
{
struct adapter *adapter = ifp->if_softc;
u16 index, bit;
if (ifp->if_softc != arg) /* Not our event */
return;
if ((vtag == 0) || (vtag > 4095)) /* Invalid */
return;
IXGBE_CORE_LOCK(adapter);
index = (vtag >> 5) & 0x7F;
bit = vtag & 0x1F;
adapter->shadow_vfta[index] |= (1 << bit);
++adapter->num_vlans;
ixgbe_setup_vlan_hw_support(adapter);
IXGBE_CORE_UNLOCK(adapter);
}
/*
** This routine is run via an vlan
** unconfig EVENT, remove our entry
** in the soft vfta.
*/
static void
ixgbe_unregister_vlan(void *arg, struct ifnet *ifp, u16 vtag)
{
struct adapter *adapter = ifp->if_softc;
u16 index, bit;
if (ifp->if_softc != arg)
return;
if ((vtag == 0) || (vtag > 4095)) /* Invalid */
return;
IXGBE_CORE_LOCK(adapter);
index = (vtag >> 5) & 0x7F;
bit = vtag & 0x1F;
adapter->shadow_vfta[index] &= ~(1 << bit);
--adapter->num_vlans;
/* Re-init to load the changes */
ixgbe_setup_vlan_hw_support(adapter);
IXGBE_CORE_UNLOCK(adapter);
}
static void
ixgbe_setup_vlan_hw_support(struct adapter *adapter)
{
struct ifnet *ifp = adapter->ifp;
struct ixgbe_hw *hw = &adapter->hw;
struct rx_ring *rxr;
u32 ctrl;
/*
** We get here thru init_locked, meaning
** a soft reset, this has already cleared
** the VFTA and other state, so if there
** have been no vlan's registered do nothing.
*/
if (adapter->num_vlans == 0)
return;
/* Setup the queues for vlans */
for (int i = 0; i < adapter->num_queues; i++) {
rxr = &adapter->rx_rings[i];
/* On 82599 the VLAN enable is per/queue in RXDCTL */
if (hw->mac.type != ixgbe_mac_82598EB) {
ctrl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxr->me));
ctrl |= IXGBE_RXDCTL_VME;
IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(rxr->me), ctrl);
}
rxr->vtag_strip = TRUE;
}
if ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0)
return;
/*
** A soft reset zero's out the VFTA, so
** we need to repopulate it now.
*/
for (int i = 0; i < IXGBE_VFTA_SIZE; i++)
if (adapter->shadow_vfta[i] != 0)
IXGBE_WRITE_REG(hw, IXGBE_VFTA(i),
adapter->shadow_vfta[i]);
ctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
/* Enable the Filter Table if enabled */
if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
ctrl &= ~IXGBE_VLNCTRL_CFIEN;
ctrl |= IXGBE_VLNCTRL_VFE;
}
if (hw->mac.type == ixgbe_mac_82598EB)
ctrl |= IXGBE_VLNCTRL_VME;
IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, ctrl);
}
static void
ixgbe_enable_intr(struct adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
struct ix_queue *que = adapter->queues;
u32 mask, fwsm;
mask = (IXGBE_EIMS_ENABLE_MASK & ~IXGBE_EIMS_RTX_QUEUE);
/* Enable Fan Failure detection */
if (hw->device_id == IXGBE_DEV_ID_82598AT)
mask |= IXGBE_EIMS_GPI_SDP1;
switch (adapter->hw.mac.type) {
case ixgbe_mac_82599EB:
mask |= IXGBE_EIMS_ECC;
/* Temperature sensor on some adapters */
mask |= IXGBE_EIMS_GPI_SDP0;
/* SFP+ (RX_LOS_N & MOD_ABS_N) */
mask |= IXGBE_EIMS_GPI_SDP1;
mask |= IXGBE_EIMS_GPI_SDP2;
#ifdef IXGBE_FDIR
mask |= IXGBE_EIMS_FLOW_DIR;
#endif
#ifdef PCI_IOV
mask |= IXGBE_EIMS_MAILBOX;
#endif
break;
case ixgbe_mac_X540:
/* Detect if Thermal Sensor is enabled */
fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM);
if (fwsm & IXGBE_FWSM_TS_ENABLED)
mask |= IXGBE_EIMS_TS;
mask |= IXGBE_EIMS_ECC;
#ifdef IXGBE_FDIR
mask |= IXGBE_EIMS_FLOW_DIR;
#endif
break;
case ixgbe_mac_X550:
case ixgbe_mac_X550EM_x:
/* MAC thermal sensor is automatically enabled */
mask |= IXGBE_EIMS_TS;
/* Some devices use SDP0 for important information */
if (hw->device_id == IXGBE_DEV_ID_X550EM_X_SFP ||
hw->device_id == IXGBE_DEV_ID_X550EM_X_10G_T)
mask |= IXGBE_EIMS_GPI_SDP0_BY_MAC(hw);
mask |= IXGBE_EIMS_ECC;
#ifdef IXGBE_FDIR
mask |= IXGBE_EIMS_FLOW_DIR;
#endif
#ifdef PCI_IOV
mask |= IXGBE_EIMS_MAILBOX;
#endif
/* falls through */
default:
break;
}
IXGBE_WRITE_REG(hw, IXGBE_EIMS, mask);
/* With MSI-X we use auto clear */
if (adapter->msix_mem) {
mask = IXGBE_EIMS_ENABLE_MASK;
/* Don't autoclear Link */
mask &= ~IXGBE_EIMS_OTHER;
mask &= ~IXGBE_EIMS_LSC;
#ifdef PCI_IOV
mask &= ~IXGBE_EIMS_MAILBOX;
#endif
IXGBE_WRITE_REG(hw, IXGBE_EIAC, mask);
}
/*
** Now enable all queues, this is done separately to
** allow for handling the extended (beyond 32) MSIX
** vectors that can be used by 82599
*/
for (int i = 0; i < adapter->num_queues; i++, que++)
ixgbe_enable_queue(adapter, que->msix);
IXGBE_WRITE_FLUSH(hw);
return;
}
static void
ixgbe_disable_intr(struct adapter *adapter)
{
if (adapter->msix_mem)
IXGBE_WRITE_REG(&adapter->hw, IXGBE_EIAC, 0);
if (adapter->hw.mac.type == ixgbe_mac_82598EB) {
IXGBE_WRITE_REG(&adapter->hw, IXGBE_EIMC, ~0);
} else {
IXGBE_WRITE_REG(&adapter->hw, IXGBE_EIMC, 0xFFFF0000);
IXGBE_WRITE_REG(&adapter->hw, IXGBE_EIMC_EX(0), ~0);
IXGBE_WRITE_REG(&adapter->hw, IXGBE_EIMC_EX(1), ~0);
}
IXGBE_WRITE_FLUSH(&adapter->hw);
return;
}
/*
** Get the width and transaction speed of
** the slot this adapter is plugged into.
*/
static void
ixgbe_get_slot_info(struct adapter *adapter)
{
device_t dev = adapter->dev;
struct ixgbe_hw *hw = &adapter->hw;
struct ixgbe_mac_info *mac = &hw->mac;
u16 link;
u32 offset;
/* For most devices simply call the shared code routine */
if (hw->device_id != IXGBE_DEV_ID_82599_SFP_SF_QP) {
ixgbe_get_bus_info(hw);
/* These devices don't use PCI-E */
switch (hw->mac.type) {
case ixgbe_mac_X550EM_x:
return;
default:
goto display;
}
}
/*
** For the Quad port adapter we need to parse back
** up the PCI tree to find the speed of the expansion
** slot into which this adapter is plugged. A bit more work.
*/
dev = device_get_parent(device_get_parent(dev));
#ifdef IXGBE_DEBUG
device_printf(dev, "parent pcib = %x,%x,%x\n",
pci_get_bus(dev), pci_get_slot(dev), pci_get_function(dev));
#endif
dev = device_get_parent(device_get_parent(dev));
#ifdef IXGBE_DEBUG
device_printf(dev, "slot pcib = %x,%x,%x\n",
pci_get_bus(dev), pci_get_slot(dev), pci_get_function(dev));
#endif
/* Now get the PCI Express Capabilities offset */
pci_find_cap(dev, PCIY_EXPRESS, &offset);
/* ...and read the Link Status Register */
link = pci_read_config(dev, offset + PCIER_LINK_STA, 2);
switch (link & IXGBE_PCI_LINK_WIDTH) {
case IXGBE_PCI_LINK_WIDTH_1:
hw->bus.width = ixgbe_bus_width_pcie_x1;
break;
case IXGBE_PCI_LINK_WIDTH_2:
hw->bus.width = ixgbe_bus_width_pcie_x2;
break;
case IXGBE_PCI_LINK_WIDTH_4:
hw->bus.width = ixgbe_bus_width_pcie_x4;
break;
case IXGBE_PCI_LINK_WIDTH_8:
hw->bus.width = ixgbe_bus_width_pcie_x8;
break;
default:
hw->bus.width = ixgbe_bus_width_unknown;
break;
}
switch (link & IXGBE_PCI_LINK_SPEED) {
case IXGBE_PCI_LINK_SPEED_2500:
hw->bus.speed = ixgbe_bus_speed_2500;
break;
case IXGBE_PCI_LINK_SPEED_5000:
hw->bus.speed = ixgbe_bus_speed_5000;
break;
case IXGBE_PCI_LINK_SPEED_8000:
hw->bus.speed = ixgbe_bus_speed_8000;
break;
default:
hw->bus.speed = ixgbe_bus_speed_unknown;
break;
}
mac->ops.set_lan_id(hw);
display:
device_printf(dev,"PCI Express Bus: Speed %s %s\n",
((hw->bus.speed == ixgbe_bus_speed_8000) ? "8.0GT/s":
(hw->bus.speed == ixgbe_bus_speed_5000) ? "5.0GT/s":
(hw->bus.speed == ixgbe_bus_speed_2500) ? "2.5GT/s":"Unknown"),
(hw->bus.width == ixgbe_bus_width_pcie_x8) ? "Width x8" :
(hw->bus.width == ixgbe_bus_width_pcie_x4) ? "Width x4" :
(hw->bus.width == ixgbe_bus_width_pcie_x1) ? "Width x1" :
("Unknown"));
if ((hw->device_id != IXGBE_DEV_ID_82599_SFP_SF_QP) &&
((hw->bus.width <= ixgbe_bus_width_pcie_x4) &&
(hw->bus.speed == ixgbe_bus_speed_2500))) {
device_printf(dev, "PCI-Express bandwidth available"
" for this card\n is not sufficient for"
" optimal performance.\n");
device_printf(dev, "For optimal performance a x8 "
"PCIE, or x4 PCIE Gen2 slot is required.\n");
}
if ((hw->device_id == IXGBE_DEV_ID_82599_SFP_SF_QP) &&
((hw->bus.width <= ixgbe_bus_width_pcie_x8) &&
(hw->bus.speed < ixgbe_bus_speed_8000))) {
device_printf(dev, "PCI-Express bandwidth available"
" for this card\n is not sufficient for"
" optimal performance.\n");
device_printf(dev, "For optimal performance a x8 "
"PCIE Gen3 slot is required.\n");
}
return;
}
/*
** Setup the correct IVAR register for a particular MSIX interrupt
** (yes this is all very magic and confusing :)
** - entry is the register array entry
** - vector is the MSIX vector for this queue
** - type is RX/TX/MISC
*/
static void
ixgbe_set_ivar(struct adapter *adapter, u8 entry, u8 vector, s8 type)
{
struct ixgbe_hw *hw = &adapter->hw;
u32 ivar, index;
vector |= IXGBE_IVAR_ALLOC_VAL;
switch (hw->mac.type) {
case ixgbe_mac_82598EB:
if (type == -1)
entry = IXGBE_IVAR_OTHER_CAUSES_INDEX;
else
entry += (type * 64);
index = (entry >> 2) & 0x1F;
ivar = IXGBE_READ_REG(hw, IXGBE_IVAR(index));
ivar &= ~(0xFF << (8 * (entry & 0x3)));
ivar |= (vector << (8 * (entry & 0x3)));
IXGBE_WRITE_REG(&adapter->hw, IXGBE_IVAR(index), ivar);
break;
case ixgbe_mac_82599EB:
case ixgbe_mac_X540:
case ixgbe_mac_X550:
case ixgbe_mac_X550EM_x:
if (type == -1) { /* MISC IVAR */
index = (entry & 1) * 8;
ivar = IXGBE_READ_REG(hw, IXGBE_IVAR_MISC);
ivar &= ~(0xFF << index);
ivar |= (vector << index);
IXGBE_WRITE_REG(hw, IXGBE_IVAR_MISC, ivar);
} else { /* RX/TX IVARS */
index = (16 * (entry & 1)) + (8 * type);
ivar = IXGBE_READ_REG(hw, IXGBE_IVAR(entry >> 1));
ivar &= ~(0xFF << index);
ivar |= (vector << index);
IXGBE_WRITE_REG(hw, IXGBE_IVAR(entry >> 1), ivar);
}
default:
break;
}
}
static void
ixgbe_configure_ivars(struct adapter *adapter)
{
struct ix_queue *que = adapter->queues;
u32 newitr;
if (ixgbe_max_interrupt_rate > 0)
newitr = (4000000 / ixgbe_max_interrupt_rate) & 0x0FF8;
