and by only delaying when an RTC register is written to. The delay
after writing to the data register is now not just a workaround.
This reduces the number of ISA accesses in the usual case from 4 to
1. The usual case is 2 rtcin()'s for each RTC interrupt. The index
register is almost always RTC_INTR for this. The 3 extra ISA accesses
were 1 for writing the index and 2 for delays. Some delays are needed
in theory, but in practice they now just slow down slow accesses some
more since almost eveyone including us does them wrong so modern systems
enforce sufficient delays in hardware. I used to have the delays ifdefed
out, but with the index register optimization the delays are rarely
executed so the old magic ones can be kept or even implemented non-
magically without significant cost.
Optimizing RTC interrupt handling is more interesting than it used to
be because RTC interrupts are currently needed to fix the more efficient
apic timer interrupts on some systems. apic_timer_hz is normally 2000
so the RTC interrupt rate needs to be 2048 to keep the apic timer
firing on such systems. Without these changes, each RTC interrupt
normally took 10 ISA accesses (2 PIC accesses and 2 sets of 4 RTC
accesses). Each ISA access takes 1-1.5uS so 10 of then at 2048 Hz
takes 2-3% of a CPU. Now 4 of them take 0.8-1.2% of a CPU.
by default for sun4v where it is absolutely required.
This change moves the buffer from struct pcpu to the stack to avoid
using the critical section which created a LOR in a couple of cases
due to interaction with the tty code and kqueue. The LOR can't be
fixed with the critical section and the pcpu buffer can't be used
without the critical section.
Putting the buffer on the stack was my initial solution, but it was
pointed out that the stress on the stack might cause problems
depending on the call path. We don't have a way of creating tests
for those possible cases, so it's best to leave this as an option
for the time being. In time we may get enough data to enable this
option more generally.
of various scattered magic values.
- Pretty print the address of hardware watchpoints in 'show watch' rather
than just displaying hex.
- Expand address field width on amd64 for 64-bit pointers.
- Drop the printf in intr_machdep.c when we assign an interrupt souce to
a CPU. Each source already has a more detailed printf.
- Don't output a line for each ioapic pin showing its initial state, this
has outlived its usefulness.
- When an APIC enumerator sets the bus, polarity, or trigger mode of an
ioapic pin, just return success without printing anything if the new
value matches the current one.
MFC after: 2 weeks
- Add a new apic_alloc_vectors() method to the local APIC support code
to allocate N contiguous IDT vectors (aligned on a M >= N boundary).
This function is used to allocate IDT vectors for a group of MSI
messages.
- Add MSI and MSI-X PICs. The PIC code here provides methods to manage
edge-triggered MSI messages as x86 interrupt sources. In addition to
the PIC methods, msi.c also includes methods to allocate and release
MSI and MSI-X messages. For x86, we allow for up to 128 different
MSI IRQs starting at IRQ 256 (IRQs 0-15 are reserved for ISA IRQs,
16-254 for APIC PCI IRQs, and IRQ 255 is reserved).
- Add pcib_(alloc|release)_msi[x]() methods to the MD x86 PCI bridge
drivers to bubble the request up to the nexus driver.
- Add pcib_(alloc|release)_msi[x]() methods to the x86 nexus drivers that
ask the MSI PIC code to allocate resources and IDT vectors.
MFC after: 2 months
- Remove an extra entry from the array for 0x0f prefixed instruction groups.
This fixes decoding of instructions where the second opcode >= 0x80.
- Add support for the 64-bit immediate mov instructions.
- When short_addr is enabled, don't parse the modr/m byte for a 16-bit
address, but as a 32-bit address.
- Support %rip relative addressing.
- Don't print a displacement of 0 if there is a base or index register.
MFC after: 3 days
of NKPT is no longer enough to run amd64 with 16G of RAM, as it
doesn't have space for mapping a kernel (16M kernel would require
additionally 8 page tables).
linux siginfo structure. l_sigval uses a l_uintptr_t for sival_ptr so
that sival_ptr is the right size for linux32 on amd64. Since no code
currently uses 'lsi_ptr' this is just a cosmetic nit rather than a bug
fix.
specific privilege names to a broad range of privileges. These may
require some future tweaking.
Sponsored by: nCircle Network Security, Inc.
Obtained from: TrustedBSD Project
Discussed on: arch@
Reviewed (at least in part) by: mlaier, jmg, pjd, bde, ceri,
Alex Lyashkov <umka at sevcity dot net>,
Skip Ford <skip dot ford at verizon dot net>,
Antoine Brodin <antoine dot brodin at laposte dot net>
it as a default.
