ones where we have a CAM path) and replacing them with calls to isp_prt.,
Eliminate isp_unit references- we no longer have an isp_unit- we now
have an isp_dev that device_get_unit can work with.
for the ICB firmware options meant- *I* had taken it to
mean that if you set it, Node Name would be ignored and
derived from Port Name. Actually, it meant the opposite.
As a consequence- change ICBOPT_USE_PORTNAME to the
define ICBOPT_BOTH_WWNS- makes more sense.
Fix wrong input bitmap for MBOX_DUMP_RAM command. Call
ISP_DUMPREGS if we get a f/w crash. Add ISPCTL_RUN_MBOXCMD
control command (so outer layers can run a mailbox command
directly) and add a ISPASYNC_UNHANDLED_RESPONSE hook so
outer layers can understand response queue entries we
might not know about.
isp_iid_set/isp_iid for fibre channel- this is because we now
fake a port database entry for ourselves. Add the additional loop
states between LOOP_PDB_RCVD and LOOP_READY.
Change and comment on a wad of Fibre Channel isp_control functions.
Change and comment on some of the ISPASYNC Fibre Channel events.
the unit number doesn't get reused.
Make sure that if we've compiled for ISP_TARGET_MODE we set the
default role to be ISP_ROLE_INITIATOR|ISP_ROLE_TARGET.
Do some misc other cleanups.
and depending on role, make sure link is up, scan the fabric (if we're
connected to a fabric), scan the local loop (if appropriate), merge
the results into the local port database then, check once again
to make sure we have f/w at FW_READY state and the the loopstate
is LOOP_READY.
Comment out usage of ISP_SMPLOCK- I have my doubts that this works sanely
as yet because CAM itself still needs Giant. I *was* dropping my lock
and grabbing Giant when doing the upcall for completion, but this is all
seems ridiculous until CAM is fixed.
if we're ISP_ROLE_NONE. Change ISPASYNC_LOGGED_INOUT to ISPASYNC_PROMENADE.
Make sure we note if something is a fabric device.
Target mode:
Finally fix (to a first approximation) SCSI Target Mode again- we needed
to correctly check against CAM_TARGET_WILDCARD and CAM_LUN_WILDCARD
so that targbh won't confuse us. Comment out the drainqueue stuff for
now. Use isp_fc_runstate instead if isp_control/ISPCTL_FCLINK_TEST.
Remove ISP2100_FABRIC defines- we always handle fabric now. Insert
isp_getmap helper function (for getting Loop Position map). Make
sure we (for our own benefit) mark req_state_flags with RQSF_GOT_SENSE
for Fibre Channel if we got sense data- the !*$)!*$)~*$)*$ Qlogic
f/w doesn't do so. Add ISPCTL_SCAN_FABRIC, ISPCTL_SCAN_LOOP, ISPCTL_SEND_LIP,
and ISPCTL_GET_POSMAP isp_control functions. Correctly send async notifications
upstream for changes in the name server, changes in the port database, and
f/w crashes. Correctly set topology when we get a ASYNC_PTPMODE event.
Major stuff:
Quite massively redo how we handle Loop events- we've now added several
intermediate states between LOOP_PDB_RCVD and LOOP_READY. This allows us
a lot finer control about how we scan fabric, whether we go further
than scanning fabric, how we look at the local loop, and whether we
merge entries at the level or not. This is the next to last step for
moving managing loop state out of the core module entirely (whereupon
loop && fabric events will simply freeze the command queue and a thread
will run to figure out what's changed and *it* will re-enable the queu).
This fine amount of control also gets us closer to having an external
policy engine decide which fabric devices we really want to log into.
mtx_enter(lock, type) becomes:
mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks)
mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized)
similarily, for releasing a lock, we now have:
mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN.
We change the caller interface for the two different types of locks
because the semantics are entirely different for each case, and this
makes it explicitly clear and, at the same time, it rids us of the
extra `type' argument.
The enter->lock and exit->unlock change has been made with the idea
that we're "locking data" and not "entering locked code" in mind.
Further, remove all additional "flags" previously passed to the
lock acquire/release routines with the exception of two:
MTX_QUIET and MTX_NOSWITCH
The functionality of these flags is preserved and they can be passed
to the lock/unlock routines by calling the corresponding wrappers:
mtx_{lock, unlock}_flags(lock, flag(s)) and
mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN
locks, respectively.
Re-inline some lock acq/rel code; in the sleep lock case, we only
inline the _obtain_lock()s in order to ensure that the inlined code
fits into a cache line. In the spin lock case, we inline recursion and
actually only perform a function call if we need to spin. This change
has been made with the idea that we generally tend to avoid spin locks
and that also the spin locks that we do have and are heavily used
(i.e. sched_lock) do recurse, and therefore in an effort to reduce
function call overhead for some architectures (such as alpha), we
inline recursion for this case.
Create a new malloc type for the witness code and retire from using
the M_DEV type. The new type is called M_WITNESS and is only declared
if WITNESS is enabled.