else {
/*
** Disable DMA coalescing if interrupt moderation is
** disabled.
*/
adapter->dmac = 0;
newitr = 0;
}
for (int i = 0; i < adapter->num_queues; i++, que++) {
struct rx_ring *rxr = &adapter->rx_rings[i];
struct tx_ring *txr = &adapter->tx_rings[i];
/* First the RX queue entry */
ixgbe_set_ivar(adapter, rxr->me, que->msix, 0);
/* ... and the TX */
ixgbe_set_ivar(adapter, txr->me, que->msix, 1);
/* Set an Initial EITR value */
IXGBE_WRITE_REG(&adapter->hw,
IXGBE_EITR(que->msix), newitr);
}
/* For the Link interrupt */
ixgbe_set_ivar(adapter, 1, adapter->vector, -1);
}
/*
** ixgbe_sfp_probe - called in the local timer to
** determine if a port had optics inserted.
*/
static bool
ixgbe_sfp_probe(struct adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
device_t dev = adapter->dev;
bool result = FALSE;
if ((hw->phy.type == ixgbe_phy_nl) &&
(hw->phy.sfp_type == ixgbe_sfp_type_not_present)) {
s32 ret = hw->phy.ops.identify_sfp(hw);
if (ret)
goto out;
ret = hw->phy.ops.reset(hw);
if (ret == IXGBE_ERR_SFP_NOT_SUPPORTED) {
device_printf(dev, "Unsupported SFP+ module detected!");
device_printf(dev, "Reload driver with supported module.\n");
adapter->sfp_probe = FALSE;
goto out;
} else
device_printf(dev, "SFP+ module detected!\n");
/* We now have supported optics */
adapter->sfp_probe = FALSE;
/* Set the optics type so system reports correctly */
ixgbe_setup_optics(adapter);
result = TRUE;
}
out:
return (result);
}
/*
** Tasklet handler for MSIX Link interrupts
** - do outside interrupt since it might sleep
*/
static void
ixgbe_handle_link(void *context, int pending)
{
struct adapter *adapter = context;
struct ixgbe_hw *hw = &adapter->hw;
ixgbe_check_link(hw,
&adapter->link_speed, &adapter->link_up, 0);
ixgbe_update_link_status(adapter);
/* Re-enable link interrupts */
IXGBE_WRITE_REG(hw, IXGBE_EIMS, IXGBE_EIMS_LSC);
}
/*
** Tasklet for handling SFP module interrupts
*/
static void
ixgbe_handle_mod(void *context, int pending)
{
struct adapter *adapter = context;
struct ixgbe_hw *hw = &adapter->hw;
enum ixgbe_phy_type orig_type = hw->phy.type;
device_t dev = adapter->dev;
u32 err;
IXGBE_CORE_LOCK(adapter);
/* Check to see if the PHY type changed */
if (hw->phy.ops.identify) {
hw->phy.type = ixgbe_phy_unknown;
hw->phy.ops.identify(hw);
}
if (hw->phy.type != orig_type) {
device_printf(dev, "Detected phy_type %d\n", hw->phy.type);
if (hw->phy.type == ixgbe_phy_none) {
hw->phy.sfp_type = ixgbe_sfp_type_unknown;
goto out;
}
/* Try to do the initialization that was skipped before */
if (hw->phy.ops.init)
hw->phy.ops.init(hw);
if (hw->phy.ops.reset)
hw->phy.ops.reset(hw);
}
err = hw->phy.ops.identify_sfp(hw);
if (err == IXGBE_ERR_SFP_NOT_SUPPORTED) {
device_printf(dev,
"Unsupported SFP+ module type was detected.\n");
goto out;
}
err = hw->mac.ops.setup_sfp(hw);
if (err == IXGBE_ERR_SFP_NOT_SUPPORTED) {
device_printf(dev,
"Setup failure - unsupported SFP+ module type.\n");
goto out;
}
if (hw->phy.multispeed_fiber)
taskqueue_enqueue(adapter->tq, &adapter->msf_task);
out:
/* Update media type */
switch (hw->mac.ops.get_media_type(hw)) {
case ixgbe_media_type_fiber:
adapter->optics = IFM_10G_SR;
break;
case ixgbe_media_type_copper:
adapter->optics = IFM_10G_TWINAX;
break;
case ixgbe_media_type_cx4:
adapter->optics = IFM_10G_CX4;
break;
default:
adapter->optics = 0;
break;
}
IXGBE_CORE_UNLOCK(adapter);
return;
}
/*
** Tasklet for handling MSF (multispeed fiber) interrupts
*/
static void
ixgbe_handle_msf(void *context, int pending)
{
struct adapter *adapter = context;
struct ixgbe_hw *hw = &adapter->hw;
u32 autoneg;
bool negotiate;
IXGBE_CORE_LOCK(adapter);
/* get_supported_phy_layer will call hw->phy.ops.identify_sfp() */
adapter->phy_layer = ixgbe_get_supported_physical_layer(hw);
autoneg = hw->phy.autoneg_advertised;
if ((!autoneg) && (hw->mac.ops.get_link_capabilities))
hw->mac.ops.get_link_capabilities(hw, &autoneg, &negotiate);
if (hw->mac.ops.setup_link)
hw->mac.ops.setup_link(hw, autoneg, TRUE);
/* Adjust media types shown in ifconfig */
ifmedia_removeall(&adapter->media);
ixgbe_add_media_types(adapter);
IXGBE_CORE_UNLOCK(adapter);
return;
}
/*
** Tasklet for handling interrupts from an external PHY
*/
static void
ixgbe_handle_phy(void *context, int pending)
{
struct adapter *adapter = context;
struct ixgbe_hw *hw = &adapter->hw;
int error;
error = hw->phy.ops.handle_lasi(hw);
if (error == IXGBE_ERR_OVERTEMP)
device_printf(adapter->dev,
"CRITICAL: EXTERNAL PHY OVER TEMP!! "
" PHY will downshift to lower power state!\n");
else if (error)
device_printf(adapter->dev,
"Error handling LASI interrupt: %d\n",
error);
return;
}
#ifdef IXGBE_FDIR
/*
** Tasklet for reinitializing the Flow Director filter table
*/
static void
ixgbe_reinit_fdir(void *context, int pending)
{
struct adapter *adapter = context;
struct ifnet *ifp = adapter->ifp;
if (adapter->fdir_reinit != 1) /* Shouldn't happen */
return;
ixgbe_reinit_fdir_tables_82599(&adapter->hw);
adapter->fdir_reinit = 0;
/* re-enable flow director interrupts */
IXGBE_WRITE_REG(&adapter->hw, IXGBE_EIMS, IXGBE_EIMS_FLOW_DIR);
/* Restart the interface */
ifp->if_drv_flags |= IFF_DRV_RUNNING;
return;
}
#endif
/*********************************************************************
*
* Configure DMA Coalescing
*
**********************************************************************/
static void
ixgbe_config_dmac(struct adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
struct ixgbe_dmac_config *dcfg = &hw->mac.dmac_config;
if (hw->mac.type < ixgbe_mac_X550 ||
!hw->mac.ops.dmac_config)
return;
if (dcfg->watchdog_timer ^ adapter->dmac ||
dcfg->link_speed ^ adapter->link_speed) {
dcfg->watchdog_timer = adapter->dmac;
dcfg->fcoe_en = false;
dcfg->link_speed = adapter->link_speed;
dcfg->num_tcs = 1;
INIT_DEBUGOUT2("dmac settings: watchdog %d, link speed %d\n",
dcfg->watchdog_timer, dcfg->link_speed);
hw->mac.ops.dmac_config(hw);
}
}
/*
* Checks whether the adapter's ports are capable of
* Wake On LAN by reading the adapter's NVM.
*
* Sets each port's hw->wol_enabled value depending
* on the value read here.
*/
static void
ixgbe_check_wol_support(struct adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
u16 dev_caps = 0;
/* Find out WoL support for port */
adapter->wol_support = hw->wol_enabled = 0;
ixgbe_get_device_caps(hw, &dev_caps);
if ((dev_caps & IXGBE_DEVICE_CAPS_WOL_PORT0_1) ||
((dev_caps & IXGBE_DEVICE_CAPS_WOL_PORT0) &&
hw->bus.func == 0))
adapter->wol_support = hw->wol_enabled = 1;
/* Save initial wake up filter configuration */
adapter->wufc = IXGBE_READ_REG(hw, IXGBE_WUFC);
return;
}
/*
* Prepare the adapter/port for LPLU and/or WoL
*/
static int
ixgbe_setup_low_power_mode(struct adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
device_t dev = adapter->dev;
s32 error = 0;
mtx_assert(&adapter->core_mtx, MA_OWNED);
/* Limit power management flow to X550EM baseT */
if (hw->device_id == IXGBE_DEV_ID_X550EM_X_10G_T
&& hw->phy.ops.enter_lplu) {
/* Turn off support for APM wakeup. (Using ACPI instead) */
IXGBE_WRITE_REG(hw, IXGBE_GRC,
IXGBE_READ_REG(hw, IXGBE_GRC) & ~(u32)2);
/*
* Clear Wake Up Status register to prevent any previous wakeup
* events from waking us up immediately after we suspend.
