request TX completion interrupt for every 8-th frames. Previously
dc(4) requested TX completion interrupt if number of queued TX
descriptors is greater than 64. This caused a lot of TX completion
interrupt under high TX load once driver queued more than 64 TX
descriptors. It's quite normal to see more than 64 queued TX
descriptors under high TX load.
This change reduces the number of TX completion interrupts to be
less than 17k under high TX load. Because this change does not
generate TX completion interrupt for each frame, add reclaiming
transmitted buffers in dc_tick not to generate false watchdog
timeouts.
While I'm here add check for queued descriptors in dc_txeof() since
there is no more work to do when there is no pending descriptors.
When the driver ran out of DMA chaining buffers, it kept the timeout for
the I/O, and I/O would stall.
The driver was not freezing the device queue on errors.
mps.c: Pull command completion logic into a separate
function, and call the callback/wakeup for commands
that are never sent due to lack of chain buffers.
Add a number of extra diagnostic sysctl variables.
Handle pre-hardware errors for configuration I/O.
This doesn't panic the system, but it will fail the
configuration I/O and there is no retry mechanism.
So the device probe will not succeed. This should
be a very uncommon situation, however.
mps_sas.c: Freeze the SIM queue when we run out of chain
buffers, and unfreeze it when more commands
complete.
Freeze the device queue when errors occur, so that
CAM can insure proper command ordering.
Report pre-hardware errors for task management
commands. In general, that shouldn't be possible
because task management commands don't have S/G
lists, and that is currently the only error path
before we get to the hardware.
Handle pre-hardware errors (like out of chain
elements) for SMP requests. That shouldn't happen
either, since we should have enough space for two
S/G elements in the standard request.
For commands that end with
MPI2_IOCSTATUS_SCSI_IOC_TERMINATED and
MPI2_IOCSTATUS_SCSI_EXT_TERMINATED, return them
with CAM_REQUEUE_REQ to retry them unconditionally.
These seem to be related to back end, transport
related problems that are hopefully transient. We
don't want to go through the retry count for
something that is not a permanent error.
Keep track of the number of outstanding I/Os.
mpsvar.h: Track the number of free chain elements.
Add variables for the number of outstanding I/Os,
and I/O high water mark.
Add variables to track the number of free chain
buffers and the chain low water mark, as well as
the number of chain allocation failures.
Add I/O state flags and an attach done flag.
MFC after: 3 days
the controller firmware will return all of our commands. Instead, keep
track of outstanding I/Os and return them to CAM once device removal
processing completes.
mpsvar.h: Declare the new "io_list" in the mps_softc.
mps.c: Initialize the new "io_list" in the mps softc.
mps_sas.c: o Track SCSI I/O requests on the io_list from the
time of mpssas_action() through mpssas_scsiio_complete().
o Zero out the request structures used for device
removal commands prior to filling them out.
o Once the target reset task management function completes
during device removal processing, assume any SCSI I/O
commands that are still oustanding will never return
from the controller, and process them manually.
Submitted by: gibbs
MFC after: 3 days
- Use the USB stack's builtin clear-stall feature.
- Wrap some long lines.
- Use memcpy() instead of bcopy().
- Use memset() instead of bzero().
- Tested applications:
/usr/ports/audio/fluidsynth
MFC after: 7 days
Approved by: thompsa (mentor)
frame in DM910x controllers. In r67595(more than 10 years ago) it
was replaced to use "Store and Forward" mode and made controller
generate TX completion interrupt for every frame.
any other media configuration. Otherwise some 21143 controller
cannot establish a link. While I'm here remove the PHY
initialization code in dc_setcfg(). Since dc_setcfg() is called
whenever link state is changed, having the PHY initialization code
in dc_setcfg() resulted in continuous link flips.
After driver resets SIA, use default SIA transmit/receive
configuration instead of disabling autosense/autonegotiation.
Otherwise, controller fails to establish a link as well as losing
auto-negotiation capability. For manual media configuration, always
configure 21143 controller with specified media to ensure media
change. This change makes ANA-6922 establish link with/without
auto-negotiation.
While I'm here be more strict on link UP/DOWN detection logic.
Many thanks to marius who fixed several bugs in initial patch and
even tested the patch on a couple of dc(4) controllers.
PR: kern/79262
Reviewed by: marius
Tested by: marius
port, copy SROM information from base softc as well and run SROM
parser again. This change is necessary for some dual port
controllers to make dc(4) correctly detect PHY media based on first
port configuration table.
While I'm here add a check for validity of the base softc before
duplicating SROM contents from base softc. If driver failed to
attach to the first port it can access invalid area.
PR: kern/79262
Reviewed by: marius
as they're likely not entirely correct, but they give people something
to toy with to compare behaviour/performance.
