as defined in RFC 6296. The module works together with ipfw(4) and
implemented as its external action module. When it is loaded, it registers
as eaction and can be used in rules. The usage pattern is similar to
ipfw_nat(4). All matched by rule traffic goes to the NPT module.
Reviewed by: hrs
Obtained from: Yandex LLC
MFC after: 1 month
Relnotes: yes
Sponsored by: Yandex LLC
Differential Revision: https://reviews.freebsd.org/D6420
Centre for Advanced Internet Architectures
Implementing AQM in FreeBSD
* Overview <http://caia.swin.edu.au/freebsd/aqm/index.html>
* Articles, Papers and Presentations
<http://caia.swin.edu.au/freebsd/aqm/papers.html>
* Patches and Tools <http://caia.swin.edu.au/freebsd/aqm/downloads.html>
Overview
Recent years have seen a resurgence of interest in better managing
the depth of bottleneck queues in routers, switches and other places
that get congested. Solutions include transport protocol enhancements
at the end-hosts (such as delay-based or hybrid congestion control
schemes) and active queue management (AQM) schemes applied within
bottleneck queues.
The notion of AQM has been around since at least the late 1990s
(e.g. RFC 2309). In recent years the proliferation of oversized
buffers in all sorts of network devices (aka bufferbloat) has
stimulated keen community interest in four new AQM schemes -- CoDel,
FQ-CoDel, PIE and FQ-PIE.
The IETF AQM working group is looking to document these schemes,
and independent implementations are a corner-stone of the IETF's
process for confirming the clarity of publicly available protocol
descriptions. While significant development work on all three schemes
has occured in the Linux kernel, there is very little in FreeBSD.
Project Goals
This project began in late 2015, and aims to design and implement
functionally-correct versions of CoDel, FQ-CoDel, PIE and FQ_PIE
in FreeBSD (with code BSD-licensed as much as practical). We have
chosen to do this as extensions to FreeBSD's ipfw/dummynet firewall
and traffic shaper. Implementation of these AQM schemes in FreeBSD
will:
* Demonstrate whether the publicly available documentation is
sufficient to enable independent, functionally equivalent implementations
* Provide a broader suite of AQM options for sections the networking
community that rely on FreeBSD platforms
Program Members:
* Rasool Al Saadi (developer)
* Grenville Armitage (project lead)
Acknowledgements:
This project has been made possible in part by a gift from the
Comcast Innovation Fund.
Submitted by: Rasool Al-Saadi <ralsaadi@swin.edu.au>
X-No objection: core
MFC after: 2 weeks
Differential Revision: https://reviews.freebsd.org/D6388
objects with the same name in different sets.
Add optional manage_sets() callback to objects rewriting framework.
It is intended to implement handler for moving and swapping named
object's sets. Add ipfw_obj_manage_sets() function that implements
generic sets handler. Use new callback to implement sets support for
lookup tables.
External actions objects are global and they don't support sets.
Modify eaction_findbyname() to reflect this.
ipfw(8) now may fail to move rules or sets, because some named objects
in target set may have conflicting names.
Note that ipfw_obj_ntlv type was changed, but since lookup tables
actually didn't support sets, this change is harmless.
Obtained from: Yandex LLC
Sponsored by: Yandex LLC
It allows implementing loadable kernel modules with new actions and
without needing to modify kernel headers and ipfw(8). The module
registers its action handler and keyword string, that will be used
as action name. Using generic syntax user can add rules with this
action. Also ipfw(8) can be easily modified to extend basic syntax
for external actions, that become a part base system.
Sample modules will coming soon.
Obtained from: Yandex LLC
Sponsored by: Yandex LLC
Off by default, build behaves normally.
WITH_META_MODE we get auto objdir creation, the ability to
start build from anywhere in the tree.
Still need to add real targets under targets/ to build packages.
Differential Revision: D2796
Reviewed by: brooks imp
Currently we have different table key types which can easily interfere
with each other (numbers and IPv4 address, interface names and hostnames,
flows and hostnames/addresses).
This conflicts are solved by [auto-]creating _typed_ tables, so after
table is created, only keys of given type can be inserted to that table.
ipfw(8) consults with kernel about key/value type for particular table so
it knows key/value interpretation.
