OpenWRT's dts files treat RT3050/RT3052/RT3350 within the same SoC dtsi
file, so we need to distinguish between the three dynamically, mainly
because the bit we use to determine the clock speed on RT3050/RT3052
can actually be floating on RT3350 and RT3350 is always at 320MHz.
Approved by: adrian (mentor)
Sponsored by: Smartcom - Bulgaria AD
Differential Revision: https://reviews.freebsd.org/D5983
Add suppport for passing boot arguments via FDT for mediatek/ralink SoCs.
This was taken from kan's work on CI20.
Since most OpenWRT dts files have bootargs defined, we use bsdbootargs
to specify FreeBSD specific arguments.
Approved by: adrian (mentor)
Sponsored by: Smartcom - Bulgaria AD
Differential Revision: https://reviews.freebsd.org/D5979
Revision 298068 changed MIPS_INTRNG and ARM_INTRNG to simply INTRNG.
MEDIATEK_BASE config was missed by this revision, so we change
MIPS_INTRNG to INTRNG here.
Approved by: adrian (mentor)
Sponsored by: Smartcom - Bulgaria AD
Differential Revision: https://reviews.freebsd.org/D5978
This revision gets our Mediatek/Ralink drivers closer to OpenWRT's dts
definitions, so we can reuse them with less modifications later in order
to bring support for a lot of boards at once.
Approved by: adrian (mentor)
Sponsored by: Smartcom - Bulgaria AD
Differential Revision: https://reviews.freebsd.org/D5961
This is actually initialized properly within xhci.c, so it's better to
not initialize it in mtk_xhci.c
Approved by: adrian (mentor)
Sponsored by: Smartcom - Bulgaria AD
Differential Revision: https://reviews.freebsd.org/D5935
the following:
1. Give the appropriate board dts file to be used by either:
1.1. edit the SoC kernel config required (e.g., MT7620A_FDT) and include
the required FDT_DTS_FILE makeoption; or
1.2. simply supply FDT_DTS_FILE="xx.dts" on the command line when building
the kernel
Of course, the user can also create a completely new kernel config to
match the desired board and include the SoC kernel config from within
it.
If required, edit the MEDIATEK config file, which includes optional
drivers and comment out the unneeded ones.
2.1. this would only make sense if kernel size is a concern. Even if we
build the kernel with all drivers, if we lzma it and package it as a uImage,
its size is still around 1.1MiB.
The user will have to choose a dts file (or create a new one) from
sys/gnu/dts/mips , where all Mediatek/Ralink dts files will be imported via
a later revision.
Approved by: adrian (mentor)
Sponsored by: Smartcom - Bulgaria AD
Differential Revision: https://reviews.freebsd.org/D5966
The ACPI and OFW PCI bus drivers as well as CardBus override this to
allocate the larger ivars to hold additional info beyond the stock PCI ivars.
This removes the need to pass the size to functions like pci_add_iov_child()
and pci_read_device() simplifying IOV and bus rescanning implementations.
As a result of this and earlier changes, the ACPI PCI bus driver no longer
needs its own device_attach and pci_create_iov_child methods but can use
the methods in the stock PCI bus driver instead.
Differential Revision: https://reviews.freebsd.org/D5891
This revision introduces PCIe support for the relevant Mediatek/Ralink
SoCs.
Currently the PCIe support is not converted to INTRNG, this may be a
task for the future.
Approved by: adrian (mentor)
Sponsored by: Smartcom - Bulgaria AD
Differential Revision: https://reviews.freebsd.org/D5886
Tested on a MT7621 board, similar to the WiTi board.
More testing will be required to confirm everything is fine, but things
look good so far.
Approved by: adrian (mentor)
Sponsored by: Smartcom - Bulgaria AD
Differential Revision: https://reviews.freebsd.org/D5885
USB on both MT7621 and MT7688 seems to work much better without doing
slew rate calibration.
These are the only two SoCs, apart from MT7628, which actually make
use of the slew rate calibration routines implemented in the mtk_usb_phy
driver. Since MT7628 is actually a superset of MT7688 things should be
the same for it as well.
We do not remove the code, we simply define it out.
Approved by: adrian (mentor)
Sponsored by: Smartcom - Bulgaria AD
Differential Revision: https://reviews.freebsd.org/D5884
In mtk_soc.c memory is mapped incorrectly for MT7621. This revision fixes
this.
