3cd0168095
SDM rev. 068 was released yesterday and it contains the description of the MSR 0x10a IA32_ARCH_CAP. This change adds symbolic definitions for all bits present in the document, and decode them in the CPU identification lines printed on boot. But also, the document defines SSB_NO as bit 4, while FreeBSD used but 2 to detect the need to work-around Speculative Store Bypass issue. Change code to use the bit from SDM. Similarly, the document describes bit 3 as an indicator that L1TF issue is not present, in particular, no L1D flush is needed on VMENTRY. We used RDCL_NO to avoid flushing, and again I changed the code to follow new spec from SDM. In fact my Apollo Lake machine with latest ucode shows this: IA32_ARCH_CAPS=0x19<RDCL_NO,SKIP_L1DFL_VME,SSB_NO> Reviewed by: bwidawsk Sponsored by: The FreeBSD Foundation MFC after: 3 days Differential revision: https://reviews.freebsd.org/D18006
3755 lines
99 KiB
C
3755 lines
99 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2011 NetApp, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/pcpu.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/pmap.h>
|
|
|
|
#include <machine/psl.h>
|
|
#include <machine/cpufunc.h>
|
|
#include <machine/md_var.h>
|
|
#include <machine/reg.h>
|
|
#include <machine/segments.h>
|
|
#include <machine/smp.h>
|
|
#include <machine/specialreg.h>
|
|
#include <machine/vmparam.h>
|
|
|
|
#include <machine/vmm.h>
|
|
#include <machine/vmm_dev.h>
|
|
#include <machine/vmm_instruction_emul.h>
|
|
#include "vmm_lapic.h"
|
|
#include "vmm_host.h"
|
|
#include "vmm_ioport.h"
|
|
#include "vmm_ktr.h"
|
|
#include "vmm_stat.h"
|
|
#include "vatpic.h"
|
|
#include "vlapic.h"
|
|
#include "vlapic_priv.h"
|
|
|
|
#include "ept.h"
|
|
#include "vmx_cpufunc.h"
|
|
#include "vmx.h"
|
|
#include "vmx_msr.h"
|
|
#include "x86.h"
|
|
#include "vmx_controls.h"
|
|
|
|
#define PINBASED_CTLS_ONE_SETTING \
|
|
(PINBASED_EXTINT_EXITING | \
|
|
PINBASED_NMI_EXITING | \
|
|
PINBASED_VIRTUAL_NMI)
|
|
#define PINBASED_CTLS_ZERO_SETTING 0
|
|
|
|
#define PROCBASED_CTLS_WINDOW_SETTING \
|
|
(PROCBASED_INT_WINDOW_EXITING | \
|
|
PROCBASED_NMI_WINDOW_EXITING)
|
|
|
|
#define PROCBASED_CTLS_ONE_SETTING \
|
|
(PROCBASED_SECONDARY_CONTROLS | \
|
|
PROCBASED_MWAIT_EXITING | \
|
|
PROCBASED_MONITOR_EXITING | \
|
|
PROCBASED_IO_EXITING | \
|
|
PROCBASED_MSR_BITMAPS | \
|
|
PROCBASED_CTLS_WINDOW_SETTING | \
|
|
PROCBASED_CR8_LOAD_EXITING | \
|
|
PROCBASED_CR8_STORE_EXITING)
|
|
#define PROCBASED_CTLS_ZERO_SETTING \
|
|
(PROCBASED_CR3_LOAD_EXITING | \
|
|
PROCBASED_CR3_STORE_EXITING | \
|
|
PROCBASED_IO_BITMAPS)
|
|
|
|
#define PROCBASED_CTLS2_ONE_SETTING PROCBASED2_ENABLE_EPT
|
|
#define PROCBASED_CTLS2_ZERO_SETTING 0
|
|
|
|
#define VM_EXIT_CTLS_ONE_SETTING \
|
|
(VM_EXIT_SAVE_DEBUG_CONTROLS | \
|
|
VM_EXIT_HOST_LMA | \
|
|
VM_EXIT_SAVE_EFER | \
|
|
VM_EXIT_LOAD_EFER | \
|
|
VM_EXIT_ACKNOWLEDGE_INTERRUPT)
|
|
|
|
#define VM_EXIT_CTLS_ZERO_SETTING 0
|
|
|
|
#define VM_ENTRY_CTLS_ONE_SETTING \
|
|
(VM_ENTRY_LOAD_DEBUG_CONTROLS | \
|
|
VM_ENTRY_LOAD_EFER)
|
|
|
|
#define VM_ENTRY_CTLS_ZERO_SETTING \
|
|
(VM_ENTRY_INTO_SMM | \
|
|
VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
|
|
|