Begin cleaning up some machdep/mutex.h code - specifically updated the
"optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN
and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently
need those.
Finally, caught up to the interface changes in all sys code.
Contributors: jake, jhb, jasone (in no particular order)
(so we can see rapidly whether something was a fabric device but is
now gone).
Add a tag which says what role this adapter should take. It can take
on the value of None, Target, Initiator or Both. None is useful for
warm failover purposes. Remove the ISP_CFG_NOINIT silliness since
a role of "None" does this.
Add a isp_lastmbxcmd tag to store the opcode for the last mailbox
command used.
Module) and FBM (Fibre Buffer Modules). Also remember to clear the
semaphore registers. Tell the RISC processor to not halt on FPM
parity errors.
Throw out the ISP_CFG_NOINIT silliness and instead go to the use of
adapter 'roles' to see whether one completes initialization or not
(mostly for Fibre Channel). The ultimate intent, btw, of all of this
is to have a warm standby adapter for failover reasons. Because
we do roles now, setting of Target Capable Class 3 service parameters
in the ICB for the 2x00 cards reflects from role. Also, in isp_start,
if we're not supporting an initiator role, we bounce outgoing commands
with a Selection Timeout error. Also clean out the TOGGLE_TMODE
goop for FC- there is no toggling of target mode like there is
for parallel SCSI cards.
Do more cleanup with respect to using target ids 0..125 in F-port
topologies. Also keep track of things which *were* fabric devices
so that when you rescan the fabric you can notify the outer layers
when fabric devices go away.
Only force a LOGOUT for fabric devices if they're still logged in
(i.e., you cat their Port Database entry. Clean up the Get All Next
scanning.
Finally, use a new tag in the softc to store the opcode for the
last mailbox command used so we can report which opcode timed
out.
that require us to register our FC4 types of interest. Allow ourselves, in
F-port topologies, to start logging in fabric devices in the target 0..125
range. Change ISPASYNC_PDB_CHANGED (misnamed) to ISPASYNC_LOGGED_INOUT.
Fix (*SMACK*) again some default WWN stuff. This is *really* hard to get
right across all the range of platforms.
WWNs correctly (Again!) - this time for the case that we're not going
to fully init the adapter if isp_init is called (with ISP_CFG_NOINIT
set in options). The pupose for this is to bring the adapter up to
almost ready to go, get info out of NVRAM, but to not start it up- leaving
it until later to actually start things up if wanted (and possibly with
different roles selected).
Add a test against isp->isp_osinfo.islocked prior to trying to see
whether --isp->isp_osinfo.islocked is zero to cause us to unlock
(non-SMPLOCK case).
(specifically, how many entries we've looked at so far). Maintain
interrupt instrumentation. Use USEC_SLEEP instead of USEC_DELAY in
a number of places (this allows us to drop locks and sleep instead
of spin). Track changes to configuration options for topology preference.
Fix botched order of printout for Channel, Target, Lun.
compile time will build in mutex locks, otherwise the old locking (splcam/splx
with a recursion counter) will be compiled in.
We still depend on config_intr_hook to tell us when it's okay to call
msleep instead of polling. It'd be real nice if we could do this early
enough to not hang up a machine struggling with a bad Fibre Channel loop,
but that's still to come.
the drivers.
* Remove legacy inx/outx support from chipset and replace with macros
which call busspace.
* Rework pci config accesses to route through the pcib device instead of
calling a MD function directly.
With these changes it is possible to cleanly support machines which have
more than one independantly numbered PCI busses. As a bonus, the new
busspace implementation should be measurably faster than the old one.
changes is that there's now a Solaris port of this driver, so some things
in the core version had to change (not much, but some).
In order, from the top.....:
A lot of error strings are gathered in one place at the head of the file.
This caused me to rewrite them to look consistent (with respect to
things like 'Port 0x%' and 'Target %d' and 'Loop ID 0x%x'.
The major mailbox function, isp_mboxcmd, now takes a third argument,
which is a mask that selectively says whether mailbox command failures
will be logged. This will substantially reduce a lot of spurious noise
from the driver.
At the first run through isp_reset we used to try and get the current
running firmware's revision by issuing a mailbox command. This would
invariably fail on alpha's with anything but a Qlogic 1040 since SRM
doesn't *start* the f/w on these cards. Instead, we now see whether we're
sitting ROM state before trying to get a running BIOS loaded f/w version.
All CFGPRINTF/PRINTF/IDPRINTF macros have been replaced with calls to
isp_prt. There are seperate print levels that can be independently
set (see ispvar.h), which include debugging, etc.
All SYS_DELAY macros are now USEC_DELAY macros. RQUEST_QUEUE_LEN and
RESULT_QUEUE_LEN now take ispsoftc as a parameter- the Fibre Channel
cards and the Ultra2/Ultra3 cards can have 16 bit request queue entry
indices, so we can make a 1024 entry index for them instead of the
256 entries we've had until now.
A major change it to fix isp_fclink_test to actually only wait the
delay of time specified in the microsecond argument being passed.