However, we have 2 cases (adding entries to non-existing table and
parsing configuration file via `ipfw -n`) when kernel is unable to
provide us table info we need. Fix the latter case by partially importing
old `table_fill_xentry()` parse function responsible for guessing key type.
Sponsored by: Yandex LLC
directly in the O_FORWARD_IP6 opcode. Use getnameinfo(3) to formatting
the IPv6 addresses of such opcodes.
Obtained from: Yandex LLC
Sponsored by: Yandex LLC
to obtain IPv4 next hop address in tablearg case.
Add `fwd tablearg' support for IPv6. ipfw(8) uses INADDR_ANY as next hop
address in O_FORWARD_IP opcode for specifying tablearg case. For IPv6 we
still use this opcode, but when packet identified as IPv6 packet, we
obtain next hop address from dedicated field nh6 in struct table_value.
Replace hopstore field in struct ip_fw_args with anonymous union and add
hopstore6 field. Use this field to copy tablearg value for IPv6.
Replace spare1 field in struct table_value with zoneid. Use it to keep
scope zone id for link-local IPv6 addresses. Since spare1 was used
internally, replace spare0 array with two variables spare0 and spare1.
Use getaddrinfo(3)/getnameinfo(3) functions for parsing and formatting
IPv6 addresses in table_value. Use zoneid field in struct table_value
to store sin6_scope_id value.
Since the kernel still uses embedded scope zone id to represent
link-local addresses, convert next_hop6 address into this form before
return from pfil processing. This also fixes in6_localip() check
for link-local addresses.
Differential Revision: https://reviews.freebsd.org/D2015
Obtained from: Yandex LLC
Sponsored by: Yandex LLC
anything until the interface is assigned an address. This fixes
ipfw_nat to do the same by using an IP of INADDR_ANY instead of
aborting the nat setup if the requested interface is not yet configured.
Differential Revision: https://reviews.freebsd.org/D1539
Reviewed by: melifaro, glebius, gnn
MFC after: 1 week
we can't easily predict (in current parsing model)
if the keyword is ipfw(8) reserved keyword or port name.
Checking proto database via getprotobyname() consumes a lot of
CPU and leads to tens of seconds for parsing large ruleset.
Use list of reserved keywords and check them as pre-requisite
before doing getprotobyname().
Obtained from: Yandex LLC
Kernel changes:
* Split kernel/userland nat structures eliminating IPFW_INTERNAL hack.
* Add IP_FW_NAT44_* codes resemblin old ones.
* Assume that instances can be named (no kernel support currently).
* Use both UH+WLOCK locks for all configuration changes.
* Provide full ABI support for old sockopts.
Userland changes:
* Use IP_FW_NAT44_* codes for nat operations.
* Remove undocumented ability to show ranges of nat "log" entries.
This is the last major change in given branch.
Kernel changes:
* Use 64-bytes structures to hold multi-value variables.
* Use shared array to hold values from all tables (assume
each table algo is capable of holding 32-byte variables).
* Add some placeholders to support per-table value arrays in future.
* Use simple eventhandler-style API to ease the process of adding new
table items. Currently table addition may required multiple UH drops/
acquires which is quite tricky due to atomic table modificatio/swap
support, shared array resize, etc. Deal with it by calling special
notifier capable of rolling back state before actually performing
swap/resize operations. Original operation then restarts itself after
acquiring UH lock.
* Bump all objhash users default values to at least 64
* Fix custom hashing inside objhash.
Userland changes:
* Add support for dumping shared value array via "vlist" internal cmd.
* Some small print/fill_flags dixes to support u32 values.
* valtype is now bitmask of
<skipto|pipe|fib|nat|dscp|tag|divert|netgraph|limit|ipv4|ipv6>.
New values can hold distinct values for each of this types.
* Provide special "legacy" type which assumes all values are the same.
* More helpers/docs following..
