starting from base C types (int, long, etc).
That is also reflected when building atomic operations, as the
size-bounded types are built from the base C types.
However, powerpc does the inverse thing, leading to a serie of nasty
bugs.
Cleanup the atomic implementation by defining as base the base C type
version and depending on them, appropriately.
Tested by: jceel
already supported nested PICs, but was limited to having a nested
AT-PIC only. With G5 support the need for nested OpenPIC controllers
needed to be added. This was done the wrong way and broke the MPC8555
eval system in the process.
OFW, as well as FDT, describe the interrupt routing in terms of a
controller and an interrupt pin on it. This needs to be mapped to a
flat and global resource: the IRQ. The IRQ is the same as the PCI
intline and as such needs to be representable in 8 bits. Secondly,
ISA support pretty much dictates that IRQ 0-15 should be reserved
for ISA interrupts, because of the internal workins of south bridges.
Both were broken.
This change reverts revision 209298 for a big part and re-implements
it simpler. In particular:
o The id() method of the PIC I/F is removed again. It's not needed.
o The openpic_attach() function has been changed to take the OFW
or FDT phandle of the controller as a second argument. All bus
attachments that previously used openpic_attach() as the attach
method of the device I/F now implement as bus-specific method
and pass the phandle_t to the renamed openpic_attach().
o Change powerpc_register_pic() to take a few more arguments. In
particular:
- Pass the number of IPIs specificly. The number of IRQs carved
out for a PIC is the sum of the number of int. pins and IPIs.
- Pass a flag indicating whether the PIC is an AT-PIC or not.
This tells the interrupt framework whether to assign IRQ 0-15
or some other range.
o Until we implement proper multi-pass bus enumeration, we have to
handle the case where we need to map from PIC+pin to IRQ *before*
the PIC gets registered. This is done in a similar way as before,
but rather than carving out 256 IRQs per PIC, we carve out 128
IRQs (124 pins + 4 IPIs). This is supposed to handle the G5 case,
but should really be fixed properly using multiple passes.
o Have the interrupt framework set root_pic in most cases and not
put that burden in PIC drivers (for the most part).
o Remove powerpc_ign_lookup() and replace it with powerpc_get_irq().
Remove IGN_SHIFT, INTR_INTLINE and INTR_IGN.
Related to the above, fix the Freescale PCI controller driver, broken
by the FDT code. Besides not attaching properly, bus numbers were
assigned improperly and enumeration was broken in general. This
prevented the AT PIC from being discovered and interrupt routing to
work properly. Consequently, the ata(4) controller stopped functioning.
Fix the driver, and FDT PCI support, enough to get the MPC8555CDS
going again. The FDT PCI code needs a whole lot more work.
No breakages are expected, but lackiong G5 hardware, it's possible
that there are unpleasant side-effects. At least MPC85xx support is
back to where it was 7 months ago -- it's amazing how badly support
can be broken in just 7 months...
Sponsored by: Juniper Networks
Compile sys/dev/mem/memutil.c for all supported platforms and remove now
unnecessary dev_mem_md_init(). Consistently define mem_range_softc from
mem.c for all platforms. Add missing #include guards for machine/memdev.h
and sys/memrange.h. Clean up some nearby style(9) nits.
MFC after: 1 month
and pointers don't always have the same size, e.g. the __mips_n32 ABI
(ILP32) has 64 bit registers but 32 bit pointers.
On mips introduce PRIptr to fix the format specifier for (u)intptr_t.
Prefix PRI64 and PRIptr with underscores because macro names starting with
PRI[a-zX] are reserved for future use.
Approved by: kib (mentor)
architecture macros (__mips_n64, __powerpc64__) when 64 bit types (and
corresponding macros) are different from 32 bit. [1]
Correct the type of INT64_MIN, INT64_MAX and UINT64_MAX.
Define (U)INTMAX_C as an alias for (U)INT64_C matching the type definition
for (u)intmax_t. Do this on all architectures for consistency.
Suggested by: bde [1]
Approved by: kib (mentor)
of (unsigned) int __attribute__((__mode__(__DI__))). This aligns better
with macros such as (U)INT64_C, (U)INT64_MAX, etc. which assume (u)int64_t
has type (unsigned) long long.
The mode attribute was used because long long wasn't standardised until
C99. Nowadays compilers should support long long and use of the mode
attribute is discouraged according to GCC Internals documentation.
The type definition has to be marked with __extension__ to support
compilation with "-std=c89 -pedantic".
Discussed with: bde
Approved by: kib (mentor)
On some architectures UCHAR_MAX and USHRT_MAX had type unsigned int.
However, lacking integer suffixes for types smaller than int, their type
should correspond to that of an object of type unsigned char (or short)
when used in an expression with objects of type int. In that case unsigned
char (short) are promoted to int (i.e. signed) so the type of UCHAR_MAX and
USHRT_MAX should also be int.