Approved by: adrian (mentor)
Sponsored by: Smartcom - Bulgaria AD
Differential Revision: https://reviews.freebsd.org/D5882
GPIO controller drivers import.
As with other Ralink/Mediatek work, there are 2 versions of the GPIO
controller driver, depending on the type of SoC.
This revision introduces initial support for these.
Approved by: adrian (mentor)
Sponsored by: Smartcom - Bulgaria AD
Differential Revision: https://reviews.freebsd.org/D5877
SPI drivers for the various Ralink/Mediatek SoCs. There are 2 versions of
the SPI controller (so far) present in the supported SoCs, hence v1 and v2
drivers.
Approved by: adrian (mentor)
Sponsored by: Smartcom - Bulgaria AD
Differential Revision: https://reviews.freebsd.org/D5842
USB support
This revision adds USB (EHCI/OHCI/OTG, depending on SoC type) support for
various Ralink/Mediatek SoCs.
Currently USB is not supported on MT7621, this will be a future addition.
A USB PHY driver is also included, so that we can properly initialize the
USB PHY (e.g., clocks, resets, registers where needed), before attempting
to initialize EHCI/OHCI/OTG functionality.
Approved by: adrian (mentor)
Sponsored by: Smartcom - Bulgaria AD
Differential Revision: https://reviews.freebsd.org/D5841
UART drivers.
- uart_dev_mtk.[ch] are the old-style Mediatek/Ralink-specific UART driver
as also found in sys/mips/rt305x/uart_dev_rt305x.c, with minor improvements
and FDT attachment enabled for the appropriate SoCs.
- uart_dev_mtk_ns8250.c is the new-style ns16550a-compatible UART driver
found in newer Mediatek SoCs. It uses the uart_dev_ns8250.c driver
indirectly and is basically just a wrapper around it and only overrides its
probe method.
The reason I am not using the uart_dev_ns8250.c driver directly is because
I have some code that does UART clock detection before initializing the
UART, so that we don't need to hard-code the UART clock frequency in the
dts files for each board.
Approved by: adrian (mentor)
Sponsored by: Smartcom - Bulgaria AD
Differential Revision: https://reviews.freebsd.org/D5840
Interrupt controllers found in various Mediatek/Ralink SoCs.
mtk_intr_v1 and mtk_intr_v2 are basically the same at the moment, with
just different register mappings.
However, v1 interrupt controller has a subset of the functionality of the
v2 interrupt controller, so in the future the v2 interrupt controller driver
may be enhanced, if needed, with things like level/edge interrupts and soft
interrupts. So, for the moment I suggest we keep them as 2 separate files.
mtk_intr_gic provides very basic (similar to v1 and v2) support for MIPS GIC
controllers, which currently maps all interrupts to a single core and sets
them to type level, active high. In the future this may be developed into a
generic GIC controller to support any new MIPS SoCs that include it. The GIC
is a standard MTI interrupt controller in their multi-core line-up (e.g.,
1004K, 1074K, etc.), rather than a SoC-specific controller.
Approved by: adrian (mentor)
Sponsored by: Smartcom - Bulgaria AD
Differential Revision: https://reviews.freebsd.org/D5839
This revision adds the following to the Mediatek/Ralink support:
- initial support for "clocks" FDT property, currently based on fdt_clock
- initial support for "resets" FDT property, currently based on the
fdt_reset interface from D5826
- initial support for "pinctrl,bits" functionality via FDT. May be extended
in the future to cover a better and fuller pinctrl implementation
Approved by: adrian (mentor)
Sponsored by: Smartcom - Bulgaria AD
Differential Revision: https://reviews.freebsd.org/D5827
- machine dependent low level init code
- SoC clocks detection and some utility functions
- Common interface to read/write/modify SoC system control registers, used
by some of the other drivers and utility functions
- simple FDT resets support, based on the fdt_clock implementation already
in the tree. For the moment resets and clocks are managed using these
implementations. I am planning to port those to the new extres framework
in the future, but currently I simply don't have time to do this part too.
Approved by: adrian (mentor)
Sponsored by: Smartcom - Bulgaria AD
Differential Revision: https://reviews.freebsd.org/D5826
On some architectures, u_long isn't large enough for resource definitions.