For the record, the KDTRACE option caused _no_ additional source files
to be compiled in; certainly no CDDL source files. All it did was to
allow existing BSD licensed kernel files to include one or more CDDL
header files.
By removing this from DEFAULTS, the onus is on a kernel builder to add
the option to the kernel config, possibly by including GENERIC and
customising from there. It means that DTrace won't be a feature
available in FreeBSD by default, which is the way I intended it to be.
Without this option, you can't load the dtrace module (which contains
the dtrace device and the DTrace framework). This is equivalent to
requiring an option in a kernel config before you can load the linux
emulation module, for example.
I think it is a mistake to have DTrace ported to FreeBSD, but not
to have it available to everyone, all the time. The only exception
to this is the companies which distribute systems with FreeBSD embedded.
Those companies will customise their systems anyway. The KDTRACE
option was intended for them, and only them.
adds the hooks that DTrace modules register with, and adds a few functions
which have the dtrace_ prefix to allow the DTrace FBT (function boundary
trace) provider to avoid tracing because they are called from the DTtrace
probe context.
Unlike other forms of tracing and debug, DTrace support in the kernel
incurs negligible run-time cost.
I think the only reason why anyone wouldn't want to have kernel support
enabled for DTrace would be due to the license (CDDL) under which DTrace
is released.
a lock to prevent interspersed strings written from different CPUs
at the same time.
To avoid putting a buffer on the stack or having to malloc one,
space is incorporated in the per-cpu structure. The buffer
size if 128 bytes; chosen because it's the next power of 2 size
up from 80 characters.
String writes to the console are buffered up the end of the line
or until the buffer fills. Then the buffer is flushed to all
console devices.
Existing low level console output via cnputc() is unaffected by
this change. ithread calls to log() are also unaffected to avoid
blocking those threads.
A minor change to the behaviour in a panic situation is that
console output will still be buffered, but won't be written to
a tty as before. This should prevent interspersed panic output
as a number of CPUs panic before we end up single threaded
running ddb.
Reviewed by: scottl, jhb
MFC after: 2 weeks
dynamic nature (if no native aio code is available, the linux part
returns ENOSYS because of missing requisites) should be solved differently
than it is.
All this will be done in P4.
Not included in this commit is a backout of the changes to the native aio
code (removing static in some places). Those changes (and some more) will
also be needed when the reworked linux aio stuff will reenter the tree.
Requested by: rwatson
Discussed with: rwatson
not completely decided at config time. Just don't default to using
the TSC if there are multiple active CPUs. Also, don't default to
using the TSC if it is broken. SMP ifdefs are still used to disallow
using perfmon since perfmon is always broken if SMP is just configured.
This only helps much for SMP kernels running on 1 CPU. The overheads
for using the i8254 cputime clock were a bit too high on 486/33's, and
now on multi-GHz CPUs they are usually in the 99-99.9% range. Switching
from the old default of an i8254 clock to the TSC works poorly because
the overheads are not recalibrated.
Use the same condition for declaring perfmon stuff as for using it.
- Don't use a frame pointer. Our callers need a frame pointer, but we
could only use one to support things that aren't supported. (These
things are:
- profiling of profiling
- debugging of profiling. The core ENTRY() macro doesn't support
forcing a frame pointer for debugging, so don't do more here.)
- Ensure that we are in the text section and have normal alignment.
- Use the normal syntax for `.type'.
Fixed a syntax error for the (!__KERNEL && !__GNUCLIKE_ASM) case in
rev.1.36. Apparently, this case has never been reached even by lint.
Submitted by: stefanf
{amd64,i386}/include/profile.h:
In case the above case is actually reached, break it properly by
providing null support that will fail at link time instead of a stub
that gives wrong (null) profiling at runtime.
was only used in the GUPROF case, so the messes to get its i386 prerequisites
included shouldn't have been needed.
Fixed some style bugs. Quote #error contents, and don't repeat an #error
directive on amd64.
this used to be slightly cleaner than using ifdefs in a few places to
support both a.out and elf, but using it now just causes messes and
unportabilities. It seems to be impossible to implement the elf
HIDENAME() portably in cpp (since token pasting of "." and <name> is
invalid).
*/prof_machdep.c:
- Removed all uses of CNAME(). CNAME() is easy enough to use in pure
asm code, but using it in inline asm requires messy quoting. The
core pure asm code has been hacked on more and all uses of CNAME() in
it have already gone away. Just assume the elf convention here too.