Where MIN/MAX constants implicitly have the correct type the suffix has
been removed.
While here, correct some comments.
Reviewed by: bde
Approved by: kib (mentor)
It was used mainly to discover and fix some 64-bit portability problems
before 64-bit arches were widely available.
Discussed with: bde
Approved by: kib (mentor)
available on firmwares 3.15 and earlier.
Caveats: Support for the internal SATA controller is currently missing,
as is support for framebuffer resolutions other than 720x480. These
deficiencies will be remedied soon.
Special thanks to Peter Grehan for providing the hardware that made this
port possible, and thanks to Geoff Levand of Sony Computer Entertainment
for advice on the LV1 hypervisor.
logic to support modifying the page table through a hypervisor. This
uses KOBJ inheritance to provide subclasses of the base 64-bit AIM MMU
class with additional methods for page table manipulation.
Many thanks to Peter Grehan for suggesting this design and implementing
the MMU KOBJ inheritance mechanism.
Passing a count of zero on i386 and amd64 for [I386|AMD64]_BUS_SPACE_MEM
causes a crash/hang since the 'loop' instruction decrements the counter
before checking if it's zero.
PR: kern/80980
Discussed with: jhb
byte-swapped versions of compile-time constants. This allows use of
bswap() and htole*() in initializers, which is required to cross-build
btxld.
Obtained from: sparc64
hypervisor infrastructure support:
- Fix coexistence of multiple platform modules in the same kernel
- Allow platform modules to provide an SMP topology
- PowerPC hypervisors limit the amount of memory accessible in real mode.
Allow the platform modules to specify the maximum real-mode address,
and modify the bits of the kernel that need to allocate
real-mode-accessible buffers to respect this limits.
routines.
This unbreaks Book-E build after the recent machine/mutex.h removal.
While there move tlb_*lock() prototypes to machine/tlb.h.
Submitted by: jhb
contents of the ones that were not empty were stale and unused.
- Now that <machine/mutex.h> no longer exists, there is no need to allow it
to override various helper macros in <sys/mutex.h>.
- Rename various helper macros for low-level operations on mutexes to live
in the _mtx_* or __mtx_* namespaces. While here, change the names to more
closely match the real API functions they are backing.
- Drop support for including <sys/mutex.h> in assembly source files.
Suggested by: bde (1, 2)
concurrency bug. Since all SLB/SR entries were invalidated during an
exception, a decrementer exception could cause the user segment to be
invalidated during a copyin()/copyout() without a thread switch that
would cause it to be restored from the PCB, potentially causing the
operation to continue on invalid memory. This is now handled by explicit
restoration of segment 12 from the PCB on 32-bit systems and a check in
the Data Segment Exception handler on 64-bit.
While here, cause copyin()/copyout() to check whether the requested
user segment is already installed, saving some pipeline flushes, and
fix the synchronization primitives around the mtsr and slbmte
instructions to prevent accessing stale segments.
MFC after: 2 weeks
values to zero. A correct solution would involve emulating vector
operations on denormalized values, but this has little effect on accuracy
and is much less complicated for now.
MFC after: 2 weeks
Unlike actual MTRR, this only controls the mapping attributes for
subsequent mmap() of /dev/mem. Nonetheless, the support is sufficiently
MTRR-like that Xorg can use it, which translates into an enormous increase
in graphics performance on PowerPC.
MFC after: 2 weeks
which are similar to the previous ones, and one for user maps, which
are arrays of pointers into the SLB tree. This changes makes user SLB
updates atomic, closing a window for memory corruption. While here,
rearrange the allocation functions to make context switches faster.
hardware with a lockless sparse tree design. This marginally improves
the performance of PMAP and allows copyin()/copyout() to run without
acquiring locks when used on wired mappings.
Submitted by: mdf
include/mmuvar.h - Change the MMU_DEF macro to also create the class
definition as well as define the DATA_SET. Add a macro, MMU_DEF_INHERIT,
which has an extra parameter specifying the MMU class to inherit methods
from. Update the comments at the start of the header file to describe the
new macros.
booke/pmap.c
aim/mmu_oea.c
aim/mmu_oea64.c - Collapse mmu_def_t declaration into updated MMU_DEF macro
The MMU_DEF_INHERIT macro will be used in the PS3 MMU implementation to
allow it to inherit the stock powerpc64 MMU methods.
Reviewed by: nwhitehorn
The main goal of this is to generate timer interrupts only when there is
some work to do. When CPU is busy interrupts are generating at full rate
of hz + stathz to fullfill scheduler and timekeeping requirements. But
when CPU is idle, only minimum set of interrupts (down to 8 interrupts per
second per CPU now), needed to handle scheduled callouts is executed.