*/
IXGBE_WRITE_REG(hw, IXGBE_WUS, 0xffffffff);
/*
* Program the Wakeup Filter Control register with user filter
* settings
*/
IXGBE_WRITE_REG(hw, IXGBE_WUFC, adapter->wufc);
/* Enable wakeups and power management in Wakeup Control */
IXGBE_WRITE_REG(hw, IXGBE_WUC,
IXGBE_WUC_WKEN | IXGBE_WUC_PME_EN);
/* X550EM baseT adapters need a special LPLU flow */
hw->phy.reset_disable = true;
ixgbe_stop(adapter);
error = hw->phy.ops.enter_lplu(hw);
if (error)
device_printf(dev,
"Error entering LPLU: %d\n", error);
hw->phy.reset_disable = false;
} else {
/* Just stop for other adapters */
ixgbe_stop(adapter);
}
return error;
}
/**********************************************************************
*
* Update the board statistics counters.
*
**********************************************************************/
static void
ixgbe_update_stats_counters(struct adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
u32 missed_rx = 0, bprc, lxon, lxoff, total;
u64 total_missed_rx = 0;
adapter->stats.pf.crcerrs += IXGBE_READ_REG(hw, IXGBE_CRCERRS);
adapter->stats.pf.illerrc += IXGBE_READ_REG(hw, IXGBE_ILLERRC);
adapter->stats.pf.errbc += IXGBE_READ_REG(hw, IXGBE_ERRBC);
adapter->stats.pf.mspdc += IXGBE_READ_REG(hw, IXGBE_MSPDC);
for (int i = 0; i < 16; i++) {
adapter->stats.pf.qprc[i] += IXGBE_READ_REG(hw, IXGBE_QPRC(i));
adapter->stats.pf.qptc[i] += IXGBE_READ_REG(hw, IXGBE_QPTC(i));
adapter->stats.pf.qprdc[i] += IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
}
adapter->stats.pf.mlfc += IXGBE_READ_REG(hw, IXGBE_MLFC);
adapter->stats.pf.mrfc += IXGBE_READ_REG(hw, IXGBE_MRFC);
adapter->stats.pf.rlec += IXGBE_READ_REG(hw, IXGBE_RLEC);
/* Hardware workaround, gprc counts missed packets */
adapter->stats.pf.gprc += IXGBE_READ_REG(hw, IXGBE_GPRC);
adapter->stats.pf.gprc -= missed_rx;
if (hw->mac.type != ixgbe_mac_82598EB) {
adapter->stats.pf.gorc += IXGBE_READ_REG(hw, IXGBE_GORCL) +
((u64)IXGBE_READ_REG(hw, IXGBE_GORCH) << 32);
adapter->stats.pf.gotc += IXGBE_READ_REG(hw, IXGBE_GOTCL) +
((u64)IXGBE_READ_REG(hw, IXGBE_GOTCH) << 32);
adapter->stats.pf.tor += IXGBE_READ_REG(hw, IXGBE_TORL) +
((u64)IXGBE_READ_REG(hw, IXGBE_TORH) << 32);
adapter->stats.pf.lxonrxc += IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
adapter->stats.pf.lxoffrxc += IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
} else {
adapter->stats.pf.lxonrxc += IXGBE_READ_REG(hw, IXGBE_LXONRXC);
adapter->stats.pf.lxoffrxc += IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
/* 82598 only has a counter in the high register */
adapter->stats.pf.gorc += IXGBE_READ_REG(hw, IXGBE_GORCH);
adapter->stats.pf.gotc += IXGBE_READ_REG(hw, IXGBE_GOTCH);
adapter->stats.pf.tor += IXGBE_READ_REG(hw, IXGBE_TORH);
}
/*
* Workaround: mprc hardware is incorrectly counting
* broadcasts, so for now we subtract those.
*/
bprc = IXGBE_READ_REG(hw, IXGBE_BPRC);
adapter->stats.pf.bprc += bprc;
adapter->stats.pf.mprc += IXGBE_READ_REG(hw, IXGBE_MPRC);
if (hw->mac.type == ixgbe_mac_82598EB)
adapter->stats.pf.mprc -= bprc;
adapter->stats.pf.prc64 += IXGBE_READ_REG(hw, IXGBE_PRC64);
adapter->stats.pf.prc127 += IXGBE_READ_REG(hw, IXGBE_PRC127);
adapter->stats.pf.prc255 += IXGBE_READ_REG(hw, IXGBE_PRC255);
adapter->stats.pf.prc511 += IXGBE_READ_REG(hw, IXGBE_PRC511);
adapter->stats.pf.prc1023 += IXGBE_READ_REG(hw, IXGBE_PRC1023);
adapter->stats.pf.prc1522 += IXGBE_READ_REG(hw, IXGBE_PRC1522);
lxon = IXGBE_READ_REG(hw, IXGBE_LXONTXC);
adapter->stats.pf.lxontxc += lxon;
lxoff = IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
adapter->stats.pf.lxofftxc += lxoff;
total = lxon + lxoff;
adapter->stats.pf.gptc += IXGBE_READ_REG(hw, IXGBE_GPTC);
adapter->stats.pf.mptc += IXGBE_READ_REG(hw, IXGBE_MPTC);
adapter->stats.pf.ptc64 += IXGBE_READ_REG(hw, IXGBE_PTC64);
adapter->stats.pf.gptc -= total;
adapter->stats.pf.mptc -= total;
adapter->stats.pf.ptc64 -= total;
adapter->stats.pf.gotc -= total * ETHER_MIN_LEN;
adapter->stats.pf.ruc += IXGBE_READ_REG(hw, IXGBE_RUC);
adapter->stats.pf.rfc += IXGBE_READ_REG(hw, IXGBE_RFC);
adapter->stats.pf.roc += IXGBE_READ_REG(hw, IXGBE_ROC);
adapter->stats.pf.rjc += IXGBE_READ_REG(hw, IXGBE_RJC);
adapter->stats.pf.mngprc += IXGBE_READ_REG(hw, IXGBE_MNGPRC);
adapter->stats.pf.mngpdc += IXGBE_READ_REG(hw, IXGBE_MNGPDC);
adapter->stats.pf.mngptc += IXGBE_READ_REG(hw, IXGBE_MNGPTC);
adapter->stats.pf.tpr += IXGBE_READ_REG(hw, IXGBE_TPR);
adapter->stats.pf.tpt += IXGBE_READ_REG(hw, IXGBE_TPT);
adapter->stats.pf.ptc127 += IXGBE_READ_REG(hw, IXGBE_PTC127);
adapter->stats.pf.ptc255 += IXGBE_READ_REG(hw, IXGBE_PTC255);
adapter->stats.pf.ptc511 += IXGBE_READ_REG(hw, IXGBE_PTC511);
adapter->stats.pf.ptc1023 += IXGBE_READ_REG(hw, IXGBE_PTC1023);
adapter->stats.pf.ptc1522 += IXGBE_READ_REG(hw, IXGBE_PTC1522);
adapter->stats.pf.bptc += IXGBE_READ_REG(hw, IXGBE_BPTC);
adapter->stats.pf.xec += IXGBE_READ_REG(hw, IXGBE_XEC);
adapter->stats.pf.fccrc += IXGBE_READ_REG(hw, IXGBE_FCCRC);
adapter->stats.pf.fclast += IXGBE_READ_REG(hw, IXGBE_FCLAST);
/* Only read FCOE on 82599 */
if (hw->mac.type != ixgbe_mac_82598EB) {
adapter->stats.pf.fcoerpdc += IXGBE_READ_REG(hw, IXGBE_FCOERPDC);
adapter->stats.pf.fcoeprc += IXGBE_READ_REG(hw, IXGBE_FCOEPRC);
adapter->stats.pf.fcoeptc += IXGBE_READ_REG(hw, IXGBE_FCOEPTC);
adapter->stats.pf.fcoedwrc += IXGBE_READ_REG(hw, IXGBE_FCOEDWRC);
adapter->stats.pf.fcoedwtc += IXGBE_READ_REG(hw, IXGBE_FCOEDWTC);
}
/* Fill out the OS statistics structure */
IXGBE_SET_IPACKETS(adapter, adapter->stats.pf.gprc);
IXGBE_SET_OPACKETS(adapter, adapter->stats.pf.gptc);
IXGBE_SET_IBYTES(adapter, adapter->stats.pf.gorc);
IXGBE_SET_OBYTES(adapter, adapter->stats.pf.gotc);
IXGBE_SET_IMCASTS(adapter, adapter->stats.pf.mprc);
IXGBE_SET_OMCASTS(adapter, adapter->stats.pf.mptc);
IXGBE_SET_COLLISIONS(adapter, 0);
IXGBE_SET_IQDROPS(adapter, total_missed_rx);
IXGBE_SET_IERRORS(adapter, adapter->stats.pf.crcerrs
+ adapter->stats.pf.rlec);
2014-09-28 07:29:45 +00:00
}
#if __FreeBSD_version >= 1100036
2014-09-28 07:29:45 +00:00
static uint64_t
ixgbe_get_counter(struct ifnet *ifp, ift_counter cnt)
{
struct adapter *adapter;
struct tx_ring *txr;
uint64_t rv;
2014-09-28 07:29:45 +00:00
adapter = if_getsoftc(ifp);
switch (cnt) {
case IFCOUNTER_IPACKETS:
return (adapter->ipackets);
2014-09-28 07:29:45 +00:00
case IFCOUNTER_OPACKETS:
return (adapter->opackets);
2014-09-28 07:29:45 +00:00
case IFCOUNTER_IBYTES:
return (adapter->ibytes);
2014-09-28 07:29:45 +00:00
case IFCOUNTER_OBYTES:
return (adapter->obytes);
2014-09-28 07:29:45 +00:00
case IFCOUNTER_IMCASTS:
return (adapter->imcasts);
2014-09-28 07:29:45 +00:00
case IFCOUNTER_OMCASTS:
return (adapter->omcasts);
2014-09-28 07:29:45 +00:00
case IFCOUNTER_COLLISIONS:
return (0);
case IFCOUNTER_IQDROPS:
return (adapter->iqdrops);
case IFCOUNTER_OQDROPS:
rv = 0;
txr = adapter->tx_rings;
for (int i = 0; i < adapter->num_queues; i++, txr++)
rv += txr->br->br_drops;
return (rv);
2014-09-28 07:29:45 +00:00
case IFCOUNTER_IERRORS:
return (adapter->ierrors);
2014-09-28 07:29:45 +00:00
default:
return (if_get_counter_default(ifp, cnt));
}
}
#endif
/** ixgbe_sysctl_tdh_handler - Handler function
* Retrieves the TDH value from the hardware
*/
static int
ixgbe_sysctl_tdh_handler(SYSCTL_HANDLER_ARGS)
{
int error;
struct tx_ring *txr = ((struct tx_ring *)oidp->oid_arg1);
if (!txr) return 0;
unsigned val = IXGBE_READ_REG(&txr->adapter->hw, IXGBE_TDH(txr->me));
error = sysctl_handle_int(oidp, &val, 0, req);
if (error || !req->newptr)
return error;
return 0;
}
/** ixgbe_sysctl_tdt_handler - Handler function
* Retrieves the TDT value from the hardware
*/
static int
ixgbe_sysctl_tdt_handler(SYSCTL_HANDLER_ARGS)
{
int error;
struct tx_ring *txr = ((struct tx_ring *)oidp->oid_arg1);
if (!txr) return 0;
unsigned val = IXGBE_READ_REG(&txr->adapter->hw, IXGBE_TDT(txr->me));
error = sysctl_handle_int(oidp, &val, 0, req);
if (error || !req->newptr)
return error;
return 0;
}
/** ixgbe_sysctl_rdh_handler - Handler function
* Retrieves the RDH value from the hardware
*/
static int
ixgbe_sysctl_rdh_handler(SYSCTL_HANDLER_ARGS)
{
int error;
struct rx_ring *rxr = ((struct rx_ring *)oidp->oid_arg1);
if (!rxr) return 0;
unsigned val = IXGBE_READ_REG(&rxr->adapter->hw, IXGBE_RDH(rxr->me));
error = sysctl_handle_int(oidp, &val, 0, req);
if (error || !req->newptr)
return error;
return 0;
}
/** ixgbe_sysctl_rdt_handler - Handler function
* Retrieves the RDT value from the hardware
*/
static int
ixgbe_sysctl_rdt_handler(SYSCTL_HANDLER_ARGS)
{
int error;
struct rx_ring *rxr = ((struct rx_ring *)oidp->oid_arg1);
if (!rxr) return 0;
unsigned val = IXGBE_READ_REG(&rxr->adapter->hw, IXGBE_RDT(rxr->me));
error = sysctl_handle_int(oidp, &val, 0, req);
if (error || !req->newptr)
return error;
return 0;
}
static int
ixgbe_sysctl_interrupt_rate_handler(SYSCTL_HANDLER_ARGS)
{
int error;
struct ix_queue *que = ((struct ix_queue *)oidp->oid_arg1);
unsigned int reg, usec, rate;
reg = IXGBE_READ_REG(&que->adapter->hw, IXGBE_EITR(que->msix));
usec = ((reg & 0x0FF8) >> 3);
if (usec > 0)
rate = 500000 / usec;
else
rate = 0;
error = sysctl_handle_int(oidp, &rate, 0, req);
if (error || !req->newptr)
return error;
reg &= ~0xfff; /* default, no limitation */
ixgbe_max_interrupt_rate = 0;
if (rate > 0 && rate < 500000) {
if (rate < 1000)
rate = 1000;
ixgbe_max_interrupt_rate = rate;
reg |= ((4000000/rate) & 0xff8 );
}
IXGBE_WRITE_REG(&que->adapter->hw, IXGBE_EITR(que->msix), reg);
return 0;
}
static void
ixgbe_add_device_sysctls(struct adapter *adapter)
{
device_t dev = adapter->dev;
struct ixgbe_hw *hw = &adapter->hw;