- Removed now-uneeded include of <machine/asmacros.h>.
- Removed the workaround for a namespace conflict with this include.
profiling is configured but high resolution profiling is not configured.
Only functions in *.[Ss] called the stub, so efficiency was not
significantly affected.
The 'nooption' kernel config entry has to be used to turn KSE off now.
This isn't my preferred way of dealing with this, but I'll defer to
scottl's experience with the io/mem kernel option change and the grief
experienced over that.
Submitted by: scottl@
except sun4v.
This change makes the transition from a default to an option more
transparent and is an attempt to head off all the compliants that are
likely from people who don't read UPDATING, based on experience with
the io/mem change.
Submitted by: scottl@
be displayed specially, and debug registers are among of the least
interesting special registers (far behind %cr3). The debug registers
are still accessible as variables and displayed in another bogus place
("show watches").
Implement the linux_io_* syscalls (AIO). They are only enabled if the native
AIO code is available (either compiled in to the kernel or as a module) at
the time the functions are used. If the AIO stuff is not available there
will be a ENOSYS.
From the submitter:
---snip---
DESIGN NOTES:
1. Linux permits a process to own multiple AIO queues (distinguished by
"context"), but FreeBSD creates only one single AIO queue per process.
My code maintains a request queue (STAILQ of queue(3)) per "context",
and throws all AIO requests of all contexts owned by a process into
the single FreeBSD per-process AIO queue.
When the process calls io_destroy(2), io_getevents(2), io_submit(2) and
io_cancel(2), my code can pick out requests owned by the specified context
from the single FreeBSD per-process AIO queue according to the per-context
request queues maintained by my code.
2. The request queue maintained by my code stores contrast information between
Linux IO control blocks (struct linux_iocb) and FreeBSD IO control blocks
(struct aiocb). FreeBSD IO control block actually exists in userland memory
space, required by FreeBSD native aio_XXXXXX(2).
3. It is quite troubling that the function io_getevents() of libaio-0.3.105
needs to use Linux-specific "struct aio_ring", which is a partial mirror
of context in user space. I would rather take the address of context in
kernel as the context ID, but the io_getevents() of libaio forces me to
take the address of the "ring" in user space as the context ID.
To my surprise, one comment line in the file "io_getevents.c" of
libaio-0.3.105 reads:
Ben will hate me for this
REFERENCE:
1. Linux kernel source code: http://www.kernel.org/pub/linux/kernel/v2.6/
(include/linux/aio_abi.h, fs/aio.c)
2. Linux manual pages: http://www.kernel.org/pub/linux/docs/manpages/
(io_setup(2), io_destroy(2), io_getevents(2), io_submit(2), io_cancel(2))
3. Linux Scalability Effort: http://lse.sourceforge.net/io/aio.html
The design notes: http://lse.sourceforge.net/io/aionotes.txt
4. The package libaio, both source and binary:
http://rpmfind.net/linux/rpm2html/search.php?query=libaio
Simple transparent interface to Linux AIO system calls.
5. Libaio-oracle: http://oss.oracle.com/projects/libaio-oracle/
POSIX AIO implementation based on Linux AIO system calls (depending on
libaio).
---snip---
Submitted by: Li, Xiao <intron@intron.ac>
(PICs) rather than interrupt sources. This allows interrupt controllers
with no interrupt pics (such as the 8259As when APIC is in use) to
participate in suspend/resume.
- Always register the 8259A PICs even if we don't use any of their pins.
- Explicitly reset the 8259As on resume on amd64 if 'device atpic' isn't
included.
- Add a "dummy" PIC for the local APIC on the BSP to reset the local APIC
on resume. This gets suspend/resume working with APIC on UP systems.
SMP still needs more work to bring the APs back to life.
The MFC after is tentative.
Tested by: anholt (i386)
Submitted by: Andrea Bittau <a.bittau at cs.ucl.ac.uk> (3)
MFC after: 1 week
unsuspecting users.
- Add a comment in NOTES about experimental status of SCHED_ULE.
- Make warning about experimental status in sched_ule(4) a bit
stronger.
Suggested and reviewed by: dougb
Discussed on: developers
MFC after: 3 days
Submitted by:
Reviewed by:
Approved by:
Obtained from:
MFC after:
Security:
Move the relocation definitions to the common elf header so that DTrace
can use them on one architecture targeted to a different one.
Add the additional ELF types defines in Sun's "Linker and Libraries"
manual.
Split subr_clock.c in two parts (by repo-copy):
subr_clock.c contains generic RTC and calendaric stuff. etc.
subr_rtc.c contains the newbus'ified RTC interface.