Disable the anti-noise part, as this apparently interferes with
RIFS. I haven't verified this.
packet duration for the ath_rate_sample module.
This doesn't affect the packet TX at all; only how much time the
sample rate module attributes to a completed TX.
the larger, aligned write+erase sizes the driver currently implements.
This preserves write behaviour but makes the flash driver usable for things
like a read-only FFS or a geom_uzip/geom_compress .
Note that since GEOM will now return the sector size as being smaller,
writes of sector size/alignment will now fail with an EIO. Code which
writes to the flash device will have to be (for now) manually taught
about the flash write blocksize.
caused link re-negotiation whenever application joins or leaves a
multicast group. If driver is running, it would have established a
link so there is no need to start re-negotiation. The re-negotiation
broke established link which in turn stopped multicast application
working while re-negotiation is in progress.
PR: kern/154667
MFC after: 1 week
- Allocate coherent DMA memory for the request/response queue area and
and the FC scratch area.
These changes allow isp(4) to work properly on sparc64 with usage of the
IOMMU streaming buffers enabled.
Approved by: mjacob
MFC after: 2 weeks
While updating Tx stats, already freed node could be referred and cause
page fault. To avoid such panic, spool Tx stats in driver's softc. Then,
on every ratectl interval, grab node though ieee80211_iterate_nodes() and
update ratectl stats.
* Simplify some code in run_iter_func().
* Fix typo
* Use memset instead of bzero (hselasky @)
PR: kern/153938
Submitted by: PseudoCylon <moonlightakkiy@yahoo.ca>
Approved by: thompsa (mentor)
active I/O to several disks (copying large file on ZFS) causes timeout after
just a few seconds of run. Single port 88SX6111 seems like not affected.
Skip reading transferred bytes count for these controllers. It works for
88SX6111, but 88SX6145 always returns zero there. Haven't tested others,
but better to be safe.
correctly:
* pass in whether to allow the hardware to override the duration field
in the main data frame (durupdate_en) - PS_POLL frames in particular
don't have the duration bit overriden;
* there's no rts/cts duration here; that's done elsehwere
- this also includes virtualization support on these devices
Correct some vlan issues we were seeing in test, jumbo frames on vlans
did not work correctly, this was all due to confused logic around HW
filters, the new code should now work for all uses.
Important fix: when mbuf resources are depeleted, it was possible to
completely empty the RX ring, and then the RX engine would stall
forever. This is fixed by a flag being set whenever the refresh code
fails due to an mbuf shortage, also the local timer now makes sure
that all queues get an interrupt when it runs, the interrupt code
will then always call rxeof, and in that routine the first thing done
is now to check the refresh flag and call refresh_mbufs. This has been
verified to fix this type 'hang'. Similar code will follow in the other
drivers.
Finally, sync up shared code for the I350 support.
Thanks to everyone that has been reporting issues, and helping in the
debug/test process!!
Drivers which rely on net80211 to create the beacon need to call
ieee80211_beacon_update() on iv_update_beacon() calls. This is required
that certain bits, e.g. TIM, get updated. A call to ieee80211_beacon_alloc()
is not enough because it does not care about flags which can only change
during runtime. By design a beacon is supposed to be allocated only once
while moving into RUN state.
To handle all possible calls to iv_update_beacon() the run_updateslot()
function has been revived and run_updateprot() has been added.
run_updateslot() handles slot time changes and run_updateprot() changes
to protection, both can change while nodes associate/leave.
Submitted by: Alexander Zagrebin <alex at zagrebin.ru>,
PseudoCylon <moonlightakkiy atyahoo.ca>
MFC after: 3 weeks
There's still a lot of random issues to sort out with the radio side of
things and AMPDU RX handling (and completely missing AMPDU TX handling!)
but if people wish to give this a go and assist in debugging the
issues, they can define ATH_DO_11N to enable it.
I'm just re-iterating - this is here to allow people to assist in
further 11n development; it is not any indication that the 11n support
is complete and functional.
Important notes:
* This doesn't support 1-stream cards yet - (eg AR9285) - the various bits
that negotiate TX/RX MCS don't know not to try >1 stream TX or negotiate
1-stream RX; so don't enable 11n unless you've first taught the rate
control module and the net80211 stack to negotiate 1-stream stuff;
* The only rate control module minimally 11n aware is ath_rate_sample;
* ath_rate_sample doesn't know about HT/40; so airtime will be incorrectly
calculated;
* The AR9160 and AR9280 radio code is unreliable at the higher MCS rates for
some reason; this will definitely impact 11n performance;
* AMPDU-TX isn't yet implemented;
* AMPDU-RX may be a bit buggy still and will definitely suffer from the
radio unreliability mentioned above (ie, don't expect 150/300mbit
RX just yet.)