struct sysctl_oid_list *child;
struct sysctl_ctx_list *ctx;
ctx = device_get_sysctl_ctx(dev);
child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
/* Sysctls for all devices */
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "fc",
CTLTYPE_INT | CTLFLAG_RW, adapter, 0,
ixgbe_set_flowcntl, "I", IXGBE_SYSCTL_DESC_SET_FC);
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "enable_aim",
CTLFLAG_RW,
&ixgbe_enable_aim, 1, "Interrupt Moderation");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "advertise_speed",
CTLTYPE_INT | CTLFLAG_RW, adapter, 0,
ixgbe_set_advertise, "I", IXGBE_SYSCTL_DESC_ADV_SPEED);
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "thermal_test",
CTLTYPE_INT | CTLFLAG_RW, adapter, 0,
ixgbe_sysctl_thermal_test, "I", "Thermal Test");
#ifdef IXGBE_DEBUG
/* testing sysctls (for all devices) */
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "power_state",
CTLTYPE_INT | CTLFLAG_RW, adapter, 0,
ixgbe_sysctl_power_state, "I", "PCI Power State");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "print_rss_config",
CTLTYPE_STRING | CTLFLAG_RD, adapter, 0,
ixgbe_sysctl_print_rss_config, "A", "Prints RSS Configuration");
#endif
/* for X550 series devices */
if (hw->mac.type >= ixgbe_mac_X550)
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "dmac",
CTLTYPE_INT | CTLFLAG_RW, adapter, 0,
ixgbe_sysctl_dmac, "I", "DMA Coalesce");
/* for X552 backplane devices */
if (hw->device_id == IXGBE_DEV_ID_X550EM_X_KR) {
struct sysctl_oid *eee_node;
struct sysctl_oid_list *eee_list;
eee_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "eee",
CTLFLAG_RD, NULL,
"Energy Efficient Ethernet sysctls");
eee_list = SYSCTL_CHILDREN(eee_node);
SYSCTL_ADD_PROC(ctx, eee_list, OID_AUTO, "enable",
CTLTYPE_INT | CTLFLAG_RW, adapter, 0,
ixgbe_sysctl_eee_enable, "I",
"Enable or Disable EEE");
SYSCTL_ADD_PROC(ctx, eee_list, OID_AUTO, "negotiated",
CTLTYPE_INT | CTLFLAG_RD, adapter, 0,
ixgbe_sysctl_eee_negotiated, "I",
"EEE negotiated on link");
SYSCTL_ADD_PROC(ctx, eee_list, OID_AUTO, "tx_lpi_status",
CTLTYPE_INT | CTLFLAG_RD, adapter, 0,
ixgbe_sysctl_eee_tx_lpi_status, "I",
"Whether or not TX link is in LPI state");
SYSCTL_ADD_PROC(ctx, eee_list, OID_AUTO, "rx_lpi_status",
CTLTYPE_INT | CTLFLAG_RD, adapter, 0,
ixgbe_sysctl_eee_rx_lpi_status, "I",
"Whether or not RX link is in LPI state");
SYSCTL_ADD_PROC(ctx, eee_list, OID_AUTO, "tx_lpi_delay",
CTLTYPE_INT | CTLFLAG_RD, adapter, 0,
ixgbe_sysctl_eee_tx_lpi_delay, "I",
"TX LPI entry delay in microseconds");
}
/* for WoL-capable devices */
if (hw->device_id == IXGBE_DEV_ID_X550EM_X_10G_T) {
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "wol_enable",
CTLTYPE_INT | CTLFLAG_RW, adapter, 0,
ixgbe_sysctl_wol_enable, "I",
"Enable/Disable Wake on LAN");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "wufc",
CTLTYPE_INT | CTLFLAG_RW, adapter, 0,
ixgbe_sysctl_wufc, "I",
"Enable/Disable Wake Up Filters");
}
/* for X552/X557-AT devices */
if (hw->device_id == IXGBE_DEV_ID_X550EM_X_10G_T) {
struct sysctl_oid *phy_node;
struct sysctl_oid_list *phy_list;
phy_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "phy",
CTLFLAG_RD, NULL,
"External PHY sysctls");
phy_list = SYSCTL_CHILDREN(phy_node);
SYSCTL_ADD_PROC(ctx, phy_list, OID_AUTO, "temp",
CTLTYPE_INT | CTLFLAG_RD, adapter, 0,
ixgbe_sysctl_phy_temp, "I",
"Current External PHY Temperature (Celsius)");
SYSCTL_ADD_PROC(ctx, phy_list, OID_AUTO, "overtemp_occurred",
CTLTYPE_INT | CTLFLAG_RD, adapter, 0,
ixgbe_sysctl_phy_overtemp_occurred, "I",
"External PHY High Temperature Event Occurred");
}
}
/*
* Add sysctl variables, one per statistic, to the system.
*/
static void
ixgbe_add_hw_stats(struct adapter *adapter)
{
device_t dev = adapter->dev;
struct tx_ring *txr = adapter->tx_rings;
struct rx_ring *rxr = adapter->rx_rings;
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
struct sysctl_oid *tree = device_get_sysctl_tree(dev);
struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
struct ixgbe_hw_stats *stats = &adapter->stats.pf;
struct sysctl_oid *stat_node, *queue_node;
struct sysctl_oid_list *stat_list, *queue_list;
#define QUEUE_NAME_LEN 32
char namebuf[QUEUE_NAME_LEN];
/* Driver Statistics */
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
CTLFLAG_RD, &adapter->dropped_pkts,
"Driver dropped packets");
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "mbuf_defrag_failed",
CTLFLAG_RD, &adapter->mbuf_defrag_failed,
"m_defrag() failed");
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_events",
CTLFLAG_RD, &adapter->watchdog_events,
"Watchdog timeouts");
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
CTLFLAG_RD, &adapter->link_irq,
"Link MSIX IRQ Handled");
for (int i = 0; i < adapter->num_queues; i++, txr++) {
snprintf(namebuf, QUEUE_NAME_LEN, "queue%d", i);
queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
CTLFLAG_RD, NULL, "Queue Name");
queue_list = SYSCTL_CHILDREN(queue_node);
SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "interrupt_rate",
CTLTYPE_UINT | CTLFLAG_RW, &adapter->queues[i],
sizeof(&adapter->queues[i]),
ixgbe_sysctl_interrupt_rate_handler, "IU",
"Interrupt Rate");
SYSCTL_ADD_UQUAD(ctx, queue_list, OID_AUTO, "irqs",
CTLFLAG_RD, &(adapter->queues[i].irqs),
"irqs on this queue");
SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
CTLTYPE_UINT | CTLFLAG_RD, txr, sizeof(txr),
ixgbe_sysctl_tdh_handler, "IU",
"Transmit Descriptor Head");
SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
CTLTYPE_UINT | CTLFLAG_RD, txr, sizeof(txr),
ixgbe_sysctl_tdt_handler, "IU",
"Transmit Descriptor Tail");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tso_tx",
CTLFLAG_RD, &txr->tso_tx,
"TSO");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "no_tx_dma_setup",
CTLFLAG_RD, &txr->no_tx_dma_setup,
"Driver tx dma failure in xmit");
SYSCTL_ADD_UQUAD(ctx, queue_list, OID_AUTO, "no_desc_avail",
CTLFLAG_RD, &txr->no_desc_avail,
"Queue No Descriptor Available");
SYSCTL_ADD_UQUAD(ctx, queue_list, OID_AUTO, "tx_packets",
CTLFLAG_RD, &txr->total_packets,
"Queue Packets Transmitted");
SYSCTL_ADD_UQUAD(ctx, queue_list, OID_AUTO, "br_drops",
CTLFLAG_RD, &txr->br->br_drops,
"Packets dropped in buf_ring");
}
for (int i = 0; i < adapter->num_queues; i++, rxr++) {
snprintf(namebuf, QUEUE_NAME_LEN, "queue%d", i);
queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
CTLFLAG_RD, NULL, "Queue Name");
queue_list = SYSCTL_CHILDREN(queue_node);
struct lro_ctrl *lro = &rxr->lro;
snprintf(namebuf, QUEUE_NAME_LEN, "queue%d", i);
queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
CTLFLAG_RD, NULL, "Queue Name");
queue_list = SYSCTL_CHILDREN(queue_node);
SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
CTLTYPE_UINT | CTLFLAG_RD, rxr, sizeof(rxr),
ixgbe_sysctl_rdh_handler, "IU",
"Receive Descriptor Head");
SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
CTLTYPE_UINT | CTLFLAG_RD, rxr, sizeof(rxr),
ixgbe_sysctl_rdt_handler, "IU",
"Receive Descriptor Tail");
SYSCTL_ADD_UQUAD(ctx, queue_list, OID_AUTO, "rx_packets",
CTLFLAG_RD, &rxr->rx_packets,
"Queue Packets Received");
SYSCTL_ADD_UQUAD(ctx, queue_list, OID_AUTO, "rx_bytes",
CTLFLAG_RD, &rxr->rx_bytes,
"Queue Bytes Received");
SYSCTL_ADD_UQUAD(ctx, queue_list, OID_AUTO, "rx_copies",
CTLFLAG_RD, &rxr->rx_copies,
"Copied RX Frames");
SYSCTL_ADD_INT(ctx, queue_list, OID_AUTO, "lro_queued",
CTLFLAG_RD, &lro->lro_queued, 0,
"LRO Queued");
SYSCTL_ADD_INT(ctx, queue_list, OID_AUTO, "lro_flushed",
CTLFLAG_RD, &lro->lro_flushed, 0,
"LRO Flushed");
}
/* MAC stats get the own sub node */
stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
CTLFLAG_RD, NULL, "MAC Statistics");
stat_list = SYSCTL_CHILDREN(stat_node);
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
CTLFLAG_RD, &stats->crcerrs,
"CRC Errors");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "ill_errs",
CTLFLAG_RD, &stats->illerrc,
"Illegal Byte Errors");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "byte_errs",
CTLFLAG_RD, &stats->errbc,
"Byte Errors");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "short_discards",
CTLFLAG_RD, &stats->mspdc,
"MAC Short Packets Discarded");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "local_faults",
CTLFLAG_RD, &stats->mlfc,
"MAC Local Faults");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "remote_faults",
CTLFLAG_RD, &stats->mrfc,
"MAC Remote Faults");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rec_len_errs",
CTLFLAG_RD, &stats->rlec,
"Receive Length Errors");
/* Flow Control stats */
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
CTLFLAG_RD, &stats->lxontxc,
"Link XON Transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
CTLFLAG_RD, &stats->lxonrxc,
"Link XON Received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
CTLFLAG_RD, &stats->lxofftxc,
"Link XOFF Transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
CTLFLAG_RD, &stats->lxoffrxc,
"Link XOFF Received");
/* Packet Reception Stats */
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_octets_rcvd",
CTLFLAG_RD, &stats->tor,
"Total Octets Received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_rcvd",
CTLFLAG_RD, &stats->gorc,
"Good Octets Received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_rcvd",
CTLFLAG_RD, &stats->tpr,
"Total Packets Received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_rcvd",
CTLFLAG_RD, &stats->gprc,
"Good Packets Received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_rcvd",
CTLFLAG_RD, &stats->mprc,
"Multicast Packets Received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_rcvd",