|
#define HANDLED 1
|
|
#define UNHANDLED 0
|
|
|
|
static MALLOC_DEFINE(M_VMX, "vmx", "vmx");
|
|
static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic");
|
|
|
|
SYSCTL_DECL(_hw_vmm);
|
|
SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW, NULL, NULL);
|
|
|
|
int vmxon_enabled[MAXCPU];
|
|
static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
|
|
|
|
static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
|
|
static uint32_t exit_ctls, entry_ctls;
|
|
|
|
static uint64_t cr0_ones_mask, cr0_zeros_mask;
|
|
SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD,
|
|
&cr0_ones_mask, 0, NULL);
|
|
SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD,
|
|
&cr0_zeros_mask, 0, NULL);
|
|
|
|
static uint64_t cr4_ones_mask, cr4_zeros_mask;
|
|
SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD,
|
|
&cr4_ones_mask, 0, NULL);
|
|
SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD,
|
|
&cr4_zeros_mask, 0, NULL);
|
|
|
|
static int vmx_initialized;
|
|
SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD,
|
|
&vmx_initialized, 0, "Intel VMX initialized");
|
|
|
|
/*
|
|
* Optional capabilities
|
|
*/
|
|
static SYSCTL_NODE(_hw_vmm_vmx, OID_AUTO, cap, CTLFLAG_RW, NULL, NULL);
|
|
|
|
static int cap_halt_exit;
|
|
SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, halt_exit, CTLFLAG_RD, &cap_halt_exit, 0,
|
|
"HLT triggers a VM-exit");
|
|
|
|
static int cap_pause_exit;
|
|
SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, pause_exit, CTLFLAG_RD, &cap_pause_exit,
|
|
0, "PAUSE triggers a VM-exit");
|
|
|
|
static int cap_unrestricted_guest;
|
|
SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, unrestricted_guest, CTLFLAG_RD,
|
|
&cap_unrestricted_guest, 0, "Unrestricted guests");
|
|
|
|
static int cap_monitor_trap;
|
|
SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, monitor_trap, CTLFLAG_RD,
|
|
&cap_monitor_trap, 0, "Monitor trap flag");
|
|
|
|
static int cap_invpcid;
|
|
SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, invpcid, CTLFLAG_RD, &cap_invpcid,
|
|
0, "Guests are allowed to use INVPCID");
|
|
|
|
static int virtual_interrupt_delivery;
|
|
SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD,
|
|
&virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support");
|
|
|
|
static int posted_interrupts;
|
|
SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, posted_interrupts, CTLFLAG_RD,
|
|
&posted_interrupts, 0, "APICv posted interrupt support");
|
|
|
|
static int pirvec = -1;
|
|
SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD,
|
|
&pirvec, 0, "APICv posted interrupt vector");
|
|
|
|
static struct unrhdr *vpid_unr;
|
|
static u_int vpid_alloc_failed;
|
|
SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD,
|
|
&vpid_alloc_failed, 0, NULL);
|
|
|
|
static int guest_l1d_flush;
|
|
SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush, CTLFLAG_RD,
|
|
&guest_l1d_flush, 0, NULL);
|
|
static int guest_l1d_flush_sw;
|
|
SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush_sw, CTLFLAG_RD,
|
|
&guest_l1d_flush_sw, 0, NULL);
|
|
|
|
static struct msr_entry msr_load_list[1] __aligned(16);
|
|
|
|
/*
|
|
* The definitions of SDT probes for VMX.