Particularly, powerpc and arm allow 36-bit (or larger) physical addresses, but
type `long' is only 32-bit. This extends rman's resources to uintmax_t. With
this change, any resource can feasibly be placed anywhere in physical memory
(within the constraints of the driver).
Why uintmax_t and not something machine dependent, or uint64_t? Though it's
possible for uintmax_t to grow, it's highly unlikely it will become 128-bit on
32-bit architectures. 64-bit architectures should have plenty of RAM to absorb
the increase on resource sizes if and when this occurs, and the number of
resources on memory-constrained systems should be sufficiently small as to not
pose a drastic overhead. That being said, uintmax_t was chosen for source
clarity. If it's specified as uint64_t, all printf()-like calls would either
need casts to uintmax_t, or be littered with PRI*64 macros. Casts to uintmax_t
aren't horrible, but it would also bake into the API for
resource_list_print_type() either a hidden assumption that entries get cast to
uintmax_t for printing, or these calls would need the PRI*64 macros. Since
source code is meant to be read more often than written, I chose the clearest
path of simply using uintmax_t.
Tested on a PowerPC p5020-based board, which places all device resources in
0xfxxxxxxxx, and has 8GB RAM.
Regression tested on qemu-system-i386
Regression tested on qemu-system-mips (malta profile)
Tested PAE and devinfo on virtualbox (live CD)
Special thanks to bz for his testing on ARM.
Reviewed By: bz, jhb (previous)
Relnotes: Yes
Sponsored by: Alex Perez/Inertial Computing
Differential Revision: https://reviews.freebsd.org/D4544
is the physical memory size so may be larger than a u_long can hold, e.g.
on ARM with LPAE we could see an address space of up to 40 bits. On ARM
u_long is only 32 bits so the memory size will be truncated, possibly to
zero.
Reported by: bz
Sponsored by: ABT Systems Ltd
Summary:
As part of the migration of rman_res_t to be typed to uintmax_t, memory ranges
must be clamped appropriately for the bus, to prevent completely bogus addresses
from being used.
This is extracted from D4544.
Reviewed By: cem
Sponsored by: Alex Perez/Inertial Computing
Differential Revision: https://reviews.freebsd.org/D5134
Use u_long instead of uint32_t variables to avoid overflow
in case of PA space bigger than 32-bit.
Obtained from: Semihalf
Submitted by: Michal Stanek <mst@semihalf.com>
Sponsored by: Annapurna Labs
Approved by: cognet (mentor)
Reviewed by: andrew, br, wma
Differential revision: https://reviews.freebsd.org/D5393
This simplifies checking for default resource range for bus_alloc_resource(),
and improves readability.
This is part of, and related to, the migration of rman_res_t from u_long to
uintmax_t.
Discussed with: jhb
Suggested by: marcel
will allow for code that uses the old fdt_get_range and fdt_regsize
functions to find a range, map it, access, then unmap to replace this, up
to and including the map, with a call to OF_decode_addr.
As this function should only be used in the early boot code the unmap is
mostly do document we no longer need the mapping as it's a no-op, at least
on arm.
Reviewed by: jhibbits
Sponsored by: ABT Systems Ltd
Differential Revision: https://reviews.freebsd.org/D5258
ucontext_t available. Our code even has XXX comment about this.
Add a bit of compliance by moving struct __ucontext definition into
sys/_ucontext.h and including it into signal.h and sys/ucontext.h.
Several machine/ucontext.h headers were changed to use namespace-safe
types (like uint64_t->__uint64_t) to not depend on sys/types.h.
struct __stack_t from sys/signal.h is made always visible in private
namespace to satisfy sys/_ucontext.h requirements.
Apparently mips _types.h pollutes global namespace with f_register_t
type definition. This commit does not try to fix the issue.
PR: 207079
Reported and tested by: Ting-Wei Lan <lantw44@gmail.com>
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
pmap_unmapdev respectively) so that resources are properly managed.
This is work originally done by kan@. Stanislav picked it up as part
of his Mediatek SoC work.
Tested:
* Carambola2, AR933x SoC
Submitted by: Stanislav Galabov <sgalabov@gmail.com>
Reviewed by: kan
Differential Revision: https://reviews.freebsd.org/D5184
This was originall done by kan@.
Submitted by: Stanislav Galabov <sgalabov@gmail.com>
Reviewed by: kan
Differential Revision: https://reviews.freebsd.org/D5184