CTLFLAG_RD, &stats->bprc,
"Broadcast Packets Received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
CTLFLAG_RD, &stats->prc64,
"64 byte frames received ");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
CTLFLAG_RD, &stats->prc127,
"65-127 byte frames received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
CTLFLAG_RD, &stats->prc255,
"128-255 byte frames received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
CTLFLAG_RD, &stats->prc511,
"256-511 byte frames received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
CTLFLAG_RD, &stats->prc1023,
"512-1023 byte frames received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
CTLFLAG_RD, &stats->prc1522,
"1023-1522 byte frames received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersized",
CTLFLAG_RD, &stats->ruc,
"Receive Undersized");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
CTLFLAG_RD, &stats->rfc,
"Fragmented Packets Received ");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversized",
CTLFLAG_RD, &stats->roc,
"Oversized Packets Received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabberd",
CTLFLAG_RD, &stats->rjc,
"Received Jabber");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "management_pkts_rcvd",
CTLFLAG_RD, &stats->mngprc,
"Management Packets Received");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "management_pkts_drpd",
CTLFLAG_RD, &stats->mngptc,
"Management Packets Dropped");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "checksum_errs",
CTLFLAG_RD, &stats->xec,
"Checksum Errors");
/* Packet Transmission Stats */
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
CTLFLAG_RD, &stats->gotc,
"Good Octets Transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
CTLFLAG_RD, &stats->tpt,
"Total Packets Transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
CTLFLAG_RD, &stats->gptc,
"Good Packets Transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
CTLFLAG_RD, &stats->bptc,
"Broadcast Packets Transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
CTLFLAG_RD, &stats->mptc,
"Multicast Packets Transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "management_pkts_txd",
CTLFLAG_RD, &stats->mngptc,
"Management Packets Transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
CTLFLAG_RD, &stats->ptc64,
"64 byte frames transmitted ");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
CTLFLAG_RD, &stats->ptc127,
"65-127 byte frames transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
CTLFLAG_RD, &stats->ptc255,
"128-255 byte frames transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
CTLFLAG_RD, &stats->ptc511,
"256-511 byte frames transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
CTLFLAG_RD, &stats->ptc1023,
"512-1023 byte frames transmitted");
SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
CTLFLAG_RD, &stats->ptc1522,
"1024-1522 byte frames transmitted");
}
static void
ixgbe_set_sysctl_value(struct adapter *adapter, const char *name,
const char *description, int *limit, int value)
{
*limit = value;
SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
OID_AUTO, name, CTLFLAG_RW, limit, value, description);
}
/*
** Set flow control using sysctl:
** Flow control values:
** 0 - off
** 1 - rx pause
** 2 - tx pause
** 3 - full
*/
static int
ixgbe_set_flowcntl(SYSCTL_HANDLER_ARGS)
{
int error, last;
struct adapter *adapter = (struct adapter *) arg1;
last = adapter->fc;
error = sysctl_handle_int(oidp, &adapter->fc, 0, req);
if ((error) || (req->newptr == NULL))
return (error);
/* Don't bother if it's not changed */
if (adapter->fc == last)
return (0);
switch (adapter->fc) {
case ixgbe_fc_rx_pause:
case ixgbe_fc_tx_pause:
case ixgbe_fc_full:
adapter->hw.fc.requested_mode = adapter->fc;
if (adapter->num_queues > 1)
ixgbe_disable_rx_drop(adapter);
break;
case ixgbe_fc_none:
adapter->hw.fc.requested_mode = ixgbe_fc_none;
if (adapter->num_queues > 1)
ixgbe_enable_rx_drop(adapter);
break;
default:
adapter->fc = last;
return (EINVAL);
}
/* Don't autoneg if forcing a value */
adapter->hw.fc.disable_fc_autoneg = TRUE;
ixgbe_fc_enable(&adapter->hw);
return error;
}
/*
** Control advertised link speed:
** Flags:
** 0x1 - advertise 100 Mb
** 0x2 - advertise 1G
** 0x4 - advertise 10G
*/
static int
ixgbe_set_advertise(SYSCTL_HANDLER_ARGS)
{
int error = 0, requested;
struct adapter *adapter;
device_t dev;
struct ixgbe_hw *hw;
ixgbe_link_speed speed = 0;
adapter = (struct adapter *) arg1;
dev = adapter->dev;
hw = &adapter->hw;
requested = adapter->advertise;
error = sysctl_handle_int(oidp, &requested, 0, req);
if ((error) || (req->newptr == NULL))
return (error);
/* No speed changes for backplane media */
if (hw->phy.media_type == ixgbe_media_type_backplane)
return (ENODEV);
/* Checks to validate new value */
if (adapter->advertise == requested) /* no change */
return (0);
if (!((hw->phy.media_type == ixgbe_media_type_copper) ||
(hw->phy.multispeed_fiber))) {
device_printf(dev,
"Advertised speed can only be set on copper or "
"multispeed fiber media types.\n");
return (EINVAL);
}
if (requested < 0x1 || requested > 0x7) {
device_printf(dev,
"Invalid advertised speed; valid modes are 0x1 through 0x7\n");
return (EINVAL);
}
if ((requested & 0x1)
&& (hw->mac.type != ixgbe_mac_X540)
&& (hw->mac.type != ixgbe_mac_X550)) {
device_printf(dev, "Set Advertise: 100Mb on X540/X550 only\n");
return (EINVAL);
}
/* Set new value and report new advertised mode */
if (requested & 0x1)
speed |= IXGBE_LINK_SPEED_100_FULL;
if (requested & 0x2)
speed |= IXGBE_LINK_SPEED_1GB_FULL;
if (requested & 0x4)
speed |= IXGBE_LINK_SPEED_10GB_FULL;
hw->mac.autotry_restart = TRUE;
hw->mac.ops.setup_link(hw, speed, TRUE);
adapter->advertise = requested;
return (error);
}
/*
* The following two sysctls are for X552/X557-AT devices;
* they deal with the external PHY used in them.
*/
static int
ixgbe_sysctl_phy_temp(SYSCTL_HANDLER_ARGS)
{
struct adapter *adapter = (struct adapter *) arg1;
struct ixgbe_hw *hw = &adapter->hw;
u16 reg;
if (hw->device_id != IXGBE_DEV_ID_X550EM_X_10G_T) {
device_printf(adapter->dev,
"Device has no supported external thermal sensor.\n");
return (ENODEV);
}
if (hw->phy.ops.read_reg(hw, IXGBE_PHY_CURRENT_TEMP,
IXGBE_MDIO_VENDOR_SPECIFIC_1_DEV_TYPE,
&reg)) {
device_printf(adapter->dev,
"Error reading from PHY's current temperature register\n");
return (EAGAIN);
}
/* Shift temp for output */
reg = reg >> 8;
return (sysctl_handle_int(oidp, NULL, reg, req));
}
/*
* Reports whether the current PHY temperature is over
* the overtemp threshold.
* - This is reported directly from the PHY
*/
static int
ixgbe_sysctl_phy_overtemp_occurred(SYSCTL_HANDLER_ARGS)
{
struct adapter *adapter = (struct adapter *) arg1;
struct ixgbe_hw *hw = &adapter->hw;
u16 reg;
if (hw->device_id != IXGBE_DEV_ID_X550EM_X_10G_T) {
device_printf(adapter->dev,
"Device has no supported external thermal sensor.\n");
return (ENODEV);
}
if (hw->phy.ops.read_reg(hw, IXGBE_PHY_OVERTEMP_STATUS,
IXGBE_MDIO_VENDOR_SPECIFIC_1_DEV_TYPE,
&reg)) {
device_printf(adapter->dev,
"Error reading from PHY's temperature status register\n");
return (EAGAIN);
}
/* Get occurrence bit */
reg = !!(reg & 0x4000);
return (sysctl_handle_int(oidp, 0, reg, req));
}
/*
** Thermal Shutdown Trigger (internal MAC)
** - Set this to 1 to cause an overtemp event to occur
*/
static int
ixgbe_sysctl_thermal_test(SYSCTL_HANDLER_ARGS)
{
struct adapter *adapter = (struct adapter *) arg1;
struct ixgbe_hw *hw = &adapter->hw;
int error, fire = 0;
error = sysctl_handle_int(oidp, &fire, 0, req);
if ((error) || (req->newptr == NULL))
return (error);
if (fire) {
u32 reg = IXGBE_READ_REG(hw, IXGBE_EICS);
reg |= IXGBE_EICR_TS;
IXGBE_WRITE_REG(hw, IXGBE_EICS, reg);
}
return (0);
}
/*
** Manage DMA Coalescing.
** Control values:
** 0/1 - off / on (use default value of 1000)
**
** Legal timer values are:
** 50,100,250,500,1000,2000,5000,10000
**
** Turning off interrupt moderation will also turn this off.
*/
static int
ixgbe_sysctl_dmac(SYSCTL_HANDLER_ARGS)
{
struct adapter *adapter = (struct adapter *) arg1;
struct ifnet *ifp = adapter->ifp;
int error;
u32 newval;
newval = adapter->dmac;
error = sysctl_handle_int(oidp, &newval, 0, req);
if ((error) || (req->newptr == NULL))
return (error);
switch (newval) {
case 0:
/* Disabled */
adapter->dmac = 0;
break;
case 1:
/* Enable and use default */
adapter->dmac = 1000;
break;
case 50:
case 100:
case 250:
case 500:
case 1000:
case 2000:
case 5000:
case 10000:
/* Legal values - allow */
adapter->dmac = newval;
break;
default:
/* Do nothing, illegal value */
return (EINVAL);
}
/* Re-initialize hardware if it's already running */
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
ixgbe_init(adapter);
return (0);
}
#ifdef IXGBE_DEBUG
/**
* Sysctl to test power states
* Values:
* 0 - set device to D0
* 3 - set device to D3
* (none) - get current device power state
*/
static int
ixgbe_sysctl_power_state(SYSCTL_HANDLER_ARGS)
{
struct adapter *adapter = (struct adapter *) arg1;
device_t dev = adapter->dev;
int curr_ps, new_ps, error = 0;
curr_ps = new_ps = pci_get_powerstate(dev);
error = sysctl_handle_int(oidp, &new_ps, 0, req);
if ((error) || (req->newptr == NULL))
return (error);
if (new_ps == curr_ps)
return (0);
if (new_ps == 3 && curr_ps == 0)
error = DEVICE_SUSPEND(dev);
else if (new_ps == 0 && curr_ps == 3)
error = DEVICE_RESUME(dev);
else
return (EINVAL);
device_printf(dev, "New state: %d\n", pci_get_powerstate(dev));
return (error);
}
#endif
/*
* Sysctl to enable/disable the WoL capability, if supported by the adapter.