Centralize the machdep.{adjkerntz,disable_rtc_set,wall_cmos_clock}
sysctls and associated variables into subr_clock.c. They are
not machine dependent and we have generic code that relies on being
present so they are not even optional.
timer interrupt servicing for disabled HTT cores in ULE case. Should be
probably fixed in ULE code instead, but we have no real maintainer for
ULE to do it.
PR: 103697
GDT to be loaded into FS.base and GS.base, these values of course
are not the values set by sysarch() with I386_SET_FSBASE and
I386_SET_GSBASE, the change fixed a crash for 32bit libthr after
signal handler returned and normal code is accessing thread pointer,
for example: movl %gs:8, %eax.
- Split out the communication protocols into their own files and use
a couple of function pointers in the softc that the commuication
protocols setup in their own attach routine.
- Add support for the SSIF interface (talking to IPMI over SMBus).
- Add an ACPI attachment.
- Add a PCI attachment that attaches to devices with the IPMI interface
subclass.
- Split the ISA attachment out into its own file: ipmi_isa.c.
- Change the code to probe the SMBIOS table for an IPMI entry to just use
pmap_mapbios() to map the table in rather than trying to setup a fake
resource on an isa device and then activating the resource to map in the
table.
- Make bus attachments leaner by adding attach functions for each
communication interface (ipmi_kcs_attach(), ipmi_smic_attach(), etc.)
that setup per-interface data.
- Formalize the model used by the driver to handle requests by adding an
explicit struct ipmi_request object that holds the state of a given
request and reply for the entire lifetime of the request. By bundling
the request into an object, it is easier to add retry logic to the various
communication backends (as well as eventually support BT mode which uses
a slightly different message format than KCS, SMIC, and SSIF).
- Add a per-softc lock and remove D_NEEDGIANT as the driver is now MPSAFE.
- Add 32-bit compatibility ioctl shims so you can use a 32-bit ipmitool
on FreeBSD/amd64.
- Add ipmi(4) to i386 and amd64 NOTES.
Submitted by: ambrisko (large portions of 2 and 3)
Sponsored by: IronPort Systems, Yahoo!
MFC after: 6 days
pmap_invalidate_cache() in the SMP case so pmap_mapdev() in multiuser
doesn't panic with a trap 30. I broke this many months ago when I
added pmap_invalidate_cache() as early parts of the PAT work.
Patience from: jmg
Pointy hat: jhb
for overlaps, but more importantly, it collapses adjacent free regions.
This is needed to cope with BIOSen that split up ports for system devices
(like IPMI controllers) across multiple system resource entries.
- Now that rman_manage_region() is not so dumb, remove extra logic in the
x86 nexus drivers to populate the IRQ rman that manually coalesced the
regions.
MFC after: 1 week
and dump_avail[] arrays so they are in sync (previously it was possible
to store more entries in the physmap[] then we could store in phys_avail[],
which was pointless). While I'm here, bump up the length of these tables
to hold 30 entries on amd64 and 16 on i386. This allows machines with
fairly fragmented memory maps to boot ok (at least one machine would
not boot FreeBSD/i386 but would boot FreeBSD/amd64 because amd64 allowed
for more fragments).
MFC after: 3 days
any threads to them. However, it still counts those cores as "active but
permanently idle" when calculating system-wide CPUs statistics. It is
incorrect, since it skews statistics quite a bit and creates real problems
for certain types of applications (monitoring applications for example),
by making them believe that the system does have enough idle CPU resources,
while in fact it does not.
Correct the problem by not calling performance counting routines on "disabled"
cores. The cleaner solution would be to just disable APIC timer interrupts on
those cores completely, but ENOTIME here and it is not clear if the
additional complexity really worth minor performance gain.
Reviewed by: ssouhlal
Sponsored by: Sippy Software, Inc.
MFC after: 2 weeks
but further on -current (still not successful, but a step into the right
direction).
Sponsored by: Google SoC 2006
Submitted by: rdivacky
Tested by: Paul Mather <paul@gromit.dlib.vt.edu>
we can do the stuff we need to do with linux processes at fork and
don't panic the kernel at exit of the child.
Submitted by: rdivacky
Tested with: tst-vfork* (glibc regression tests)
Tested by: netchild
handling for amd64 in the common code. The MD parts for amd64 are still
outstanding, but at least this fixes some panics on amd64.