|
|
*/
|
|
|
|
SDT_PROBE_DEFINE3(vmm, vmx, exit, entry,
|
|
"struct vmx *", "int", "struct vm_exit *");
|
|
|
|
SDT_PROBE_DEFINE4(vmm, vmx, exit, taskswitch,
|
|
"struct vmx *", "int", "struct vm_exit *", "struct vm_task_switch *");
|
|
|
|
SDT_PROBE_DEFINE4(vmm, vmx, exit, craccess,
|
|
"struct vmx *", "int", "struct vm_exit *", "uint64_t");
|
|
|
|
SDT_PROBE_DEFINE4(vmm, vmx, exit, rdmsr,
|
|
"struct vmx *", "int", "struct vm_exit *", "uint32_t");
|
|
|
|
SDT_PROBE_DEFINE5(vmm, vmx, exit, wrmsr,
|
|
"struct vmx *", "int", "struct vm_exit *", "uint32_t", "uint64_t");
|
|
|
|
SDT_PROBE_DEFINE3(vmm, vmx, exit, halt,
|
|
"struct vmx *", "int", "struct vm_exit *");
|
|
|
|
SDT_PROBE_DEFINE3(vmm, vmx, exit, mtrap,
|
|
"struct vmx *", "int", "struct vm_exit *");
|
|
|
|
SDT_PROBE_DEFINE3(vmm, vmx, exit, pause,
|
|
"struct vmx *", "int", "struct vm_exit *");
|
|
|
|
SDT_PROBE_DEFINE3(vmm, vmx, exit, intrwindow,
|
|
"struct vmx *", "int", "struct vm_exit *");
|
|
|
|
SDT_PROBE_DEFINE4(vmm, vmx, exit, interrupt,
|
|
"struct vmx *", "int", "struct vm_exit *", "uint32_t");
|
|
|
|
SDT_PROBE_DEFINE3(vmm, vmx, exit, nmiwindow,
|
|
"struct vmx *", "int", "struct vm_exit *");
|
|
|
|
SDT_PROBE_DEFINE3(vmm, vmx, exit, inout,
|
|
"struct vmx *", "int", "struct vm_exit *");
|
|
|
|
SDT_PROBE_DEFINE3(vmm, vmx, exit, cpuid,
|
|
"struct vmx *", "int", "struct vm_exit *");
|
|
|
|
SDT_PROBE_DEFINE5(vmm, vmx, exit, exception,
|
|
"struct vmx *", "int", "struct vm_exit *", "uint32_t", "int");
|
|
|
|
SDT_PROBE_DEFINE5(vmm, vmx, exit, nestedfault,
|
|
"struct vmx *", "int", "struct vm_exit *", "uint64_t", "uint64_t");
|
|
|
|
SDT_PROBE_DEFINE4(vmm, vmx, exit, mmiofault,
|
|
"struct vmx *", "int", "struct vm_exit *", "uint64_t");
|
|
|
|
SDT_PROBE_DEFINE3(vmm, vmx, exit, eoi,
|
|
"struct vmx *", "int", "struct vm_exit *");
|
|
|
|
SDT_PROBE_DEFINE3(vmm, vmx, exit, apicaccess,
|
|
"struct vmx *", "int", "struct vm_exit *");
|
|
|
|
SDT_PROBE_DEFINE4(vmm, vmx, exit, apicwrite,
|
|
"struct vmx *", "int", "struct vm_exit *", "struct vlapic *");
|
|
|
|
SDT_PROBE_DEFINE3(vmm, vmx, exit, xsetbv,
|
|
"struct vmx *", "int", "struct vm_exit *");
|
|
|
|
SDT_PROBE_DEFINE3(vmm, vmx, exit, monitor,
|
|
"struct vmx *", "int", "struct vm_exit *");
|
|
|
|
SDT_PROBE_DEFINE3(vmm, vmx, exit, mwait,
|
|
"struct vmx *", "int", "struct vm_exit *");
|
|
|
|
SDT_PROBE_DEFINE3(vmm, vmx, exit, vminsn,
|
|
"struct vmx *", "int", "struct vm_exit *");
|
|
|
|
SDT_PROBE_DEFINE4(vmm, vmx, exit, unknown,
|
|
"struct vmx *", "int", "struct vm_exit *", "uint32_t");
|
|
|
|
SDT_PROBE_DEFINE4(vmm, vmx, exit, return,
|
|
"struct vmx *", "int", "struct vm_exit *", "int");
|
|
|
|
/*
|
|
* Use the last page below 4GB as the APIC access address. This address is
|
|
* occupied by the boot firmware so it is guaranteed that it will not conflict
|
|
* with a page in system memory.