This allows significantly increase idle CPU sleep time, increasing effect
of static power-saving technologies. Also it should reduce host CPU load
on virtualized systems, when guest system is idle.
There is set of tunables, also available as writable sysctls, allowing to
control wanted event timer subsystem behavior:
kern.eventtimer.timer - allows to choose event timer hardware to use.
On x86 there is up to 4 different kinds of timers. Depending on whether
chosen timer is per-CPU, behavior of other options slightly differs.
kern.eventtimer.periodic - allows to choose periodic and one-shot
operation mode. In periodic mode, current timer hardware taken as the only
source of time for time events. This mode is quite alike to previous kernel
behavior. One-shot mode instead uses currently selected time counter
hardware to schedule all needed events one by one and program timer to
generate interrupt exactly in specified time. Default value depends of
chosen timer capabilities, but one-shot mode is preferred, until other is
forced by user or hardware.
kern.eventtimer.singlemul - in periodic mode specifies how much times
higher timer frequency should be, to not strictly alias hardclock() and
statclock() events. Default values are 2 and 4, but could be reduced to 1
if extra interrupts are unwanted.
kern.eventtimer.idletick - makes each CPU to receive every timer interrupt
independently of whether they busy or not. By default this options is
disabled. If chosen timer is per-CPU and runs in periodic mode, this option
has no effect - all interrupts are generating.
As soon as this patch modifies cpu_idle() on some platforms, I have also
refactored one on x86. Now it makes use of MONITOR/MWAIT instrunctions
(if supported) under high sleep/wakeup rate, as fast alternative to other
methods. It allows SMP scheduler to wake up sleeping CPUs much faster
without using IPI, significantly increasing performance on some highly
task-switching loads.
Tested by: many (on i386, amd64, sparc64 and powerc)
H/W donated by: Gheorghe Ardelean
Sponsored by: iXsystems, Inc.
A make buildkernel -j4 uses ~360% CPU.
- Bracket the AP spinup printf with a mutex to avoid garbled output.
- Enable SMP by default on powerpc64.
Reviewed by: nwhitehorn
the existing code was very platform specific, and broken for SMP systems
trying to reboot from KDB.
- Add a new PLATFORM_RESET() method to the platform KOBJ interface, and
migrate existing reset functions into platform modules.
- Modify the OF_reboot() routine to submit the request by hand to avoid
the IPIs involved in the regular openfirmware() routine. This fixes
reboot from KDB on SMP machines.
- Move non-KDB reset and poweroff functions on the Powermac platform
into the relevant power control drivers (cuda, pmu, smu), instead of
using them through the Open Firmware backdoor.
- Rename platform_chrp to platform_powermac since it has become
increasingly Powermac specific. When we gain support for IBM systems,
we will grow a new platform_chrp.
In particular, provide pagesize and pagesizes array, the canary value
for SSP use, number of host CPUs and osreldate.
Tested by: marius (sparc64)
MFC after: 1 month
IPI to a specific CPU by its cpuid. Replace calls to ipi_selected() that
constructed a mask for a single CPU with calls to ipi_cpu() instead. This
will matter more in the future when we transition from cpumask_t to
cpuset_t for CPU masks in which case building a CPU mask is more expensive.
Submitted by: peter, sbruno
Reviewed by: rookie
Obtained from: Yahoo! (x86)
MFC after: 1 month
now it uses a very dumb first-touch allocation policy. This will change in
the future.
- Each architecture indicates the maximum number of supported memory domains
via a new VM_NDOMAIN parameter in <machine/vmparam.h>.
- Each cpu now has a PCPU_GET(domain) member to indicate the memory domain
a CPU belongs to. Domain values are dense and numbered from 0.
- When a platform supports multiple domains, the default freelist
(VM_FREELIST_DEFAULT) is split up into N freelists, one for each domain.
The MD code is required to populate an array of mem_affinity structures.
Each entry in the array defines a range of memory (start and end) and a
domain for the range. Multiple entries may be present for a single
domain. The list is terminated by an entry where all fields are zero.
This array of structures is used to split up phys_avail[] regions that
fall in VM_FREELIST_DEFAULT into per-domain freelists.
- Each memory domain has a separate lookup-array of freelists that is
used when fulfulling a physical memory allocation. Right now the
per-domain freelists are listed in a round-robin order for each domain.
In the future a table such as the ACPI SLIT table may be used to order
the per-domain lookup lists based on the penalty for each memory domain
relative to a specific domain. The lookup lists may be examined via a
new vm.phys.lookup_lists sysctl.
- The first-touch policy is implemented by using PCPU_GET(domain) to
pick a lookup list when allocating memory.
Reviewed by: alc