Sponsored by: Google SoC 2006
Submitted by: rdivacky
Tested by: bsam
- Send the systrace_args files for all the compat ABIs to /dev/null for
now. Right now makesyscalls.sh generates a file with a hardcoded
function name, so it wouldn't work for any of the ABIs anyway. Probably
the function name should be configurable via a 'systracename' variable
and the functions should be stored in a function pointer in the sysvec
structure.
- TLS - complete
- pid/tid mangling - complete
- thread area - complete
- futexes - complete with issues
- clone() extension - complete with some possible minor issues
- mq*/timer*/clock* stuff - complete but untested and the mq* stuff is
disabled when not build as part of the kernel with native FreeBSD mq*
support (module support for this will come later)
Tested with:
- linux-firefox - works, tested
- linux-opera - works, tested
- linux-realplay - doesnt work, issue with futexes
- linux-skype - doesnt work, issue with futexes
- linux-rt2-demo - works, tested
- linux-acroread - doesnt work, unknown reason (coredump) and sometimes
issue with futexes
- various unix utilities in linux-base-gentoo3 and linux-base-fc4:
everything tried worked
On amd64 not everything is supported like on i386, the catchup is planned for
later when the remaining bugs in the new functions are fixed.
To test this new stuff, you have to run
sysctl compat.linux.osrelease=2.6.16
to switch back use
sysctl compat.linux.osrelease=2.4.2
Don't switch while running a linux program, strange things may or may not
happen.
Sponsored by: Google SoC 2006
Submitted by: rdivacky
Some suggestions/help by: jhb, kib, manu@NetBSD.org, netchild
compat.linux.osrelease is changed to "2.6.16" or similar).
On amd64 not everything is supported like on i386, the catchup is planned for
later when the remaining bugs in the new functions are fixed.
Sponsored by: Google SoC 2006
Submitted by: rdivacky
aren't mapped via pmap_enter() (KVA). We will eventually support PAT bits
on user pages, but those will require some sort of MI caching mode stored
in the vm_page.
Reviewed by: alc
WB (write-back) on x86 via control bits in PTEs and PDEs (including making
use of the PAT MSR). Changes include:
- A new pmap_mapdev_attr() function for amd64 and i386 which takes an
additional parameter (relative to pmap_mapdev()) specifying the cache
mode for this mapping. Note that on amd64 only WB mappings are done with
the direct map, all other modes result in a private mapping.
- pmap_mapdev() on i386 and amd64 now defaults to using UC (uncached)
mappings rather than WB. Previously we relied on the BIOS setting up
MTRR's to enforce memio regions being treated as UC. This might make
hw.cbb_start_memory unnecessary in some cases now for example.
- A new pmap_mapbios()/pmap_unmapbios() API has been added to allow places
that used pmap_mapdev() to map non-device memory (such as ACPI tables)
to do so using WB as before.
- A new pmap_change_attr() function for amd64 and i386 that changes the
caching mode for a range of KVA.
Reviewed by: alc
Originally, I had adopted sparc64's name, pmap_clear_write(), for the
function that is now pmap_remove_write(). However, this function is more
like pmap_remove_all() than like pmap_clear_modify() or
pmap_clear_reference(), hence, the name change.
The higher-level rationale behind this change is described in
src/sys/amd64/amd64/pmap.c revision 1.567. The short version is that I'm
trying to clean up and fix our support for execute access.
Reviewed by: marcel@ (ia64)
and pc98 MD files. Remove nodevice and nooption lines specific
to sio(4) from ia64, powerpc and sparc64 NOTES. There were no
such lines for arm yet.
sio(4) is usable on less than half the platforms, not counting
a future mips platform. Its presence in MI files is therefore
increasingly becoming a burden.
mark system calls as being MPSAFE:
- Stop conditionally acquiring Giant around system call invocations.
- Remove all of the 'M' prefixes from the master system call files.
- Remove support for the 'M' prefix from the script that generates the
syscall-related files from the master system call files.
- Don't explicitly set SYF_MPSAFE when registering nfssvc.
implementations and adjust some of the checks while I'm here:
- Add a new check to make sure we don't return from a syscall in a critical
section.
- Add a new explicit check before userret() to make sure we don't return
with any locks held. The advantage here is that we can include the
syscall number and name in syscall() whereas that info is not available
in userret().
- Drop the mtx_assert()'s of sched_lock and Giant. They are replaced by
the more general checks just added.
MFC after: 2 weeks
map was obtained from the SMAP. SMAP is trustworthy, and the memory
extending feature is a band-aid for older systems where FreeBSD's methods
of detecting memory were not always trustworthy. This fixes the issue
where using hw.physmem could result in the ACPI tables getting trashed
breaking ACPI.