|
|
*/
|
|
#define APIC_ACCESS_ADDRESS 0xFFFFF000
|
|
|
|
static int vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc);
|
|
static int vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval);
|
|
static int vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val);
|
|
static void vmx_inject_pir(struct vlapic *vlapic);
|
|
|
|
#ifdef KTR
|
|
static const char *
|
|
exit_reason_to_str(int reason)
|
|
{
|
|
static char reasonbuf[32];
|
|
|
|
switch (reason) {
|
|
case EXIT_REASON_EXCEPTION:
|
|
return "exception";
|
|
case EXIT_REASON_EXT_INTR:
|
|
return "extint";
|
|
case EXIT_REASON_TRIPLE_FAULT:
|
|
return "triplefault";
|
|
case EXIT_REASON_INIT:
|
|
return "init";
|
|
case EXIT_REASON_SIPI:
|
|
return "sipi";
|
|
case EXIT_REASON_IO_SMI:
|
|
return "iosmi";
|
|
case EXIT_REASON_SMI:
|
|
return "smi";
|
|
case EXIT_REASON_INTR_WINDOW:
|
|
return "intrwindow";
|
|
case EXIT_REASON_NMI_WINDOW:
|
|
return "nmiwindow";
|
|
case EXIT_REASON_TASK_SWITCH:
|
|
return "taskswitch";
|
|
case EXIT_REASON_CPUID:
|
|
return "cpuid";
|
|
case EXIT_REASON_GETSEC:
|
|
return "getsec";
|
|
case EXIT_REASON_HLT:
|
|
return "hlt";
|
|
case EXIT_REASON_INVD:
|
|
return "invd";
|
|
case EXIT_REASON_INVLPG:
|
|
return "invlpg";
|
|
case EXIT_REASON_RDPMC:
|
|
return "rdpmc";
|
|
case EXIT_REASON_RDTSC:
|
|
return "rdtsc";
|
|
case EXIT_REASON_RSM:
|
|
return "rsm";
|
|
case EXIT_REASON_VMCALL:
|
|
return "vmcall";
|
|
case EXIT_REASON_VMCLEAR:
|
|
return "vmclear";
|
|
case EXIT_REASON_VMLAUNCH:
|
|
return "vmlaunch";
|
|
case EXIT_REASON_VMPTRLD:
|
|
return "vmptrld";
|
|
case EXIT_REASON_VMPTRST:
|
|
return "vmptrst";
|
|
case EXIT_REASON_VMREAD:
|
|
return "vmread";
|
|
case EXIT_REASON_VMRESUME:
|
|
return "vmresume";
|
|
case EXIT_REASON_VMWRITE:
|
|
return "vmwrite";
|
|
case EXIT_REASON_VMXOFF:
|
|
return "vmxoff";
|
|
case EXIT_REASON_VMXON:
|
|
return "vmxon";
|
|
case EXIT_REASON_CR_ACCESS:
|
|
return "craccess";
|
|
case EXIT_REASON_DR_ACCESS:
|
|
return "draccess";
|
|
case EXIT_REASON_INOUT:
|
|
return "inout";
|
|
case EXIT_REASON_RDMSR:
|
|
return "rdmsr";
|
|
case EXIT_REASON_WRMSR:
|
|
return "wrmsr";
|
|
case EXIT_REASON_INVAL_VMCS:
|
|
return "invalvmcs";
|
|
case EXIT_REASON_INVAL_MSR:
|
|
return "invalmsr";
|
|
case EXIT_REASON_MWAIT:
|
|
return "mwait";
|
|
case EXIT_REASON_MTF:
|
|
return "mtf";
|
|
case EXIT_REASON_MONITOR:
|
|
return "monitor";
|
|
case EXIT_REASON_PAUSE:
|
|
return "pause";
|
|
case EXIT_REASON_MCE_DURING_ENTRY:
|
|
return "mce-during-entry";
|
|
case EXIT_REASON_TPR:
|
|
return "tpr";
|
|
case EXIT_REASON_APIC_ACCESS:
|
|
return "apic-access";
|
|
case EXIT_REASON_GDTR_IDTR:
|
|
return "gdtridtr";
|
|
case EXIT_REASON_LDTR_TR:
|
|
return "ldtrtr";
|
|
case EXIT_REASON_EPT_FAULT:
|
|
return "eptfault";
|
|
case EXIT_REASON_EPT_MISCONFIG:
|
|
return "eptmisconfig";
|
|
case EXIT_REASON_INVEPT:
|
|
return "invept";
|
|
case EXIT_REASON_RDTSCP:
|
|
return "rdtscp";
|
|
case EXIT_REASON_VMX_PREEMPT:
|
|
return "vmxpreempt";
|
|
case EXIT_REASON_INVVPID:
|
|
return "invvpid";
|
|
case EXIT_REASON_WBINVD:
|
|
return "wbinvd";
|
|
case EXIT_REASON_XSETBV:
|
|
return "xsetbv";
|
|
case EXIT_REASON_APIC_WRITE:
|
|
return "apic-write";
|
|
default:
|
|
snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
|
|
return (reasonbuf);
|
|
}
|
|
}
|
|
#endif /* KTR */
|
|
|
|
static int
|
|
vmx_allow_x2apic_msrs(struct vmx *vmx)
|
|
{
|
|
int i, error;
|
|
|
|
error = 0;
|
|
|
|
/*
|
|
* Allow readonly access to the following x2APIC MSRs from the guest.