* Values:
* 0 - disabled
* 1 - enabled
*/
static int
ixgbe_sysctl_wol_enable(SYSCTL_HANDLER_ARGS)
{
struct adapter *adapter = (struct adapter *) arg1;
struct ixgbe_hw *hw = &adapter->hw;
int new_wol_enabled;
int error = 0;
new_wol_enabled = hw->wol_enabled;
error = sysctl_handle_int(oidp, &new_wol_enabled, 0, req);
if ((error) || (req->newptr == NULL))
return (error);
new_wol_enabled = !!(new_wol_enabled);
if (new_wol_enabled == hw->wol_enabled)
return (0);
if (new_wol_enabled > 0 && !adapter->wol_support)
return (ENODEV);
else
hw->wol_enabled = new_wol_enabled;
return (0);
}
/*
* Sysctl to enable/disable the Energy Efficient Ethernet capability,
* if supported by the adapter.
* Values:
* 0 - disabled
* 1 - enabled
*/
static int
ixgbe_sysctl_eee_enable(SYSCTL_HANDLER_ARGS)
{
struct adapter *adapter = (struct adapter *) arg1;
struct ixgbe_hw *hw = &adapter->hw;
struct ifnet *ifp = adapter->ifp;
int new_eee_enabled, error = 0;
new_eee_enabled = adapter->eee_enabled;
error = sysctl_handle_int(oidp, &new_eee_enabled, 0, req);
if ((error) || (req->newptr == NULL))
return (error);
new_eee_enabled = !!(new_eee_enabled);
if (new_eee_enabled == adapter->eee_enabled)
return (0);
if (new_eee_enabled > 0 && !hw->mac.ops.setup_eee)
return (ENODEV);
else
adapter->eee_enabled = new_eee_enabled;
/* Re-initialize hardware if it's already running */
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
ixgbe_init(adapter);
return (0);
}
/*
* Read-only sysctl indicating whether EEE support was negotiated
* on the link.
*/
static int
ixgbe_sysctl_eee_negotiated(SYSCTL_HANDLER_ARGS)
{
struct adapter *adapter = (struct adapter *) arg1;
struct ixgbe_hw *hw = &adapter->hw;
bool status;
status = !!(IXGBE_READ_REG(hw, IXGBE_EEE_STAT) & IXGBE_EEE_STAT_NEG);
return (sysctl_handle_int(oidp, 0, status, req));
}
/*
* Read-only sysctl indicating whether RX Link is in LPI state.
*/
static int
ixgbe_sysctl_eee_rx_lpi_status(SYSCTL_HANDLER_ARGS)
{
struct adapter *adapter = (struct adapter *) arg1;
struct ixgbe_hw *hw = &adapter->hw;
bool status;
status = !!(IXGBE_READ_REG(hw, IXGBE_EEE_STAT) &
IXGBE_EEE_RX_LPI_STATUS);
return (sysctl_handle_int(oidp, 0, status, req));
}
/*
* Read-only sysctl indicating whether TX Link is in LPI state.
*/
static int
ixgbe_sysctl_eee_tx_lpi_status(SYSCTL_HANDLER_ARGS)
{
struct adapter *adapter = (struct adapter *) arg1;
struct ixgbe_hw *hw = &adapter->hw;
bool status;
status = !!(IXGBE_READ_REG(hw, IXGBE_EEE_STAT) &
IXGBE_EEE_TX_LPI_STATUS);
return (sysctl_handle_int(oidp, 0, status, req));
}
/*
* Read-only sysctl indicating TX Link LPI delay
*/
static int
ixgbe_sysctl_eee_tx_lpi_delay(SYSCTL_HANDLER_ARGS)
{
struct adapter *adapter = (struct adapter *) arg1;
struct ixgbe_hw *hw = &adapter->hw;
u32 reg;
reg = IXGBE_READ_REG(hw, IXGBE_EEE_SU);
return (sysctl_handle_int(oidp, 0, reg >> 26, req));
}
/*
* Sysctl to enable/disable the types of packets that the
* adapter will wake up on upon receipt.
* WUFC - Wake Up Filter Control
* Flags:
* 0x1 - Link Status Change
* 0x2 - Magic Packet
* 0x4 - Direct Exact
* 0x8 - Directed Multicast
* 0x10 - Broadcast
* 0x20 - ARP/IPv4 Request Packet
* 0x40 - Direct IPv4 Packet
* 0x80 - Direct IPv6 Packet
*
* Setting another flag will cause the sysctl to return an
* error.
*/
static int
ixgbe_sysctl_wufc(SYSCTL_HANDLER_ARGS)
{
struct adapter *adapter = (struct adapter *) arg1;
int error = 0;
u32 new_wufc;
new_wufc = adapter->wufc;
error = sysctl_handle_int(oidp, &new_wufc, 0, req);
if ((error) || (req->newptr == NULL))
return (error);
if (new_wufc == adapter->wufc)
return (0);
if (new_wufc & 0xffffff00)
return (EINVAL);
else {
new_wufc &= 0xff;
new_wufc |= (0xffffff & adapter->wufc);
adapter->wufc = new_wufc;
}
return (0);
}
#ifdef IXGBE_DEBUG
static int
ixgbe_sysctl_print_rss_config(SYSCTL_HANDLER_ARGS)
{
struct adapter *adapter = (struct adapter *)arg1;
struct ixgbe_hw *hw = &adapter->hw;
device_t dev = adapter->dev;
int error = 0, reta_size;
struct sbuf *buf;
u32 reg;
buf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
if (!buf) {
device_printf(dev, "Could not allocate sbuf for output.\n");
return (ENOMEM);
}
// TODO: use sbufs to make a string to print out
/* Set multiplier for RETA setup and table size based on MAC */
switch (adapter->hw.mac.type) {
case ixgbe_mac_X550:
case ixgbe_mac_X550EM_x:
reta_size = 128;
break;
default:
reta_size = 32;
break;
}
/* Print out the redirection table */
sbuf_cat(buf, "\n");
for (int i = 0; i < reta_size; i++) {
if (i < 32) {
reg = IXGBE_READ_REG(hw, IXGBE_RETA(i));
sbuf_printf(buf, "RETA(%2d): 0x%08x\n", i, reg);
} else {
reg = IXGBE_READ_REG(hw, IXGBE_ERETA(i - 32));
sbuf_printf(buf, "ERETA(%2d): 0x%08x\n", i - 32, reg);
}
}
// TODO: print more config
error = sbuf_finish(buf);
if (error)
device_printf(dev, "Error finishing sbuf: %d\n", error);
sbuf_delete(buf);
return (0);
}
#endif /* IXGBE_DEBUG */
/*
** Enable the hardware to drop packets when the buffer is
** full. This is useful when multiqueue,so that no single
** queue being full stalls the entire RX engine. We only
** enable this when Multiqueue AND when Flow Control is
** disabled.
*/
static void
ixgbe_enable_rx_drop(struct adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
for (int i = 0; i < adapter->num_queues; i++) {
struct rx_ring *rxr = &adapter->rx_rings[i];
u32 srrctl = IXGBE_READ_REG(hw, IXGBE_SRRCTL(rxr->me));
srrctl |= IXGBE_SRRCTL_DROP_EN;
IXGBE_WRITE_REG(hw, IXGBE_SRRCTL(rxr->me), srrctl);
}
#ifdef PCI_IOV
/* enable drop for each vf */
for (int i = 0; i < adapter->num_vfs; i++) {
IXGBE_WRITE_REG(hw, IXGBE_QDE,
(IXGBE_QDE_WRITE | (i << IXGBE_QDE_IDX_SHIFT) |
IXGBE_QDE_ENABLE));
}
#endif
}
static void
ixgbe_disable_rx_drop(struct adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
for (int i = 0; i < adapter->num_queues; i++) {
struct rx_ring *rxr = &adapter->rx_rings[i];
u32 srrctl = IXGBE_READ_REG(hw, IXGBE_SRRCTL(rxr->me));
srrctl &= ~IXGBE_SRRCTL_DROP_EN;
IXGBE_WRITE_REG(hw, IXGBE_SRRCTL(rxr->me), srrctl);
}
#ifdef PCI_IOV
/* disable drop for each vf */
for (int i = 0; i < adapter->num_vfs; i++) {
IXGBE_WRITE_REG(hw, IXGBE_QDE,
(IXGBE_QDE_WRITE | (i << IXGBE_QDE_IDX_SHIFT)));
}
#endif
}
static void
ixgbe_rearm_queues(struct adapter *adapter, u64 queues)
{
u32 mask;
switch (adapter->hw.mac.type) {
case ixgbe_mac_82598EB:
mask = (IXGBE_EIMS_RTX_QUEUE & queues);
IXGBE_WRITE_REG(&adapter->hw, IXGBE_EICS, mask);
break;
case ixgbe_mac_82599EB:
case ixgbe_mac_X540:
case ixgbe_mac_X550:
case ixgbe_mac_X550EM_x:
mask = (queues & 0xFFFFFFFF);
IXGBE_WRITE_REG(&adapter->hw, IXGBE_EICS_EX(0), mask);
mask = (queues >> 32);
IXGBE_WRITE_REG(&adapter->hw, IXGBE_EICS_EX(1), mask);
break;
default:
break;
}
}
#ifdef PCI_IOV
/*
** Support functions for SRIOV/VF management
*/
static void
ixgbe_ping_all_vfs(struct adapter *adapter)
{
struct ixgbe_vf *vf;
for (int i = 0; i < adapter->num_vfs; i++) {
vf = &adapter->vfs[i];
if (vf->flags & IXGBE_VF_ACTIVE)
ixgbe_send_vf_msg(adapter, vf, IXGBE_PF_CONTROL_MSG);
}
}
static void
ixgbe_vf_set_default_vlan(struct adapter *adapter, struct ixgbe_vf *vf,
uint16_t tag)
{
struct ixgbe_hw *hw;
uint32_t vmolr, vmvir;
hw = &adapter->hw;
vf->vlan_tag = tag;
vmolr = IXGBE_READ_REG(hw, IXGBE_VMOLR(vf->pool));
/* Do not receive packets that pass inexact filters. */
vmolr &= ~(IXGBE_VMOLR_ROMPE | IXGBE_VMOLR_ROPE);
/* Disable Multicast Promicuous Mode. */
vmolr &= ~IXGBE_VMOLR_MPE;
/* Accept broadcasts. */
vmolr |= IXGBE_VMOLR_BAM;
if (tag == 0) {
/* Accept non-vlan tagged traffic. */
//vmolr |= IXGBE_VMOLR_AUPE;
/* Allow VM to tag outgoing traffic; no default tag. */
vmvir = 0;
} else {
/* Require vlan-tagged traffic. */
vmolr &= ~IXGBE_VMOLR_AUPE;
/* Tag all traffic with provided vlan tag. */
vmvir = (tag | IXGBE_VMVIR_VLANA_DEFAULT);
}
IXGBE_WRITE_REG(hw, IXGBE_VMOLR(vf->pool), vmolr);
IXGBE_WRITE_REG(hw, IXGBE_VMVIR(vf->pool), vmvir);
}
static boolean_t
ixgbe_vf_frame_size_compatible(struct adapter *adapter, struct ixgbe_vf *vf)
{
/*
* Frame size compatibility between PF and VF is only a problem on
* 82599-based cards. X540 and later support any combination of jumbo
* frames on PFs and VFs.