MFC after: 3 days
Tested on: i386
system's machine-dependent and machine-independent layers. Once
pmap_clear_write() is implemented on all of our supported
architectures, I intend to replace all calls to pmap_page_protect() by
calls to pmap_clear_write(). Why? Both the use and implementation of
pmap_page_protect() in our virtual memory system has subtle errors,
specifically, the management of execute permission is broken on some
architectures. The "prot" argument to pmap_page_protect() should
behave differently from the "prot" argument to other pmap functions.
Instead of meaning, "give the specified access rights to all of the
physical page's mappings," it means "don't take away the specified
access rights from all of the physical page's mappings, but do take
away the ones that aren't specified." However, owing to our i386
legacy, i.e., no support for no-execute rights, all but one invocation
of pmap_page_protect() specifies VM_PROT_READ only, when the intent
is, in fact, to remove only write permission. Consequently, a
faithful implementation of pmap_page_protect(), e.g., ia64, would
remove execute permission as well as write permission. On the other
hand, some architectures that support execute permission have
basically ignored whether or not VM_PROT_EXECUTE is passed to
pmap_page_protect(), e.g., amd64 and sparc64. This change represents
the first step in replacing pmap_page_protect() by the less subtle
pmap_clear_write() that is already implemented on amd64, i386, and
sparc64.
Discussed with: grehan@ and marcel@
pmap_remove_all() before rather than after the pmap is unlocked. At
present, the page queues lock provides sufficient sychronization. In the
future, the page queues lock may not always be held when free_pv_entry() is
called.
install custom pager functions didn't actually happen in practice (they
all just used the simple pager and passed in a local quit pointer). So,
just hardcode the simple pager as the only pager and make it set a global
db_pager_quit flag that db commands can check when the user hits 'q' (or a
suitable variant) at the pager prompt. Also, now that it's easy to do so,
enable paging by default for all ddb commands. Any command that wishes to
honor the quit flag can do so by checking db_pager_quit. Note that the
pager can also be effectively disabled by setting $lines to 0.
Other fixes:
- 'show idt' on i386 and pc98 now actually checks the quit flag and
terminates early.
- 'show intr' now actually checks the quit flag and terminates early.
ibcs2_getdents(), ibcs2_read(), ogetdirentries(), svr4_sys_getdents(),
and svr4_sys_getdents64() similar to that in getdirentries().
- Mark ibcs2_getdents(), ibcs2_read(), linux_getdents(), linux_getdents64(),
linux_readdir(), ogetdirentries(), svr4_sys_getdents(), and
svr4_sys_getdents64() MPSAFE.
to a copied-in copy of the 'union semun' and a uioseg to indicate which
memory space the 'buf' pointer of the union points to. This is then used
in linux_semctl() and svr4_sys_semctl() to eliminate use of the stackgap.
- Mark linux_ipc() and svr4_sys_semsys() MPSAFE.
from going away. mount(2) is now MPSAFE.
- Expand the scope of Giant some in unmount(2) to protect the mp structure
(or rather, to handle concurrent unmount races) from going away.
umount(2) is now MPSAFE, as well as linux_umount() and linux_oldumount().
- nmount(2) and linux_mount() were already MPSAFE.
pmap_copy() if the mapping is VM_INHERIT_SHARE. Suppose the mapping
is also wired. vmspace_fork() clears the wiring attributes in the vm
map entry but pmap_copy() copies the PG_W attribute in the PTE. I
don't think this is catastrophic. It blocks pmap_remove_pages() from
destroying the mapping and corrupts the pmap's wiring count.
This revision fixes the problem by changing pmap_copy() to clear the
PG_W attribute.
Reviewed by: tegge@
This driver was ported from OpenBSD by Shigeaki Tagashira
<shigeaki@se.hiroshima-u.ac.jp> and posted at
http://www.se.hiroshima-u.ac.jp/~shigeaki/software/freebsd-nfe.html
It was additionally cleaned up by me.
It is still a work-in-progress and thus is purposefully not in GENERIC.
And it conflicts with nve(4), so only one should be loaded.
in 1999, and there are changes to the sysctl names compared to PR,
according to that discussion. The description is in sys/conf/NOTES.
Lines in the GENERIC files are added in commented-out form.
I'll attach the test script I've used to PR.
PR: kern/14584
Submitted by: babkin
VM_ALLOC_NORMAL instead of VM_ALLOC_SYSTEM when try is TRUE. In other
words, when get_pv_entry() is permitted to fail, it no longer tries as
hard to allocate a page.