The problem has always been that a call to isp_mboxcmd to get he
current firmware state takes an unknown (sometimes long) amount of
time- this is if the firmware is busy doing PLOGIs while we ask
it what's up. So, up until now, the usdelay argument has been
a joke. The net effect has been that if you boot without being plugged
into a good loop or into a switch, you hang. Massively annonying, and
hard to fix because the actual time delta was impossible to know
from just guessing. Now, using the new GET_NANOTIME macros, a precise
and measured amount of USEC_DELAY calls are done so that only the
specified usecdelay is allowed to pass. This means that if the initial
startup of the firmware if followed by a call from isp_freebsd.c:isp_attach
to isp_control(isp, ISP_FCLINK_TEST, &tdelay) where tdelay is 2 * 1000000,
no more than two seconds will actually elapse before we leave concluding
that the cable is unhooked. Jeez. About time....
Change the ispscsicmd entry point to isp_start, and the XS_CMD_DONE
macro to a call to the platform supplied isp_done (sane naming).
Limit our size of request queue completions we'll look at at interrupt
time. Since we've increased the size of the Request Queue (and the
size of the Response Queue proportionally), let's not create an
interrupt stack overflow by having to keep a max completion list
(forw links are not an option because this is common code with
some platforms that don't have link space in their XS_T structures).
A limit of 32 is not unreasonable- I doubt there'd be even this many
request queue completions at a time- remember, most boards now use
fast posting for normal command completion instead of filling out
response queue entries.
In the isp_mboxcmd cleanup, also create an array of command
names so that "ABOUT FIRMWARE" can be printed instead of "CMD #8".
Remove the isp_lostcmd function- it's been deprecated for a while.
Remove isp_dumpregs- the ISP_DUMPREGS goes to the specific bus
register dump fucntion.
Various other cleanups.
isp_prt calls. We now use an argument to the ISPCTL_FCLINK_TEST
call. We change all IDPRINTF macros to isp_prt calls. We add
the isp_prt function here.
quite a bit so that all of the ports have a similar set of required
macros/definitions (and in similar places in the isp_<platform>.h
file).
Some new macros/functions added- Mailbox Acquire/Relase macros,
NANOTIME macros, SNPRINTf and STRNCAT. MemoryBarrier beomes
MEMORYBARRIER with much stronger types.
isp2100_fw_statename as an INLINE (now a function in isp.c). Remove
isp2100_pdb_statename (unused). Redo all ISP_SCSI_XFER_T as XS_T types.
Change all RQUEST_QUEUE_LEN/RESULT_QUEUE_LEN macros to take a parameter.
Add isp_print_bytes function.
when we're done reading it (makes checking things easier).
Before calling isp_notify_ack make sure we're at RUNSTATE-
elsewise we can be responding to LIPs or SCSI bus resets
before we've finished some of the wiring.
we need a function that tells the Qlogic f/w that a target mode command
is done, so increase the resource count for that lun. Add in a timeout
function to kick the putback again if we fail to do it the first time (we
may not have the request queue space for ATIO push). Split the function
isp_handle_platform_ctio into two parts so that the timeout function for
the ATIO push or isp_handle_platform_ctio can inform CAM that the requested
CTIO(s) are now done.
Clean up (cough) residual handling. What we need for Fibre Channel
is to preserve the at_datalen field from the original incoming ATIO
so we can calculate a 'true' residual. Unfortunately, we're not
guaranteed to get that back from CAM. We'll *try* to find it hiding
in the periph_priv field (layering violation)- but if an ATIO was
passed in from user land- forget it. This means that we'll probably
get residuals wrong for Fibre Channel commands we're completing
with an error. It's too late to 4.1 release to fix this- too bad.
Luckily the only device we'd really care about this occurring on
is a tape device and they're still so rare as FC attached devices
that this can be considered an untested combination anyway.
Remove all CCINCR usage (resource autoreplenish). When we've proved
to ourself that things are working properly, we can add it back
in.
Make sure we propage 'suggested' sense data from the incoming ATIO
into the created system ATIO- and set sense_len appropriately.
Correctly propagate tag values.
Fall back to the model of generating (well, the functions in isp_pci.c
do the work) multiple CTIOs based upon what we get from XPT. Instead
of being able to pair Qlogic generated ATIOs with CAM ATIOs, and then
to pair CAM CTIOs with Qlogic CTIOs, we have to take the CTIO passed
to us from XPT, and if it implies that we have to generate extra
Qlogic CTIOs, so be it. This means that we have to wait until the
last CTIO in a sequence we generated completes before calling xpt_done.
Executive summary- target mode actually now pretty much works well
enough to tell folks about.
sure that it really is by issuing a ISPCTL_ABORT_CMD just on the
off chance the f/w will start it up again and, ha ha, start using
the DMA resources we gave it but are now taking away.
us to not the ints are ok and also to (re)ENABLE isp interrupts. Remove
all splcam()/splx() invocates and replace them with ISP_LOCK/ISP_UNLOCK
macros.
to isp_osinfo substructure (all in prep for SMP). Define MBOX_WAIT_COMPLETE
and MBOX_NOTIFY_COMPLETE macros so that we can now (temp) use tsleep
to wait for mailbox completion. Requires us to guess whether we're
servicing an interrupt or not- will use intr_nesting_level.