*/
if (adapter->hw.mac.type != ixgbe_mac_82599EB)
return (TRUE);
switch (vf->api_ver) {
case IXGBE_API_VER_1_0:
case IXGBE_API_VER_UNKNOWN:
/*
* On legacy (1.0 and older) VF versions, we don't support jumbo
* frames on either the PF or the VF.
*/
if (adapter->max_frame_size > ETHER_MAX_LEN ||
vf->max_frame_size > ETHER_MAX_LEN)
return (FALSE);
return (TRUE);
break;
case IXGBE_API_VER_1_1:
default:
/*
* 1.1 or later VF versions always work if they aren't using
* jumbo frames.
*/
if (vf->max_frame_size <= ETHER_MAX_LEN)
return (TRUE);
/*
* Jumbo frames only work with VFs if the PF is also using jumbo
* frames.
*/
if (adapter->max_frame_size <= ETHER_MAX_LEN)
return (TRUE);
return (FALSE);
}
}
static void
ixgbe_process_vf_reset(struct adapter *adapter, struct ixgbe_vf *vf)
{
ixgbe_vf_set_default_vlan(adapter, vf, vf->default_vlan);
// XXX clear multicast addresses
ixgbe_clear_rar(&adapter->hw, vf->rar_index);
vf->api_ver = IXGBE_API_VER_UNKNOWN;
}
static void
ixgbe_vf_enable_transmit(struct adapter *adapter, struct ixgbe_vf *vf)
{
struct ixgbe_hw *hw;
uint32_t vf_index, vfte;
hw = &adapter->hw;
vf_index = IXGBE_VF_INDEX(vf->pool);
vfte = IXGBE_READ_REG(hw, IXGBE_VFTE(vf_index));
vfte |= IXGBE_VF_BIT(vf->pool);
IXGBE_WRITE_REG(hw, IXGBE_VFTE(vf_index), vfte);
}
static void
ixgbe_vf_enable_receive(struct adapter *adapter, struct ixgbe_vf *vf)
{
struct ixgbe_hw *hw;
uint32_t vf_index, vfre;
hw = &adapter->hw;
vf_index = IXGBE_VF_INDEX(vf->pool);
vfre = IXGBE_READ_REG(hw, IXGBE_VFRE(vf_index));
if (ixgbe_vf_frame_size_compatible(adapter, vf))
vfre |= IXGBE_VF_BIT(vf->pool);
else
vfre &= ~IXGBE_VF_BIT(vf->pool);
IXGBE_WRITE_REG(hw, IXGBE_VFRE(vf_index), vfre);
}
static void
ixgbe_vf_reset_msg(struct adapter *adapter, struct ixgbe_vf *vf, uint32_t *msg)
{
struct ixgbe_hw *hw;
uint32_t ack;
uint32_t resp[IXGBE_VF_PERMADDR_MSG_LEN];
hw = &adapter->hw;
ixgbe_process_vf_reset(adapter, vf);
if (ixgbe_validate_mac_addr(vf->ether_addr) == 0) {
ixgbe_set_rar(&adapter->hw, vf->rar_index,
vf->ether_addr, vf->pool, TRUE);
ack = IXGBE_VT_MSGTYPE_ACK;
} else
ack = IXGBE_VT_MSGTYPE_NACK;
ixgbe_vf_enable_transmit(adapter, vf);
ixgbe_vf_enable_receive(adapter, vf);
vf->flags |= IXGBE_VF_CTS;
resp[0] = IXGBE_VF_RESET | ack | IXGBE_VT_MSGTYPE_CTS;
bcopy(vf->ether_addr, &resp[1], ETHER_ADDR_LEN);
resp[3] = hw->mac.mc_filter_type;
ixgbe_write_mbx(hw, resp, IXGBE_VF_PERMADDR_MSG_LEN, vf->pool);
}
static void
ixgbe_vf_set_mac(struct adapter *adapter, struct ixgbe_vf *vf, uint32_t *msg)
{
uint8_t *mac;
mac = (uint8_t*)&msg[1];
/* Check that the VF has permission to change the MAC address. */
if (!(vf->flags & IXGBE_VF_CAP_MAC) && ixgbe_vf_mac_changed(vf, mac)) {
ixgbe_send_vf_nack(adapter, vf, msg[0]);
return;
}
if (ixgbe_validate_mac_addr(mac) != 0) {
ixgbe_send_vf_nack(adapter, vf, msg[0]);
return;
}
bcopy(mac, vf->ether_addr, ETHER_ADDR_LEN);
ixgbe_set_rar(&adapter->hw, vf->rar_index, vf->ether_addr,
vf->pool, TRUE);
ixgbe_send_vf_ack(adapter, vf, msg[0]);
}
/*
** VF multicast addresses are set by using the appropriate bit in
** 1 of 128 32 bit addresses (4096 possible).
*/
static void
ixgbe_vf_set_mc_addr(struct adapter *adapter, struct ixgbe_vf *vf, u32 *msg)
{
u16 *list = (u16*)&msg[1];
int entries;
u32 vmolr, vec_bit, vec_reg, mta_reg;
entries = (msg[0] & IXGBE_VT_MSGINFO_MASK) >> IXGBE_VT_MSGINFO_SHIFT;
entries = min(entries, IXGBE_MAX_VF_MC);
vmolr = IXGBE_READ_REG(&adapter->hw, IXGBE_VMOLR(vf->pool));
vf->num_mc_hashes = entries;
/* Set the appropriate MTA bit */
for (int i = 0; i < entries; i++) {
vf->mc_hash[i] = list[i];
vec_reg = (vf->mc_hash[i] >> 5) & 0x7F;
vec_bit = vf->mc_hash[i] & 0x1F;
mta_reg = IXGBE_READ_REG(&adapter->hw, IXGBE_MTA(vec_reg));
mta_reg |= (1 << vec_bit);
IXGBE_WRITE_REG(&adapter->hw, IXGBE_MTA(vec_reg), mta_reg);
}
vmolr |= IXGBE_VMOLR_ROMPE;
IXGBE_WRITE_REG(&adapter->hw, IXGBE_VMOLR(vf->pool), vmolr);
ixgbe_send_vf_ack(adapter, vf, msg[0]);
return;
}
static void
ixgbe_vf_set_vlan(struct adapter *adapter, struct ixgbe_vf *vf, uint32_t *msg)
{
struct ixgbe_hw *hw;
int enable;
uint16_t tag;
hw = &adapter->hw;
enable = IXGBE_VT_MSGINFO(msg[0]);
tag = msg[1] & IXGBE_VLVF_VLANID_MASK;
if (!(vf->flags & IXGBE_VF_CAP_VLAN)) {
ixgbe_send_vf_nack(adapter, vf, msg[0]);
return;
}
/* It is illegal to enable vlan tag 0. */
if (tag == 0 && enable != 0){
ixgbe_send_vf_nack(adapter, vf, msg[0]);
return;
}
ixgbe_set_vfta(hw, tag, vf->pool, enable);
ixgbe_send_vf_ack(adapter, vf, msg[0]);
}
static void
ixgbe_vf_set_lpe(struct adapter *adapter, struct ixgbe_vf *vf, uint32_t *msg)
{
struct ixgbe_hw *hw;
uint32_t vf_max_size, pf_max_size, mhadd;
hw = &adapter->hw;
vf_max_size = msg[1];
if (vf_max_size < ETHER_CRC_LEN) {
/* We intentionally ACK invalid LPE requests. */
ixgbe_send_vf_ack(adapter, vf, msg[0]);
return;
}
vf_max_size -= ETHER_CRC_LEN;
if (vf_max_size > IXGBE_MAX_FRAME_SIZE) {
/* We intentionally ACK invalid LPE requests. */
ixgbe_send_vf_ack(adapter, vf, msg[0]);
return;
}
vf->max_frame_size = vf_max_size;
ixgbe_update_max_frame(adapter, vf->max_frame_size);
/*
* We might have to disable reception to this VF if the frame size is
* not compatible with the config on the PF.
*/
ixgbe_vf_enable_receive(adapter, vf);
mhadd = IXGBE_READ_REG(hw, IXGBE_MHADD);
pf_max_size = (mhadd & IXGBE_MHADD_MFS_MASK) >> IXGBE_MHADD_MFS_SHIFT;
if (pf_max_size < adapter->max_frame_size) {
mhadd &= ~IXGBE_MHADD_MFS_MASK;
mhadd |= adapter->max_frame_size << IXGBE_MHADD_MFS_SHIFT;
IXGBE_WRITE_REG(hw, IXGBE_MHADD, mhadd);
}
ixgbe_send_vf_ack(adapter, vf, msg[0]);
}
static void
ixgbe_vf_set_macvlan(struct adapter *adapter, struct ixgbe_vf *vf,
uint32_t *msg)
{
//XXX implement this
ixgbe_send_vf_nack(adapter, vf, msg[0]);
}
static void
ixgbe_vf_api_negotiate(struct adapter *adapter, struct ixgbe_vf *vf,
uint32_t *msg)
{
switch (msg[1]) {
case IXGBE_API_VER_1_0:
case IXGBE_API_VER_1_1:
vf->api_ver = msg[1];
ixgbe_send_vf_ack(adapter, vf, msg[0]);
break;
default:
vf->api_ver = IXGBE_API_VER_UNKNOWN;
ixgbe_send_vf_nack(adapter, vf, msg[0]);
break;
}
}
static void
ixgbe_vf_get_queues(struct adapter *adapter, struct ixgbe_vf *vf,
uint32_t *msg)
{
struct ixgbe_hw *hw;
uint32_t resp[IXGBE_VF_GET_QUEUES_RESP_LEN];
int num_queues;
hw = &adapter->hw;
/* GET_QUEUES is not supported on pre-1.1 APIs. */
switch (msg[0]) {
case IXGBE_API_VER_1_0:
case IXGBE_API_VER_UNKNOWN:
ixgbe_send_vf_nack(adapter, vf, msg[0]);
return;
}
resp[0] = IXGBE_VF_GET_QUEUES | IXGBE_VT_MSGTYPE_ACK |
IXGBE_VT_MSGTYPE_CTS;
num_queues = ixgbe_vf_queues(ixgbe_get_iov_mode(adapter));
resp[IXGBE_VF_TX_QUEUES] = num_queues;
resp[IXGBE_VF_RX_QUEUES] = num_queues;
resp[IXGBE_VF_TRANS_VLAN] = (vf->default_vlan != 0);
resp[IXGBE_VF_DEF_QUEUE] = 0;
ixgbe_write_mbx(hw, resp, IXGBE_VF_GET_QUEUES_RESP_LEN, vf->pool);
}
static void
ixgbe_process_vf_msg(struct adapter *adapter, struct ixgbe_vf *vf)
{
struct ixgbe_hw *hw;
uint32_t msg[IXGBE_VFMAILBOX_SIZE];
int error;
hw = &adapter->hw;
error = ixgbe_read_mbx(hw, msg, IXGBE_VFMAILBOX_SIZE, vf->pool);
if (error != 0)
return;
CTR3(KTR_MALLOC, "%s: received msg %x from %d",
adapter->ifp->if_xname, msg[0], vf->pool);
if (msg[0] == IXGBE_VF_RESET) {
ixgbe_vf_reset_msg(adapter, vf, msg);
return;
}
if (!(vf->flags & IXGBE_VF_CTS)) {
ixgbe_send_vf_nack(adapter, vf, msg[0]);
return;
}
switch (msg[0] & IXGBE_VT_MSG_MASK) {
case IXGBE_VF_SET_MAC_ADDR:
ixgbe_vf_set_mac(adapter, vf, msg);
break;
case IXGBE_VF_SET_MULTICAST:
ixgbe_vf_set_mc_addr(adapter, vf, msg);
break;
case IXGBE_VF_SET_VLAN:
ixgbe_vf_set_vlan(adapter, vf, msg);
break;
case IXGBE_VF_SET_LPE:
ixgbe_vf_set_lpe(adapter, vf, msg);
break;
case IXGBE_VF_SET_MACVLAN:
ixgbe_vf_set_macvlan(adapter, vf, msg);
break;
case IXGBE_VF_API_NEGOTIATE:
ixgbe_vf_api_negotiate(adapter, vf, msg);
break;
case IXGBE_VF_GET_QUEUES:
ixgbe_vf_get_queues(adapter, vf, msg);
break;
default:
ixgbe_send_vf_nack(adapter, vf, msg[0]);
}
}
/*
* Tasklet for handling VF -> PF mailbox messages.