Change pmap_enter_quick_locked() to fail rather than wait if it is
unable to allocate a page table page. This prevents a race between
pmap_enter_object() and the page daemon. Specifically, an inactive
page that is a successor to the page that was given to
pmap_enter_quick_locked() might become a cache page while
pmap_enter_quick_locked() waits and later pmap_enter_object() maps
the cache page violating the invariant that cache pages are never
mapped. Similarly, change
pmap_enter_quick_locked() to call pmap_try_insert_pv_entry() rather
than pmap_insert_entry(). Generally speaking,
pmap_enter_quick_locked() is used to create speculative mappings. So,
it should not try hard to allocate memory if free memory is scarce.
Add an assertion that the object containing m_start is locked in
pmap_enter_object(). Remove a similar assertion from
pmap_enter_quick_locked() because that function no longer accesses the
containing object.
Remove a stale comment.
Reviewed by: ups@
syscalls. This way there will be a log message printed to the console
(this time for real).
Note: UNIMPL should be used for syscalls we do not implement ever, e.g.
syscalls to load linux kernel modules.
Submitted by: rdivacky
Sponsored by: Goole SoC 2006
P4 IDs: 99600, 99602
when we're about to call kdb_trap() because the latter MI
function can disable interrupts by itself now.
Pointed out by: bde
X-MFC remark: depends on kern/subr_kdb.c#1.18
Sponsored by: RiNet (Cronyx Plus LLC)
Use the method described in IA-32 Intel Architecture Software
Developer's Manual chapter 11.6.6 to get valid mxcsr bits,
use the mxcsr mask to clear invalid bits passed by user code.
an explicit comment that it's needed for the linuxolator. This is not the
case anymore. For all other architectures there was only a "KEEP THIS".
I'm (and other people too) running a COMPAT_43-less kernel since it's not
necessary anymore for the linuxolator. Roman is running such a kernel for a
for longer time. No problems so far. And I doubt other (newer than ia32
or alpha) architectures really depend on it.
This may result in a small performance increase for some workloads.
If the removal of COMPAT_43 results in a not working program, please
recompile it and all dependencies and try again before reporting a
problem.
The only place where COMPAT_43 is needed (as in: does not compile without
it) is in the (outdated/not usable since too old) svr4 code.
Note: this does not remove the COMPAT_43TTY option.
Nagging by: rdivacky
There is a race with the current locking scheme and removing
it should have no measurable performance impact.
This fixes page faults leading to panics in pmap_enter_quick_locked()
on amd64/i386.
Reviewed by: alc,jhb,peter,ps
Update of syscall.master:
o Adding of several new dummy syscalls (268-310)
o Synchronization of amd64 syscall.master with i386 one
o Auditing added to amd64 syscall.master
o Change auditing type for lstat syscall (bugfix). [1]
P4-Changes: 98672, 98674
Noticed by: rwatson [1]
Sponsored by: Google SoC 2006
Submitted by: rdivacky
I picked it up again. The scheduler is forked from ULE, but the
algorithm to detect an interactive process is almost completely
different with ULE, it comes from Linux paper "Understanding the
Linux 2.6.8.1 CPU Scheduler", although I still use same word
"score" as a priority boost in ULE scheduler.
Briefly, the scheduler has following characteristic:
1. Timesharing process's nice value is seriously respected,
timeslice and interaction detecting algorithm are based
on nice value.
2. per-cpu scheduling queue and load balancing.
3. O(1) scheduling.
4. Some cpu affinity code in wakeup path.
5. Support POSIX SCHED_FIFO and SCHED_RR.
Unlike scheduler 4BSD and ULE which using fuzzy RQ_PPQ, the scheduler
uses 256 priority queues. Unlike ULE which using pull and push, the
scheduelr uses pull method, the main reason is to let relative idle
cpu do the work, but current the whole scheduler is protected by the
big sched_lock, so the benefit is not visible, it really can be worse
than nothing because all other cpu are locked out when we are doing
balancing work, which the 4BSD scheduelr does not have this problem.
The scheduler does not support hyperthreading very well, in fact,
the scheduler does not make the difference between physical CPU and
logical CPU, this should be improved in feature. The scheduler has
priority inversion problem on MP machine, it is not good for
realtime scheduling, it can cause realtime process starving.
As a result, it seems the MySQL super-smack runs better on my
Pentium-D machine when using libthr, despite on UP or SMP kernel.
the arm to compile without all the extras that don't appear, at least
not in the flavors of ARM I deal with. This helps us save about 100k.
