necessary workarounds, add code to detect these hangs and distinguish
them from other events; note this code is only invoked for anomalous
conditions and (at the moment) is a noop because the hang detection
code is in a new hal that's coming shortly
and Core Duo), models 0xF (Core2), model 0x17 (Core2Extreme) and
model 0x1C (Atom).
In these CPUs, the actual numbers, kinds and widths of PMCs present
need to queried at run time. Support for specific "architectural"
events also needs to be queried at run time.
Model 0xE CPUs support programmable PMCs, subsequent CPUs
additionally support "fixed-function" counters.
- Use event names that are close to vendor documentation, taking in
account that:
- events with identical semantics on two or more CPUs in this family
can have differing names in vendor documentation,
- identical vendor event names may map to differing events across
CPUs,
- each type of CPU supports a different subset of measurable
events.
Fixed-function and programmable counters both use the same vendor
names for events. The use of a class name prefix ("iaf-" or
"iap-" respectively) permits these to be distinguished.
- In libpmc, refactor pmc_name_of_event() into a public interface
and an internal helper function, for use by log handling code.
- Minor code tweaks: staticize a global, freshen a few comments.
Tested by: gnn
controllers. ICH based controllers are treated as 82559. 82557,
earlier revision of 82558 and 82559ER have no WOL capability.
o WOL support requires help of a firmware so add check whether
hardware is capable of handling magic frames by reading EEPROM.
o Enable accepting WOL frames only when hardware is about to
suspend or shutdown. Previously fxp(4) used to allow receipt of
magic frame under normal operation mode which could cause
hardware hang if magic frame is received by hardware. Datasheet
clearly states driver should not allow WOL frames under normal
operation mode.
o Disable WOL frame reception in device attach so have fxp(4)
immunize against system hang which can be triggered by magic
packets when the hardware is not in fully initialized state.
o Don't reset all hardware configuration data in fxp_stop()
otherwise important configuration data is lost and this would
reset WOL configuration to default state which in turn cause
hardware hang on receipt of magic frames. To fix the issue,
preserve hardware configuration data by issuing a selective
reset.
o Explicitly disable interrupts after issuing selective reset as
reset may unmask interrupts.
Tested by: Alexey Shuvaev < shuvaev <> physik DOT uni-wuerzburg DOT de >
will sometimes fail to initialize problem due to a lock
contention with management hardware. However, in order to
deliver that fix it was necessary to take a shared code
update as a whole, and this required scattered changes in
the core code to be compatible.
The em driver now has VLAN HW support added as the igb
driver had previously.
MFC after: ASAP - in time for 7.1 RELEASE
-This version has header split, and as a result a number of
aspects of the code have been improved/simplified.
- Interrupt handling refined for performance
- Many small bugs fixed along the way
MFC after: ASAP - in time for 7.1
- Bugfix: Don't excede static number of ports allowed when iterating
over endpoints within an interface.
- u3g_speeds contains speeds in baud, not bytes per second, so divide
the buffer size by 10.
o Configure controller to use dynamic TBD as TSO requires that
operation mode.
o Add a dummy TBD to tx_cb_u as TSO can access one more TBD in TSO
operation.
o Increase a DMA segment size to 4096 to hold a full IP segment
with link layer header.
o Unlike other TSO capable controllers, 82550/82551 does not
modify the first IP packet in TSO operation so driver should
create an IP packet with proper header. Subsequent IP packets
are generated from the header information in the first IP packet
header. Likewise pseudo checksum also should be computed by
driver for the first packet.
o TSO requires one more TBD to hold total TCP payload. To make
code simple for TSO/non-TSO case, increase the index of the
first available TBD array.
o Remove KASSERT that checks the size of a DMA segment should be
less than or equal to MCLBYTES as it's no longer valid in TSO.
o Tx threshold and number of TBDs field is used to store MSS in
TSO. So don't set the Tx threshold in TSO case.
82559 or later controllers added simple checksum calculation logic
in RU. For backward compatibility the computed checksum is appended
at the end of the data posted to Rx buffer. This type of simple
checksum calculation support had been used on several vendors such
as Sun HME/GEM, SysKonnect GENESIS and Marvell Yukon controllers.
Because this type of checksum offload support requires parsing of
received frame and pseudo checksum calculation with software
routine it still consumes more CPU cycles than that of full-fledged
checksum offload controller. But it's still better than software
checksum calculation.
Rx buffer and loads DMA map. Also add a function
fxp_discard_rfabuf that handles reusing Rx buffer/DMA map. With
this change fxp_add_rfabuf just handles appending a new RFA to
existing chain.
o Initialize mbuf length in fxp_new_rfabuf.
o Don't reset rnr and have fxp(4) handle received frames even if
it couldn't allocate new Rx buffer. This will make fxp(4) reload
updated RFA under rnr case. The rnr would still be reset to 0 if
polling is active and fxp(4) processed number of allowed Rx
events.
o Update if_iqdrops if fxp(4) couldn't allocate Rx buffer.
Previously fxp(4) used to try to reuse Rx buffer when new buffer
allocation is failed. But fxp(4) didn't take into account loaded
DMA map such that the same DMA map was loaded again without
unloading the map. There is no reason to unload the loaded map and
reload the same map again, just reusing the map is enough. I
believe the spare DMA map in softc was introduced to implement this
behaviour. Also fxp(4) used to stop Rx processing if once Rx buffer
allocation or DMA map load fails which in turn resulted in losing
incoming frames under heavy network load. With this change fxp(4)
should survive from resource shortage condition.