Add local strncat function.
define). Fix stupidity wrt checking whether we've gone to
LOOP_PDB_RCVD loopstate- it's okay to be greater than this state.
D'oh! Protect calls to isp_pdb_sync and isp_fclink_state with IS_FC
macros.
Completely redo mailbox command routine (in preparation to make this
possibly wait rather than poll for completion).
Make a major attempt to solve the 'lost interrupt' problem
1. Problem
The Qlogic cards would appear to 'lose' interrupts, i.e., a legitimate
regular SCSI command placed on the request queue would never complete
and the watchdog routine in the driver would eventually wakeup and
catch it. This would typically only happen on Alphas, although a
couple folks with 700MHz Intel platforms have also seen this.
For a long time I thought it was a foulup with f/w negotiations of
SYNC and/or WIDE as it always seemed to happen right after the
platform it was running on had done a SET TARGET PARAMETERS mailbox
command to (re)enable sync && wide (after initially forcing
ASYNC/NARROW at startup). However, occasionally, the same thing
would also occur for the Fibre Channel cards as well (which, ahem,
have no SET TARGET PARAMETERS for transfer mode).
After finally putting in a better set of watchdog routines for the
platforms for this driver, it seemed to be the case that the command
in question (usually a READ CAPACITY) just had up and died- the
watchdog routine would catch it after ~10 seconds. For some platforms
(NetBSD/OpenBSD)- an ABORT COMMAND mailbox command was sent (which
would always fail- indicating that the f/w denied knowledge of this
command, i.e., the f/w thought it was a done command). In any case,
retrying the command worked. But this whole problem needed to be
really fixed.
2. A False Step That Went in The Right Direction
The mailbox code was completely rewritten to no longer try and grab
the mailbox semaphore register and to try and 'by hand' complete
async fast posting completions. It was also rewritten to now have
separate in && out bitpatterns for registers to load to start and
retrieve to complete. This means that isp_intr now handles mailbox
completions.
This substantially simplifies the mailbox handling code, and carries
things 90% toward getting this to be a non-polled routine for this
driver.
This did not solve the problem, though.
3. Register Debouncing
I saw some comments in some errata sheets and some notes in a Qlogic
produced Linux driver (for the Qlogic 2100) that seemed to indicate
that debouncing of reads of the mailbox registers might be needed,
so I added this. This did not affect the problem. In fact, it made
the problem worse for non-2100 cards.
5. Interrupt masking/unmasking
The driver *used* to do a substantial amount of masking/unmasking
of the interrupt control register. This was done to make sure that
the core common code could just assume it would never get pre-empted.
This apparently substantially contributed to the lost interrupt
problem. The rewrite of the ICR (Interrupt Control Register),
which is a separate register from the ISR (Interrupt Status Register)
should not have caused any change to interrupt assertions pending.
The manual does not state that it will, and the register layout
seems to imply that the ICR is just an active route gate. We only
enable PCI Interrupts and RISC Interrupts- this should mean that
when the f/w asserts a RISC interrupt and (and the ICR allows RISC
Interrupts) and we have PCI Interrupts enabled, we should get a
PCI interrupt. Apparently this is a latch- not a signal route.
Removing this got rid of *most* but not all, lost interrupts.
5. Watchdog Smartening
I made sure that the watchdog routine would catch cases where the
Qlogic's ISR showed an interrupt assertion. The watchdog routine
now calls the interrupt service routine if it sees this. Some
additional internal state flags were added so that the watchdog
routine could then know whether the command it was in the middle
of burying (because we had time it out) was in fact completed by
the interrupt service routine.
6. Occasional Constipation Of Commands..
In running some very strenous high IOPs tests (generating about
11000 interrupts/second across one Qlogic 1040, one Qlogic 1080
and one Qlogic 2200 on an Alpha PC164), I found that I would get
occasional but regular 'watchdog timeouts' on both the 1080 and
the 2100 cards. This is under FreeBSD, and the watchdog timeout
routine just marks the command in error and retries it.
Invariably, right after this 'watchdog timeout' error, I'd get a
command completion for the command that I had thought timed out.
That is, I'd get a command completion, but the handle returned by
the firmware mapped to no current command. The frequency of this
problem is low under such a load- it would usually take an 30
minutes per 'lost' interrupt.
I doubled the timeout for commands to see if it just was an edge
case of waiting too short a period. This has no effect.
I gathered and printed out microtimes for the watchdog completed
command and the completion that couldn't find a command- it was
always the case that the order of occurrence was "timeout, completion"
separated by a time on the order of 100 to 150 ms.
This caused me to consider 'firmware constipation' as to be a
possible culprit. That is, resubmission of a command to the device
that had suffered a watchdog timeout seemed to cause the presumed
dead command to show back up.