Some examples:
3:41 [1] zfscurr0# ipfw table mimimi create valtype skipto,limit,ipv4,ipv6
3:41 [1] zfscurr0# ipfw table mimimi info
+++ table(mimimi), set(0) +++
kindex: 2, type: addr
references: 0, valtype: skipto,limit,ipv4,ipv6
algorithm: addr:radix
items: 0, size: 296
3:42 [1] zfscurr0# ipfw table mimimi add 10.0.0.5 3000,10,10.0.0.1,2a02:978:2::1
added: 10.0.0.5/32 3000,10,10.0.0.1,2a02:978:2::1
3:42 [1] zfscurr0# ipfw table mimimi list
+++ table(mimimi), set(0) +++
10.0.0.5/32 3000,0,10.0.0.1,2a02:978:2::1
Most of the tablearg-supported opcodes does not accept 0 as valid value:
O_TAG, O_TAGGED, O_PIPE, O_QUEUE, O_DIVERT, O_TEE, O_SKIPTO, O_CALLRET,
O_NETGRAPH, O_NGTEE, O_NAT treats 0 as invalid input.
The rest are O_SETDSCP and O_SETFIB.
'Fix' them by adding high-order bit (0x8000) set for non-tablearg values.
Do translation in kernel for old clients (import_rule0 / export_rule0),
teach current ipfw(8) binary to add/remove given bit.
This change does not affect handling SETDSCP values, but limit
O_SETFIB values to 32767 instead of 65k. Since currently we have either
old (16) or new (2^32) max fibs, this should not be a big deal:
we're definitely OK for former and have to add another opcode to deal
with latter, regardless of tablearg value.
* Since there seems to be lack of consensus on strict value typing,
remove non-default value types. Use userland-only "value format type"
to print values.
Kernel changes:
* Add IP_FW_XMODIFY to permit table run-time modifications.
Currently we support changing limit and value format type.
Userland changes:
* Support IP_FW_XMODIFY opcode.
* Support specifying value format type (ftype) in tablble create/modify req
* Fine-print value type/value format type.
* Implement proper checks for switching between global and set-aware tables
* Split IP_FW_DEL mess into the following opcodes:
* IP_FW_XDEL (del rules matching pattern)
* IP_FW_XMOVE (move rules matching pattern to another set)
* IP_FW_SET_SWAP (swap between 2 sets)
* IP_FW_SET_MOVE (move one set to another one)
* IP_FW_SET_ENABLE (enable/disable sets)
* Add IP_FW_XZERO / IP_FW_XRESETLOG to finish IP_FW3 migration.
* Use unified ipfw_range_tlv as range description for all of the above.
* Check dynamic states IFF there was non-zero number of deleted dyn rules,
* Del relevant dynamic states with singe traversal instead of per-rule one.
Userland changes:
* Switch ipfw(8) to use new opcodes.
Kernel changes:
* Add opcode IP_FW_TABLE_XSWAP
* Add support for swapping 2 tables with the same type/ftype/vtype.
* Make skipto cache init after ipfw locks init.
Userland changes:
* Add "table X swap Y" command.
Kernel changes:
* Add TEI_FLAGS_DONTADD entry flag to indicate that insert is not possible
* Support given flag in all algorithms
* Add "limit" field to ipfw_xtable_info
* Add actual limiting code into add_table_entry()
Userland changes:
* Add "limit" option as "create" table sub-option. Limit modification
is currently impossible.
* Print human-readable errors in table enry addition/deletion code.
* Add "flow:hash" algorithm
Kernel changes:
* Add O_IP_FLOW_LOOKUP opcode to support "flow" lookups
* Add IPFW_TABLE_FLOW table type
* Add "struct tflow_entry" as strage for 6-tuple flows
* Add "flow:hash" algorithm. Basically it is auto-growing chained hash table.
Additionally, we store mask of fields we need to compare in each instance/
* Increase ipfw_obj_tentry size by adding struct tflow_entry
* Add per-algorithm stat (ifpw_ta_tinfo) to ipfw_xtable_info
* Increase algoname length: 32 -> 64 (algo options passed there as string)
* Assume every table type can be customized by flags, use u8 to store "tflags" field.
* Simplify ipfw_find_table_entry() by providing @tentry directly to algo callback.
* Fix bug in cidr:chash resize procedure.
Userland changes:
* add "flow table(NAME)" syntax to support n-tuple checking tables.