Fix some issues about re-scanning of the devices.
src/lib/libusb20/libusb20_ugen20.c
Fix issue about libusb20 having to release the
USB transfers before doing a SET_CONFIG, else
the kernel will kill the file handle.
src/sys/dev/usb2/core/usb2_device.
src/sys/dev/usb2/core/usb2_generic.c
src/sys/dev/usb2/core/usb2_generic.h
Add support for U3G devices.
Improve and cleanup FIFO free handling.
Improve device re-enumeration.
src/sys/dev/usb2/core/usb2_msctest.c
src/sys/dev/usb2/core/usb2_msctest.h
Fix some problems in the USB Mass Storage Test.
Add Huawei vendor specific quirks.
src/sys/dev/usb2/core/usb2_request.c
Improve device re-enumeration.
src/sys/dev/usb2/ethernet/if_aue2.c
src/sys/dev/usb2/include/usb2_devid.h
src/sys/dev/usb2/include/usb2_devtable.h
src/sys/dev/usb2/quirk/usb2_quirk.c
Integrate changes from the old USB driver.
src/sys/dev/usb2/include/usb2_standard.h
Add definition of USB3.0 structures from USB.org.
src/sys/dev/usb2/serial/u3g2.c
src/sys/dev/usb2/serial/ugensa2.c
src/sys/modules/usb2/Makefile
src/sys/modules/usb2/serial_3g/Makefile
Import U3G driver.
Submitted by: Hans Petter Selasky (usb4bsd)
many bugs fixes, many more performance improvements.
Submitted by: Danny Braniss
M sbin/iscontrol/iscsi.conf.5
M sbin/iscontrol/iscontrol.8
M sbin/iscontrol/iscontrol.h
M sbin/iscontrol/config.c
M sbin/iscontrol/fsm.c
M sbin/iscontrol/login.c
M sbin/iscontrol/pdu.c
M sbin/iscontrol/misc.c
M sbin/iscontrol/auth_subr.c
M sbin/iscontrol/iscontrol.c
M sys/dev/iscsi/initiator/isc_cam.c
M sys/dev/iscsi/initiator/iscsi.h
M sys/dev/iscsi/initiator/isc_soc.c
M sys/dev/iscsi/initiator/iscsi_subr.c
M sys/dev/iscsi/initiator/iscsivar.h
M sys/dev/iscsi/initiator/isc_subr.c
M sys/dev/iscsi/initiator/iscsi.c
M sys/dev/iscsi/initiator/isc_sm.c
IFF_DRV_OACTIVE to note resource shortage to upper stack.
- Don't count number of mbuf chains. Default 32 DMA segments for a
frame is enough for most cases. If bus_dmamap_mbuf_sg fails use
m_collapse(9) to collapse the mbuf chain instead of relying on
expensive m_defrag(9).
- Move bpf handling to fxp_start_body() which is supposed to be
more appropriate place.
- Always arm watchdog timer whenever a new Tx request is made.
Previously fxp(4) used to arm watchdog timer only when
FXP_CXINT_THRESH-th Tx request is made. Because fxp(4) does not
rely on Tx interrupt to reclaim transmitted mbufs it's better to
arm watchdog timer to detect potential lockups.
- Add more aggresive Tx buffer reclaiming in fxp_start_body to make
room for new Tx requests. Since fxp(4) does not request Tx
completion interrupt for every frames it's necessary to clean
TXCBs in advance to saturate link.
- Make fxp(4) try to start more packets transmitting regardless of
interrupt type in fxp_intr_body.
patch the RX/TX performance becomes about 17~18 Mbps comparing with
the previous whose values were RX 7~8Mbps and TX 13~14Mbps.
- improve AL2230 RF handling in zd1211b
- support AL2230S RF that PV2000 is renamed to AL2230S
- use register ZYD_CR244, ZYD_CR243, ZYD_CR242 when the driver writes
values on RF. This routine is more faster than the original one
- use private TX lock to avoid LOR at zyd_raw_xmit()
- increase TX slots from 1 to 5
- needs to set the channel at IEEE80211_S_AUTH not IEEE80211_S_RUN
- detailed error handling. In previous the next command was sent to the
device even if there was errors
- setting ZYD_MAC_RX_THRESHOLD value should be different between 1211
and 1211b
- only try to stop the device at zyd_init_locked() if the device is
UPed
- do not use MTX_RECURSE
- do not try to grap Giant lock when the channel is changing
- move the device initialization routines from zyd_attach to zyd_init to
give a device full-reset chance to the driver.
- code cleanup at zyd_raw_xmit()
- simplify zyd_attach() routines
- resort functions and clean up variables
- DPRINTF style change.
- style(9)
Reviewed by: sam
check to fxp_txeof(). While I'm here unarm watchdog timer only if
there are no pending queued Tx requests.
Previously the watchdog timer was unarmed whenever Tx interrupt is
raised. This could be resulted in hiding root cause of watchdog
timeouts.
checksum offload configuration. Now checksum offload can be
controlled by ifconfig(8).
While I'm here add an additional check for interface capabilities
before applying user's request.
nodes capabilities. Add "Analog"/"Digital" marks to the pcm device names.
I hope it will help new users easier accept concept of several PCM devices
and understand exact purposes of that devices.