If I've botched the available devices on a platform, please let me
know and I'll correct ASAP.
that it just warns the user with a printf when it misaligns a piece
of memory that was requested through a busdma tag.
Some drivers (such as mpt, and probably others) were asking for alignments
that could not be satisfied, but as far as driver operation was concerned,
that did not matter. In the theory that other drivers will fall into
this same category, we agreed that panicing or making the allocation
fail will cause more hardship than is necessary. The printf should
be sufficient motivation to get the driver glitch fixed.
Add a quick hack to ensure that bus_dmamem_alloc properly aligns
small allocations with large alignment requirements.
Add a panic to detect cases where we've still failed to properly align.
conformance with the mbuf and uio load routines. ENOMEM can only happen
with BUS_DMA_NOWAIT is passed in, thus the deferals are disabled. I don't
like doing this, but fixing this fixes assumptions in other important drivers,
which is a net benefit for now.
o Properly use rman(9) to manage resources. This eliminates the
need to puc-specific hacks to rman. It also allows devinfo(8)
to be used to find out the specific assignment of resources to
serial/parallel ports.
o Compress the PCI device "database" by optimizing for the common
case and to use a procedural interface to handle the exceptions.
The procedural interface also generalizes the need to setup the
hardware (program chipsets, program clock frequencies).
o Eliminate the need for PUC_FASTINTR. Serdev devices are fast by
default and non-serdev devices are handled by the bus.
o Use the serdev I/F to collect interrupt status and to handle
interrupts across ports in priority order.
o Sync the PCI device configuration to include devices found in
NetBSD and not yet merged to FreeBSD.
o Add support for Quatech 2, 4 and 8 port UARTs.
o Add support for a couple dozen Timedia serial cards as found
in Linux.
entry (PTE) have the same meaning. The exception to this rule is the
eighth bit (0x080). It is the PS bit in a PDE and the PAT bit in a
PTE. This change avoids the possibility that pmap_enter() confuses a
PAT bit with a PS bit, avoiding a panic().
Eliminate a diagnostic printf() from the i386 pmap_enter() that serves
no current purpose, i.e., I've seen no bug reports in the last two
years that are helped by this printf().
Reviewed by: jhb
caches are dangerous" to "a shared L1 data cache is dangerous". This
is a compromise between paranoia and performance: Unlike the L1 cache,
nobody has publicly demonstrated a cryptographic side channel which
exploits the L2 cache -- this is harder due to the larger size, lower
bandwidth, and greater associativity -- and prohibiting shared L2
caches turns Intel Core Duo processors into Intel Core Solo processors.
As before, the 'machdep.hyperthreading_allowed' sysctl will allow even
the L1 data cache to be shared.
Discussed with: jhb, scottl
Security: See FreeBSD-SA-05:09.htt for background material.
via the debug.minidump sysctl and tunable.
Traditional dumps store all physical memory. This was once a good thing
when machines had a maximum of 64M of ram and 1GB of kvm. These days,
machines often have many gigabytes of ram and a smaller amount of kvm.
libkvm+kgdb don't have a way to access physical ram that is not mapped
into kvm at the time of the crash dump, so the extra ram being dumped
is mostly wasted.
Minidumps invert the process. Instead of dumping physical memory in
in order to guarantee that all of kvm's backing is dumped, minidumps
instead dump only memory that is actively mapped into kvm.
amd64 has a direct map region that things like UMA use. Obviously we
cannot dump all of the direct map region because that is effectively
an old style all-physical-memory dump. Instead, introduce a bitmap
and two helper routines (dump_add_page(pa) and dump_drop_page(pa)) that
allow certain critical direct map pages to be included in the dump.
uma_machdep.c's allocator is the intended consumer.
Dumps are a custom format. At the very beginning of the file is a header,
then a copy of the message buffer, then the bitmap of pages present in
the dump, then the final level of the kvm page table trees (2MB mappings
are expanded into a 4K page mappings), then the sparse physical pages
according to the bitmap. libkvm can now conveniently access the kvm
page table entries.
Booting my test 8GB machine, forcing it into ddb and forcing a dump
leads to a 48MB minidump. While this is a best case, I expect minidumps
to be in the 100MB-500MB range. Obviously, never larger than physical
memory of course.
minidumps are on by default. It would want be necessary to turn them off
if it was necessary to debug corrupt kernel page table management as that
would mess up minidumps as well.
Both minidumps and regular dumps are supported on the same machine.