I added code in the watchdog routine that, when first entered for
the command, marks the command with a flag, reissues a local timeout
call for one second later, but also then issues a MARKER Request
Queue entry to the Qlogic f/w. A MARKER entry is used typically
after a Bus Reset to cause the f/w to get synchronized with respect
to either a Bus, a Nexus or a Target.
Since I've added this code, I always now see the occasional watchdog
timeout, but the command that was about to be terminated always
now seems to be completed after the MARKER entry is issued (and
before the timeout extension fires, which would come back and
*really* terminate the command).
comment. Check against firmware state- not loop state when enabling
target mode. Other changes have to do with no longer enabling/disabling
interrupts at will.
Rearchitect command watchdog timeouts-
First of all, set the timeout period for a command that has a
timeout (in isp_action) to the period of time requested *plus* two
seconds. We don't want the Qlogic firmware and the host system to
race each other to report a dead command (the watchdog is there to
catch dead and/or broken firmware).
Next, make sure that the command being watched isn't done yet. If
it's not done yet, check for INT_PENDING and call isp_intr- if that
said it serviced an interrupt, check to see whether the command is
now done (this is what the "IN WATCHDOG" private flag is for- if
isp_intr completes the command, it won't call xpt_done on it because
isp_watchdog is still looking at the command).
If no interrupt was pending, or the command wasn't completed, check
to see if we've set the private 'grace period' flag. If so, the
command really *is* dead, so report it as dead and complete it with
a CAM_CMD_TIMEOUT value.
If the grace period flag wasn't set, set it and issue a SYNCHRONIZE_ALL
Marker Request Queue entry and re-set the timeout for one second
from now (see Revision 1.45 isp.c notes for more on this) to give
the firmware a final chance to complete this command.
store a bitmask of whether we've set a value into ccb->ccb_h.status,
whether we're in the watchdog routine for this command now, whether
we've set a grace period for this command and whether this command is
actually done.
See comments of rev 1.45 of isp.c for more complete information.
output mailbox values we want to get back out of the chip once a mailbox
command is done. Add storage for the maximum number of output mailbox
registers to the softc.
Roll minor version number.
the handle (i.e., generation number), so we will now need a function that
will take a handle and return a flat index [ 0 .. maxhandles-1 ] for
auxillary routines that need an index to get at buddy store values
(like dma maps or xflist pointers).
Force alphas to prefer mem mapping as the default.
Basically, we have a pointer to a function which we can call which will
return us a pointer to firmware for the card we have. We call this function
(if it's non-NULL) with the address of our mdvec f/w pointer.
The way this works is that if ispfw (as a module or a static) is loaded,
it initializes the pointer in isp_pci, so we can call into to it to fetch
a pointer to a f/w set.
If ispfw is MOD_UNLOADed, it's retained a pointer to our mdvec f/w pointers,
which then get zeroed out so we don't have any references to data that's
now gone from kernel memory. Removing the f/w saves ~360KBytes.
Alas, there is no autounload mechanism that works for is here.
through, establish what our LUN width is. Unfortunately, we can't ask
the f/w. If we loaded the f/w, we'll now assume we have expanded LUNs
(SCCLUN for fibre channel, just plain 32 LUN for SCSI). If we didn't
load firmware, assume 8 LUNs for SCSI and 1 LUN for Fibre Channel. We
have to assume only one LUN for Fibre Channel because the LUN setting
in Request Queue entries is in different places whether we have SCCLUN
firmware or not, so the only LUN guaranteed to work for both is LUN 0.
Clean up the rest of isp.c so that ISP2100_SCCLUN defines aren't used-
instead use run time determinants based upon isp->isp_maxluns.
After starting firmware, delay 500us to give it a chance to get rolling.
Fix the interrupt service routine to check for both isr && sema being zero
before thinking this was a spurious interrupt. Following the manuals,
allow for both Mailbox as well as Queue Reponse type interrupts for regular
SCSI.
(we always support fabric now). Remove SCCLUN definition (we always
support SCCLUN now, if we load the f/w). Add typedef definition of an
external firmware fetch function.
What we'd like to know is whether or not we have a listener
upstream that really hasn't configured yet. If we do, then
we can give a more sensible reply here. If not, then we can
reject this out of hand.
Choices for what to send were
Not Ready, Unit Not Self-Configured Yet
(0x2,0x3e,0x00)
for the former and
Illegal Request, Logical Unit Not Supported
(0x5,0x25,0x00)
for the latter.
We used to decide whether there was at least one listener
based upon whether the black hole driver was configured.
However, recent config(8) changes have made this hard to do
at this time.
Actually, we didn't use the above quite yet, but were sure considering it.
changes: consider a new PDB entry different if Class 3 service parameter
roles change (!!!). Do some checking as we're getting a port database
that traps whether things change while we're doing so. Handle N-port
and F-ports correctly. Fix the fabric login loop to retain a login/binding
if things haven't changed (I mean, why logout a device only to log it back
in). No longer accept, after fabric logins, garbage if we can't get a PDB
entry that matches the device we've just logged into- if it doesn't, log
it out as it is very unlikely to still be what we thought it was. Get rid
of some of the debounce loops because we could get stuck there.