* make fill_flags() separate function to ease working with _s_x arrays
* change "table info" output to reflect longer "type" fields
Syntax:
ipfw table fl2 create type flow:[src-ip][,proto][,src-port][,dst-ip][dst-port] [algo flow:hash]
Examples:
0:02 [2] zfscurr0# ipfw table fl2 create type flow:src-ip,proto,dst-port algo flow:hash
0:02 [2] zfscurr0# ipfw table fl2 info
+++ table(fl2), set(0) +++
kindex: 0, type: flow:src-ip,proto,dst-port
valtype: number, references: 0
algorithm: flow:hash
items: 0, size: 280
0:02 [2] zfscurr0# ipfw table fl2 add 2a02:6b8::333,tcp,443 45000
0:02 [2] zfscurr0# ipfw table fl2 add 10.0.0.92,tcp,80 22000
0:02 [2] zfscurr0# ipfw table fl2 list
+++ table(fl2), set(0) +++
2a02:6b8::333,6,443 45000
10.0.0.92,6,80 22000
0:02 [2] zfscurr0# ipfw add 200 count tcp from me to 78.46.89.105 80 flow 'table(fl2)'
00200 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2)
0:03 [2] zfscurr0# ipfw show
00200 0 0 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2)
65535 617 59416 allow ip from any to any
0:03 [2] zfscurr0# telnet -s 10.0.0.92 78.46.89.105 80
Trying 78.46.89.105...
..
0:04 [2] zfscurr0# ipfw show
00200 5 272 count tcp from me to 78.46.89.105 dst-port 80 flow table(fl2)
65535 682 66733 allow ip from any to any
Kernel changes:
* s/IPFW_TABLE_U32/IPFW_TABLE_NUMBER/
* Force "lookup <port|uid|gid|jid>" to be IPFW_TABLE_NUMBER
* Support "lookup" method for number tables
* Add number:array algorihm (i32 as key, auto-growing).
Userland changes:
* Support named tables in "lookup <tag> Table"
* Fix handling of "table(NAME,val)" case
* Support printing "number" table data.
* Rewrite interface tables to use interface indexes
Kernel changes:
* Add generic interface tracking API:
- ipfw_iface_ref (must call unlocked, performs lazy init if needed, allocates
state & bumps ref)
- ipfw_iface_add_ntfy(UH_WLOCK+WLOCK, links comsumer & runs its callback to
update ifindex)
- ipfw_iface_del_ntfy(UH_WLOCK+WLOCK, unlinks consumer)
- ipfw_iface_unref(unlocked, drops reference)
Additionally, consumer callbacks are called in interface withdrawal/departure.
* Rewrite interface tables to use iface tracking API. Currently tables are
implemented the following way:
runtime data is stored as sorted array of {ifidx, val} for existing interfaces
full data is stored inside namedobj instance (chained hashed table).
* Add IP_FW_XIFLIST opcode to dump status of tracked interfaces
* Pass @chain ptr to most non-locked algorithm callbacks:
(prepare_add, prepare_del, flush_entry ..). This may be needed for better
interaction of given algorithm an other ipfw subsystems
* Add optional "change_ti" algorithm handler to permit updating of
cached table_info pointer (happens in case of table_max resize)
* Fix small bug in ipfw_list_tables()
* Add badd (insert into sorted array) and bdel (remove from sorted array) funcs
Userland changes:
* Add "iflist" cmd to print status of currently tracked interface
* Add stringnum_cmp for better interface/table names sorting
* Add resize callbacks for upcoming table-based algorithms.
Kernel changes:
* s/ipfw_modify_table/ipfw_manage_table_ent/
* Simplify add_table_entry(): make table creation a separate piece of code.
Do not perform creation if not in "compat" mode.
* Add ability to perform modification of algorithm state (like table resize).
The following callbacks were added:
- prepare_mod (allocate new state, without locks)
- fill_mod (UH_WLOCK, copy old state to new one)
- modify (UH_WLOCK + WLOCK, switch state)
- flush_mod (no locks, flushes allocated data)
Given callbacks are called if table modification has been requested by add or
delete callbacks. Additional u64 tc->'flags' field was added to pass these
requests.
* Change add/del table ent format: permit adding/removing multiple entries
at once (only 1 supported at the moment).
Userland changes:
* Auto-create tables with warning
* Switch kernel to use per-cpu counters for rules.
* Keep ABI/API.
Kernel changes:
* Each rules is now exported as TLV with optional extenable
counter block (ip_fW_bcounter for base one) and
ip_fw_rule for rule&cmd data.
