- fix KV macro in t2_pci.c to include the sable_lynx_base variable
so that the T2 CSRs can be found on lynxes. Current should be
bootable on lynxes now.
Jonathon Lemon's driver (gx) is at least as fast and has more features
and is likely to be better supported.
It is also possible that Intel might support this chipset in FreeBSD
with their own driver. Somewhat secretive and furtive rumblings from
certain Yahoo employees have indicated that this might happen soon.
I'm a little unhappy at the lack of discussion on the net list about
this, or on developers, or on hackers, or the lack of mention on
audit. This then leaves me to try and figure out the right thing
to do.
I've concluded that the right thing to do is to remove wx from FreeBSD,
as this is probably best for FreeBSD.
was used. This resulted in bogus bad window traps (invalid wstate).
Add a trace to sfsr traps (alignment among other things).
Use KTR_TRAP instead of KTR_CT1.
Use the right registers when storing the values of various
mmu registers into the trap frame. This fixes a bug where sometimes
the context number reported by a fault would be garbage. Sometimes
it would be zero for faults on user address space so the kernel would
wrongly think that it was a fault on kernel address space and fail.
Use the preloaded registers in the vectored interrupt trap instead
of reading pointers from memory. Remove traces due to register
pressure and excess verbosity. We can probably still sneak in one
trace. Remove some debug code.
Go back to using the tsb register during kernel page table lookups.
This is the best way to not have to have the address of the kernel tsb be
a compile time constant. We lie and say we have 1 page tsb when really
its much larger. This way the hardware provides bits 13-22 of the
virtual address (the lower 9 bits of the virtual page number) in the
form of the address of the tte corresponding to the fault address in
the (1 page) kernel tsb. With some clever arithmetic we can then get
bits 22 and up from the tte tag and add them to the tte address in
order to index massive tsbs (basically unlimited).
Add traps for physical address hardware watchpoints.
Don't try to pass the window state from the trap table entry point
all the way down to the common trap code. Its too easy to clobber
and reading it again doesn't cost much.
Fixup some traces.
Fiddle the cwp bits on return from the kernel to user mode so that
the window we are returning to is always the same as the one we
restore to in the trap code. Strictly speaking this is not necessary,
it only affects return from fork and exec, but setting up the windows
right would require hard coding the right cwp values in cpu_fork and
setregs, basically hard coding the number of frames between syscall and
tl0_ret. The result of getting it wrong is usually a spill to an invalid
stack pointer; either 0 or pointing into kernel space. This should also
alleviate the need to context switch the cwp.
Transfer the trap state from locals to alternate globals in the trap
return code so that we can do a restore and rotate the windows before
reloading the trap registers. If the restore fails we'll trap back
into the kernel, so there's no point in loading the trap registers
before hand. Its is crucial that the window trap recovery code not
clobber the alternate globals.
boundary. It must be on at least an 8 byte boundary so that the length
of the signal code is a multiple of 8 (well aligned). The size is used
in the calculation of the address of the argument and environment vectors
on the user stack; getting it wrong results in the string pointers being
misaligned and causes alignment faults in getenv() among other things.
Allocate a regular stack frame below the signal frame on the user stack
and join up the frame pointer to the previous frame. This fixes longjmp-ing
out of signal handlers. Longjmp traverses the stack upwards in order to
find the right frame to return to, so the frame pointers must join up
seamlessly. I thought this would just work, but obviously the frame
needs to be below the signal frame, not above it like before. Account
for the extra space in the signal code.
Preload pointers to interrupt data structures in interrupt globals.
This avoids the need to load the pointers from memory in the vectored
interrupt trap handler.
Transfer the first 2 out registers into td_retval in setregs. We use
the same registers for system call arguments as return values, so these
registers got clobbered by the system call return values on return from
execve. They now get clobbered by the right values. We must put the values
in both the out registers in the trapframe and in td_retval because init
calls exec but fails to transfer the return value into the out registers.
This fixes a bug where the first exec after init would pass junk to the
c runtime, instead of a pointer to the argument strings. A better solution
would be to return EJUSTRETURN on success from execve.
Adjust for change in pmap_bootstraps prototype.
Map the message buffer after the trap table is setup. We will fault
on it immediately.
Don't use a hard coded address constant for the virtual address of the
kernel tsb. Allocate kernel virtual address space for the kernel tsb
at runtime.
Remove unused parameter to pmap_bootstrap.
Adapt pmap.c to use KVA_PAGES.
Map the message buffer too.
Add some traces.
Implement pmap_protect.
the system load average. Previously, the load average measurement
was susceptible to synchronisation with processes that run at
regular intervals such as the system bufdaemon process.
Each interval is now chosen at random within the range of 4 to 6
seconds. This large variation is chosen so that over the shorter
5-minute load average timescale there is a good dispersion of
samples across the 5-second sample period (the time to perform 60
5-second samples now has a standard deviation of approx 4.5 seconds).
be used to index tables of counters.
Remove intr_dispatch() inline, it is implemented directly in tl*_intr now.
Count stray interrupts in a table of counters like intrcnt.
Disable interrupts briefly when setting up the interrupt vector table.
We must disable interrupts completely, not just raise the pil.
Pass pointers to the intr_vector structures rather than a vector number
to sched_ithd and intr_stray.
to kern_synch.c in preparation for adding some jitter to the
inter-sample time.
Note that the "vm.loadavg" sysctl still lives in vm_meter.c which
isn't the right place, but it is appropriate for the current (bad)
name of that sysctl.
Suggested by: jhb (some time ago)
Reviewed by: bde
off to witness_init() making the check for double intializating a lock by
testing the LO_INITIALIZED flag moot. Workaround this by checking the
LO_INITIALIZED flag ourself before we bzero the lock structure.