Apparently the f/w has finished the command, but somehow an interrupt is
being lost. So, we just plain wedge when booting alphas.
This is a general routine we've needed for a while.
where we can have targets (based on topology).
Much more importantly, make sure all mods to isp_sendmarker or |= so
we don't lose the marking of a bus that needs to have a marker sent for it.
require full logins after a LIP, which always led to loop resets, and
various other perturbations.
Update 2200 f/w from 2.01.00 release to 2.01.09 release.
seriously- only attempt to logout a previously logged in fabric device.
Fix a longstanding bug for aborting overtime commands- handle halves
have always been reversed.
Clean up some error messages to indicate channel number.
Approved:jkh
Andrew's problems with SCSI on some alphas- do not call isp_update
directly to update parameters- just mark them as being ready to
update for the next command- the system would just hang on a READ
CAPACITY for a drive. Really annoying because it wouldn't even timeout
(and it has a timeout) so either the SET PARAMETERS call was nuking
things or the f/w was really dropping the ball.
approved: jkh
Reviewed by: gallatin@freebsd.org
is gone as a define. We just don't support fast posting for anything less
than the 1240/1080/1280/12160 or Fibre Channel cards.
Put in support for CDB's larger than 12 bytes for parallel SCSI (up to 44
bytes are allowed).
Approved: jkh
for 1020/1X80/12160/2X00- for readability. Add in 12160 (Ultra3)
support- but not with PPR just yet. Fix and clarify fetching of
return parameter for getting firmware rev which for the 2200 contains
the connection topology (Private Loop (NL-port), N-port, FL-port,
F-port). Synthesize the connection topology for the 2100 which can
only be Private Loop or FL-port. Handle a couple of new async
mailbox commands which signify connection in Point-to-Point mode
(N-port or F-port) or indicate various toe stubbing getting to same.
Approved: jkh@freebsd.org
code gratefully borrowed from Patrick Stirling who did a lot of the
grunt work on this years ago. There are also some beginnings of
swizzle macros in case we go to a big endian machine. This is just
a first pass at this and is likely to change a bit over the next
Add in a very large amount of target mode support code- this is just
a first pass at this. It's a difficult thing because some of the code
can be in platform independent areas (see isp_target.?) but a lot has
to be in platform dependent areas because of not only the tight coupling
of received commands/events and the specific OS subsystem but because
the platform independent code has (deliberately) no event/wait mechanisms.
of where we could have seen the loop up at least once so it
makes sense. Change some stuff in ispscsicmd so we don't get
stuck there if the loop has never come up yet. Add in some
target mode support code.
of queue entries have to be at least 16 bits now! If we're running
a 2100 less than rev 5, turn off loop fairness (per Qlogic errata). Fix
typo in checking against 2200 F/W revision. Slightly fix/reorder fabric
login stuff. Change to usage of isp_getrqentry for code clarity. Add some
defensive dual bus assumptions. Various cleanups, etc...
Role the core version minor number. Change the arguments to the dma
setup function to use a u_int16_t for the output request loop pointer
(truly amazing that this hasn't blown up in anyones face so far). Do
some shuffling around of some items.
by Qlogic. The firmware is now also kept from compiling by default
unless some config options are set.
While we're at it, roll the 2200 f/w to 2.01.0. Still need to get the
1.17.26 2100 f/w working as it solves a lot of problems but it doesn't
want to work yet with this driver (:-)).
out of the PCI CLASS reg and store it in the softc. Use the getenv_quad
function to get a WWN override from the environment. Look for a config
value for same. Make slightly less lame the wwn seed construction.
have you is prototyped). Removed code versions in md struct- not used
any more. Allocate transfer dma maps and xflist stuff in mbxdmasetup based
upon isp->isp_maxcmds. Allow for multiple calls to mbxdmasetup (for
isp_reset cases).
file later. Do some pencil-sharpening types of minor changes. Change
how active commands are remembered (using new inline functions to get
handles, etc..). Now do a GET FIRMWARE STATUS after firing up the f/w as
outgoing mailbox 2 will tell you the f/w's notion of the max commands
that can be supported. Attempt to retrieve loop topology. Add in the
appropriate SWIZZLE/UNSWIZZLE macros calls (this is a no-op on Little
Endian machines but is needed for sparc (on other platforms)). Move
the temp port database we use to find out where things have moved to
after a LIP to the softc and off the kernel stack. Follow Qlogic's
hint and don't bother setting a tag for commands that don't have
this enabled (presumably the f/w will do it's own selection then).
Use an INT_PENDING macro to check for an interrupt. The call to
ISP_DMAFREE now just takes the handle- not the 'handle-1' which was
a layering violation. Use CFGPRINTF in a couple of places to make
things less chatty if not booting verbose, or CAMDEBUG compiles, etc..
where it defaults to one. Change simq width allocation to the max number
of commands supported by the HBA after f/w fires up- not the constant
MAXISPREQUEST value. Do some stylistic changes.