* Counters needs to be explicitly requested by IPFW_CFG_GET_COUNTERS flag.
* Separate counters from rules in kernel and clean up ip_fw a bit.
* Pack each rule in IPFW_TLV_RULE_ENT tlv to ease parsing.
* Introduce versioning in container TLV (may be needed in future).
* Fix ipfw_cfg_lheader broken u64 alignment.
Userland changes:
* Use set_mask from cfg header when requesting config
* Fix incorrect read accouting in ipfw_show_config()
* Use IPFW_RULE_NOOPT flag instead of playing with _pad
* Fix "ipfw -d list": do not print counters for dynamic states
* Some small fixes
Kernel changes:
* Change dump format for dynamic states:
each state is now stored inside ipfw_obj_dyntlv
last dynamic state is indicated by IPFW_DF_LAST flag
* Do not perform sooptcopyout() for !SOPT_GET requests.
Userland changes:
* Introduce foreach_state() function handler to ease work
with different states passed by ipfw_dump_config().
* Bump table dump format preserving old ABI.
Kernel size:
* Add IP_FW_TABLE_XFIND to handle "lookup" request from userland.
* Add ta_find_tentry() algorithm callbacks/handlers to support lookups.
* Fully switch to ipfw_obj_tentry for various table dumps:
algorithms are now required to support the latest (ipfw_obj_tentry) entry
dump format, the rest is handled by generic dump code.
IP_FW_TABLE_XLIST opcode version bumped (0 -> 1).
* Eliminate legacy ta_dump_entry algo handler:
dump_table_entry() converts data from current to legacy format.
Userland side:
* Add "lookup" table parameter.
* Change the way table type is guessed: call table_get_info() first,
and check value for IPv4/IPv6 type IFF table does not exist.
* Fix table_get_list(): do more tries if supplied buffer is not enough.
* Sparate table_show_entry() from table_show_list().
Kernel changes:
* Introduce ipfw_obj_tentry table entry structure to force u64 alignment.
* Support "update-on-existing-key" "add" bahavior (TEI_FLAGS_UPDATED).
* Use "subtype" field to distingush between IPv4 and IPv6 table records
instead of previous hack.
* Add value type (vtype) field for kernel tables. Current types are
number,ip and dscp
* Fix sets mask retrieval for old binaries
* Fix crash while using interface tables
Userland changes:
* Switch ipfw_table_handler() to use named-only tables.
* Add "table NAME create [type {cidr|iface|u32} [valtype {number|ip|dscp}] ..."
* Switch ipfw_table_handler to match_token()-based parser.
* Switch ipfw_sets_handler to use new ipfw_get_config() for mask retrieval.
* Allow ipfw set X table ... syntax to permit using per-set table namespaces.
Kernel changes:
* change base TLV header to be u64 (so size can be u32).
* Introduce ipfw_obj_ctlv generc container TLV.
* Add IP_FW_XGET opcode which is now used for atomic configuration
retrieval. One can specify needed configuration pieces to retrieve
via flags field. Currently supported are
IPFW_CFG_GET_STATIC (static rules) and
IPFW_CFG_GET_STATES (dynamic states).
Other configuration pieces (tables, pipes, etc..) support is planned.
Userland changes:
* Switch ipfw(8) to use new IP_FW_XGET for rule listing.
* Split rule listing code get and show pieces.
* Make several steps forward towards libipfw:
permit printing states and rules(paritally) to supplied buffer.
do not die on malloc/kernel failure inside given printing functions.
stop assuming cmdline_opts is global symbol.
* Use one u16 from op3 header to implement opcode versioning.
* IP_FW_TABLE_XLIST has now 2 handlers, for ver.0 (old) and ver.1 (current).
* Every getsockopt request is now handled in ip_fw_table.c
* Rename new opcodes:
IP_FW_OBJ_DEL -> IP_FW_TABLE_XDESTROY
IP_FW_OBJ_LISTSIZE -> IP_FW_TABLES_XGETSIZE
IP_FW_OBJ_LIST -> IP_FW_TABLES_XLIST
IP_FW_OBJ_INFO -> IP_FW_TABLE_XINFO
IP_FW_OBJ_INFO -> IP_FW_TABLE_XFLUSH
* Add some docs about using given opcodes.
* Group some legacy opcode/handlers.