*/
static void
ixgbe_handle_mbx(void *context, int pending)
{
struct adapter *adapter;
struct ixgbe_hw *hw;
struct ixgbe_vf *vf;
int i;
adapter = context;
hw = &adapter->hw;
IXGBE_CORE_LOCK(adapter);
for (i = 0; i < adapter->num_vfs; i++) {
vf = &adapter->vfs[i];
if (vf->flags & IXGBE_VF_ACTIVE) {
if (ixgbe_check_for_rst(hw, vf->pool) == 0)
ixgbe_process_vf_reset(adapter, vf);
if (ixgbe_check_for_msg(hw, vf->pool) == 0)
ixgbe_process_vf_msg(adapter, vf);
if (ixgbe_check_for_ack(hw, vf->pool) == 0)
ixgbe_process_vf_ack(adapter, vf);
}
}
IXGBE_CORE_UNLOCK(adapter);
}
static int
ixgbe_init_iov(device_t dev, u16 num_vfs, const nvlist_t *config)
{
struct adapter *adapter;
enum ixgbe_iov_mode mode;
adapter = device_get_softc(dev);
adapter->num_vfs = num_vfs;
mode = ixgbe_get_iov_mode(adapter);
if (num_vfs > ixgbe_max_vfs(mode)) {
adapter->num_vfs = 0;
return (ENOSPC);
}
IXGBE_CORE_LOCK(adapter);
adapter->vfs = malloc(sizeof(*adapter->vfs) * num_vfs, M_IXGBE,
M_NOWAIT | M_ZERO);
if (adapter->vfs == NULL) {
adapter->num_vfs = 0;
IXGBE_CORE_UNLOCK(adapter);
return (ENOMEM);
}
ixgbe_init_locked(adapter);
IXGBE_CORE_UNLOCK(adapter);
return (0);
}
static void
ixgbe_uninit_iov(device_t dev)
{
struct ixgbe_hw *hw;
struct adapter *adapter;
uint32_t pf_reg, vf_reg;
adapter = device_get_softc(dev);
hw = &adapter->hw;
IXGBE_CORE_LOCK(adapter);
/* Enable rx/tx for the PF and disable it for all VFs. */
pf_reg = IXGBE_VF_INDEX(adapter->pool);
IXGBE_WRITE_REG(hw, IXGBE_VFRE(pf_reg),
IXGBE_VF_BIT(adapter->pool));
IXGBE_WRITE_REG(hw, IXGBE_VFTE(pf_reg),
IXGBE_VF_BIT(adapter->pool));
if (pf_reg == 0)
vf_reg = 1;
else
vf_reg = 0;
IXGBE_WRITE_REG(hw, IXGBE_VFRE(vf_reg), 0);
IXGBE_WRITE_REG(hw, IXGBE_VFTE(vf_reg), 0);
IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, 0);
free(adapter->vfs, M_IXGBE);
adapter->vfs = NULL;
adapter->num_vfs = 0;
IXGBE_CORE_UNLOCK(adapter);
}
static void
ixgbe_initialize_iov(struct adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
uint32_t mrqc, mtqc, vt_ctl, vf_reg, gcr_ext, gpie;
enum ixgbe_iov_mode mode;
int i;
mode = ixgbe_get_iov_mode(adapter);
if (mode == IXGBE_NO_VM)
return;
IXGBE_CORE_LOCK_ASSERT(adapter);
mrqc = IXGBE_READ_REG(hw, IXGBE_MRQC);
mrqc &= ~IXGBE_MRQC_MRQE_MASK;
switch (mode) {
case IXGBE_64_VM:
mrqc |= IXGBE_MRQC_VMDQRSS64EN;
break;
case IXGBE_32_VM:
mrqc |= IXGBE_MRQC_VMDQRSS32EN;
break;
default:
panic("Unexpected SR-IOV mode %d", mode);
}
IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
mtqc = IXGBE_MTQC_VT_ENA;
switch (mode) {
case IXGBE_64_VM:
mtqc |= IXGBE_MTQC_64VF;
break;
case IXGBE_32_VM:
mtqc |= IXGBE_MTQC_32VF;
break;
default:
panic("Unexpected SR-IOV mode %d", mode);
}
IXGBE_WRITE_REG(hw, IXGBE_MTQC, mtqc);
gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
gcr_ext |= IXGBE_GCR_EXT_MSIX_EN;
gcr_ext &= ~IXGBE_GCR_EXT_VT_MODE_MASK;
switch (mode) {
case IXGBE_64_VM:
gcr_ext |= IXGBE_GCR_EXT_VT_MODE_64;
break;
case IXGBE_32_VM:
gcr_ext |= IXGBE_GCR_EXT_VT_MODE_32;
break;
default:
panic("Unexpected SR-IOV mode %d", mode);
}
IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
gpie = IXGBE_READ_REG(hw, IXGBE_GPIE);
gcr_ext &= ~IXGBE_GPIE_VTMODE_MASK;
switch (mode) {
case IXGBE_64_VM:
gpie |= IXGBE_GPIE_VTMODE_64;
break;
case IXGBE_32_VM:
gpie |= IXGBE_GPIE_VTMODE_32;
break;
default:
panic("Unexpected SR-IOV mode %d", mode);
}
IXGBE_WRITE_REG(hw, IXGBE_GPIE, gpie);
/* Enable rx/tx for the PF. */
vf_reg = IXGBE_VF_INDEX(adapter->pool);
IXGBE_WRITE_REG(hw, IXGBE_VFRE(vf_reg),
IXGBE_VF_BIT(adapter->pool));
IXGBE_WRITE_REG(hw, IXGBE_VFTE(vf_reg),
IXGBE_VF_BIT(adapter->pool));
/* Allow VM-to-VM communication. */
IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, IXGBE_PFDTXGSWC_VT_LBEN);
vt_ctl = IXGBE_VT_CTL_VT_ENABLE | IXGBE_VT_CTL_REPLEN;
vt_ctl |= (adapter->pool << IXGBE_VT_CTL_POOL_SHIFT);
IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, vt_ctl);
for (i = 0; i < adapter->num_vfs; i++)
ixgbe_init_vf(adapter, &adapter->vfs[i]);
}
/*
** Check the max frame setting of all active VF's
*/
static void
ixgbe_recalculate_max_frame(struct adapter *adapter)
{
struct ixgbe_vf *vf;
IXGBE_CORE_LOCK_ASSERT(adapter);
for (int i = 0; i < adapter->num_vfs; i++) {
vf = &adapter->vfs[i];
if (vf->flags & IXGBE_VF_ACTIVE)
ixgbe_update_max_frame(adapter, vf->max_frame_size);
}
}
static void
ixgbe_init_vf(struct adapter *adapter, struct ixgbe_vf *vf)
{
struct ixgbe_hw *hw;
uint32_t vf_index, pfmbimr;
IXGBE_CORE_LOCK_ASSERT(adapter);
hw = &adapter->hw;
if (!(vf->flags & IXGBE_VF_ACTIVE))
return;
vf_index = IXGBE_VF_INDEX(vf->pool);
pfmbimr = IXGBE_READ_REG(hw, IXGBE_PFMBIMR(vf_index));
pfmbimr |= IXGBE_VF_BIT(vf->pool);
IXGBE_WRITE_REG(hw, IXGBE_PFMBIMR(vf_index), pfmbimr);
ixgbe_vf_set_default_vlan(adapter, vf, vf->vlan_tag);
// XXX multicast addresses
if (ixgbe_validate_mac_addr(vf->ether_addr) == 0) {
ixgbe_set_rar(&adapter->hw, vf->rar_index,
vf->ether_addr, vf->pool, TRUE);
}
ixgbe_vf_enable_transmit(adapter, vf);
ixgbe_vf_enable_receive(adapter, vf);
ixgbe_send_vf_msg(adapter, vf, IXGBE_PF_CONTROL_MSG);
}
static int
ixgbe_add_vf(device_t dev, u16 vfnum, const nvlist_t *config)
{
struct adapter *adapter;
struct ixgbe_vf *vf;
const void *mac;
adapter = device_get_softc(dev);
KASSERT(vfnum < adapter->num_vfs, ("VF index %d is out of range %d",
vfnum, adapter->num_vfs));
IXGBE_CORE_LOCK(adapter);
vf = &adapter->vfs[vfnum];
vf->pool= vfnum;
/* RAR[0] is used by the PF so use vfnum + 1 for VF RAR. */
vf->rar_index = vfnum + 1;
vf->default_vlan = 0;
vf->max_frame_size = ETHER_MAX_LEN;
ixgbe_update_max_frame(adapter, vf->max_frame_size);
if (nvlist_exists_binary(config, "mac-addr")) {
mac = nvlist_get_binary(config, "mac-addr", NULL);
bcopy(mac, vf->ether_addr, ETHER_ADDR_LEN);
if (nvlist_get_bool(config, "allow-set-mac"))
vf->flags |= IXGBE_VF_CAP_MAC;
} else
/*
* If the administrator has not specified a MAC address then
* we must allow the VF to choose one.
*/
vf->flags |= IXGBE_VF_CAP_MAC;
vf->flags = IXGBE_VF_ACTIVE;
ixgbe_init_vf(adapter, vf);
IXGBE_CORE_UNLOCK(adapter);
return (0);
}
#endif /* PCI_IOV */