Add in null SWIZZLE definitions. Add in CFGPRINTF define. Change default
debug level to refer to an external isp_debug variable. Remove inline
functions as they're now in isp_inline.h and include that file.
the result queue length is never less than 64. Move (ick) temp port
database used for post-LIP merging off the kernel stack and put it
into the softc. Remove some target mode stuff which will come back
later in a different file. Change how the list of outstanding commands
are stored (now allocated at mailbox setup time to be just enough for
the max for a specific HBA which can vary). Keep a rotating seed of
the last index for this in the softc. Increase the count of active
commands from 10 to 16 bits.
isp_io_map, isp_no_fwload, isp_fwload, isp_no_nvram, isp_fcduplex
which are all bitmaps of isp instances that should or shouldn't
map memory space, I/O space, not load f/w, load f/w, ignore nvram,
not ignore nvarm, set full duplex mode. Also have an isp_seed value
that we can use to generate a pseudo seed for a synthetic WWN.
Other minor cosmetic cleanup. Add in support for the Qlogic ISP
2200. Very important change where we actually check now to see
whether we were successful in mapping request and response queues
(and fibre channel scratch space).
not having SCSI_ISP_SCCLUN config defined if we don't have f/w for
the 2200- it's resident firmware uses SCCLUN (65535 luns)). Change
the way the default LoopID is gathered (it's now a platform specific
define so that some attempt at a synthetic WWN can be made in case
NVRAM isn't readable).
Change initialization of options a bit- don't use ADISC. Set
FullDuplex mode if config options tells us to do so. Do not use
FULL_LOGIN after LIP- it's the right thing to do but it causes too
much loop disruption (Loop Resets). Sanity check some default
values. Redo construction of port and node WWNs based upon what we
have- if we have 2 in the top nibble, we can have distinct port
and node WWNs. Clean up some SCCLUN related code that we obviously
had never compiled (:-(). Audit commands coming int ispscsicmd and
don't throw commands at Fibre devices that do not have Class 3
service parameters TARGET ROLE defined.
Clean up f/w initialization a bit. Add Fabric support (or at least
the first blush of it). Whew - way too much to describe here.
Basically, after a LIP, hang out until we see a Loop Up or a Port
DataBase Change async event, then see if we're on a Fabric
(GET_PORT_NAME of FL_PORT_ID). If we are, try and scan the fabric
controller for fabric devices using the GetAllNext SNS subcommand.
As we find devices, announce them to the outer layer. Try and do
some guard code for broken (Brocade) SNS servers (that get stuck
in loops- gotta maybe do this a different way using the GP_ID3 cmd
instead). Then do a scan of the lower (local loop) ids using a
GET_PORT_NAME to see if the f/w has logged into anything at that
loop id. If so, then do a GET_PORT_DATABASE command. Do this scan
into a local database. At this point we can say the loop is 'Ready'.
After this, we merge our local loop port database with our stored
port database- in a as yet to be really fully exercised fashion we
try and follow the logic of something having moved around. The
first time we see something at a Loop ID, we fix it, for the purpose
of this system instance, at that Loop ID. If things shift around
so it ends up somewhere else, we still keep it at this Loop ID (our
'Target') but use the new (moved) Loop ID when we actually throw
commands at it. Check for insane cases of different Loop IDs both
claiming to have the same WWN- if that happens, invalidate both.
Notify the outer layer of devices that have arrived and devices
that have gone away. *Finally*, when this is done, search the
softc's database of Fabric devices and perform logout/login actions.
The Qlogic f/w maintains logout/login for all local loop devices.
We have to maintain logout/login for fabric devices- total PITA.
Expect to see this area undergo more change over time.
Change some fcp parameter structures such that we can get the portid
(24 bit value), get both node and port WWN, know whether we're on a fabric
or not, note whether we've ever seen the loop up, and note the current
state of the loop.
Replace the isp_pdb_t structure in fcparams with a reduced cost structure
that maintains a static relationship to 'Target', but can have the actual
loop ID used change (in case, post LIP, we discover things have moved
around). This also retains portid and node/port WWNs. This array gets
larger if we have fabric support compiled in.
Note special loop IDs that are invariate for this device- FL_PORT_ID
(0x7e) which tells us if there's a fabric controller present, FC_PORT_ID
and FC_SNS_ID (fabric controller port and fabric SNS server port). We don't
use the latter two for anything. IDs above FC_SNS_ID up through 255 are
available for mapping fabric devices to 'target' ids.
Add in a config define to set FC full duplex mode. Add in a define to
recognize the Qlogic 2200 boards. Add comments about ISPCTL commands.
Add and change some ISPASYNC enumes.
massive thwunking to include an XS_CHANNEL value. Some changes of how
parameters are reported to outer layers (including bus, e.g.). Yet more
stirring around in isp_mboxcmd to try and get it right. Decode of 1080/1240
NVRAM.
after some of the previous commits). Add in support for the 1240
dual channel ISP card. Try the dance of unmapping a PCI interrupt
if we don't configure (if that ever works it'll be helpful).
#define COMPAT_PCI_DRIVER(name,data) DATA_SET(pcidevice_set,data)
.. to 2.2.x and 3.x if people think it's worth it. Driver writers can do
this if it's not defined. (The reason for this is that I'm trying to
progressively eliminate use of linker_sets where it hurts modularity and
runtime load capability, and these DATA_SET's keep getting in the way.)
NOTE: These changes will require recompilation of any userland
applications, like cdrecord, xmcd, etc., that use the CAM passthrough
interface. A make world is recommended.
camcontrol.[c8]:
- We now support two new commands, "tags" and "negotiate".
- The tags commands allows users to view the number of tagged
openings for a device as well as a number of other related
parameters, and it allows users to set tagged openings for
a device.
- The negotiate command allows users to enable and disable
disconnection and tagged queueing, set sync rates, offsets
and bus width. Note that not all of those features are
available for all controllers. Only the adv, ahc, and ncr
drivers fully support all of the features at this point.
Some cards do not allow the setting of sync rates, offsets and
the like, and some of the drivers don't have any facilities to
do so. Some drivers, like the adw driver, only support enabling
or disabling sync negotiation, but do not support setting sync
rates.
- new description in the camcontrol man page of how to format a disk
- cleanup of the camcontrol inquiry command
- add support in the 'devlist' command for skipping unconfigured devices if
-v was not specified on the command line.
- make use of the new base_transfer_speed in the path inquiry CCB.
- fix CCB bzero cases
cam_xpt.c, cam_sim.[ch], cam_ccb.h:
- new flags on many CCB function codes to designate whether they're
non-immediate, use a user-supplied CCB, and can only be passed from
userland programs via the xpt device. Use these flags in the transport
layer and pass driver to categorize CCBs.
- new flag in the transport layer device matching code for device nodes
that indicates whether a device is unconfigured
- bump the CAM version from 0x10 to 0x11
- Change the CAM ioctls to use the version as their group code, so we can
force users to recompile code even when the CCB size doesn't change.
- add + fill in a new value in the path inquiry CCB, base_transfer_speed.
Remove a corresponding field from the cam_sim structure, and add code to
every SIM to set this field to the proper value.
- Fix the set transfer settings code in the transport layer.
scsi_cd.c:
- make some variables volatile instead of just casting them in various
places
- fix a race condition in the changer code
- attach unless we get a "logical unit not supported" error. This should
fix all of the cases where people have devices that return weird errors
when they don't have media in the drive.
scsi_da.c:
- attach unless we get a "logical unit not supported" error
scsi_pass.c:
- for immediate CCBs, just malloc a CCB to send the user request in. This
gets rid of the 'held' count problem in camcontrol tags.
scsi_pass.h:
- change the CAM ioctls to use the CAM version as their group code.
adv driver:
- Allow changing the sync rate and offset separately.
adw driver
- Allow changing the sync rate and offset separately.
aha driver:
- Don't return CAM_REQ_CMP for SET_TRAN_SETTINGS CCBs.
ahc driver:
- Allow setting offset and sync rate separately
bt driver:
- Don't return CAM_REQ_CMP for SET_TRAN_SETTINGS CCBs.
NCR driver:
- Fix the ultra/ultra 2 negotiation bug
- allow setting both the sync rate and offset separately
Other HBA drivers:
- Put code in to set the base_transfer_speed field for
XPT_GET_TRAN_SETTINGS CCBs.
Reviewed by: gibbs, mjacob (isp), imp (aha)
board versions with no BIOS. Separate mailbox interrupts from
IOCB interrupts. Read OUTMAILBOX5 while RISC_INT is active- not
after you clear it (potential race condition). Clear out older broken
BIG_ENDIAN goop. Don't negotiate narrow/async for LVD busses at startup
if already in LVD mode. Note usage of presumptive 1040C revision. For
all the LIP, PDB Changed, Loop UP/DOWN async events, mark fw state
as unknown as well as marking the need to do a getpdb on targets- after
a LIP for certain the f/w has to do PRLI/PLOGI for all targets again
and marking f/w state as unknown gives us a fighting chance to (start
to) hold up for that to complete.
that will SBusify an isp header or the lun/target portions of a request IOCB-
and have these only valid iff __sparc__ (no non-sparc SBus machine that *I*
know about).
settings you've just sent them and return random values if you follow
the set by a get. This causes problems when you latter run a Tag-enabled
command when you've command tagged mode off.
gave yet another internal register layout model for what is
*still* the same architecture. I hope they saved billyuns of gates
'coz otherwise this is *really* annoying.
thwank in register layout goop). A different mboxcmd approach. Some PDB change
infrastructure. Some better management of loopdown/loopup events (keep them
distinct from resource starvation for simq freeze/unfreeze actions).