|
|
*/
|
|
error += guest_msr_ro(vmx, MSR_APIC_ID);
|
|
error += guest_msr_ro(vmx, MSR_APIC_VERSION);
|
|
error += guest_msr_ro(vmx, MSR_APIC_LDR);
|
|
error += guest_msr_ro(vmx, MSR_APIC_SVR);
|
|
|
|
for (i = 0; i < 8; i++)
|
|
error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i);
|
|
|
|
for (i = 0; i < 8; i++)
|
|
error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i);
|
|
|
|
for (i = 0; i < 8; i++)
|
|
error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i);
|
|
|
|
error += guest_msr_ro(vmx, MSR_APIC_ESR);
|
|
error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER);
|
|
error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL);
|
|
error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT);
|
|
error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0);
|
|
error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1);
|
|
error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR);
|
|
error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER);
|
|
error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER);
|
|
error += guest_msr_ro(vmx, MSR_APIC_ICR);
|
|
|
|
/*
|
|
* Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest.
|
|
*
|
|
* These registers get special treatment described in the section
|
|
* "Virtualizing MSR-Based APIC Accesses".
|
|
*/
|
|
error += guest_msr_rw(vmx, MSR_APIC_TPR);
|
|
error += guest_msr_rw(vmx, MSR_APIC_EOI);
|
|
error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI);
|
|
|
|
return (error);
|
|
}
|
|
|
|
u_long
|
|
vmx_fix_cr0(u_long cr0)
|
|
{
|
|
|
|
return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
|
|
}
|
|
|
|
u_long
|
|
vmx_fix_cr4(u_long cr4)
|
|
{
|
|
|
|
return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
|
|
}
|
|
|
|
static void
|
|
vpid_free(int vpid)
|
|
{
|
|
if (vpid < 0 || vpid > 0xffff)
|
|
panic("vpid_free: invalid vpid %d", vpid);
|
|
|
|
/*
|
|
* VPIDs [0,VM_MAXCPU] are special and are not allocated from
|
|
* the unit number allocator.
|
|
*/
|
|
|
|
if (vpid > VM_MAXCPU)
|
|
free_unr(vpid_unr, vpid);
|
|
}
|
|
|
|
static void
|
|
vpid_alloc(uint16_t *vpid, int num)
|
|
{
|
|
int i, x;
|
|
|
|
if (num <= 0 || num > VM_MAXCPU)
|
|
panic("invalid number of vpids requested: %d", num);
|
|
|
|
/*
|
|
* If the "enable vpid" execution control is not enabled then the
|
|
* VPID is required to be 0 for all vcpus.
|
|
*/
|
|
if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) {
|
|
for (i = 0; i < num; i++)
|
|
vpid[i] = 0;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Allocate a unique VPID for each vcpu from the unit number allocator.
|
|
*/
|
|
for (i = 0; i < num; i++) {
|
|
x = alloc_unr(vpid_unr);
|
|
if (x == -1)
|
|
break;
|
|
else
|
|
vpid[i] = x;
|
|
}
|
|
|
|
if (i < num) {
|
|
atomic_add_int(&vpid_alloc_failed, 1);
|
|
|
|
/*
|
|
* If the unit number allocator does not have enough unique
|
|
* VPIDs then we need to allocate from the [1,VM_MAXCPU] range.
|
|
*
|
|
* These VPIDs are not be unique across VMs but this does not
|
|
* affect correctness because the combined mappings are also
|
|
* tagged with the EP4TA which is unique for each VM.
|
|
*
|
|
* It is still sub-optimal because the invvpid will invalidate
|
|
* combined mappings for a particular VPID across all EP4TAs.
|
|
*/
|
|
while (i-- > 0)
|
|
vpid_free(vpid[i]);
|
|
|
|
for (i = 0; i < num; i++)
|
|
vpid[i] = i + 1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
vpid_init(void)
|
|
{
|
|
/*
|
|
* VPID 0 is required when the "enable VPID" execution control is
|
|
* disabled.
|
|
*
|
|
* VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the
|
|
* unit number allocator does not have sufficient unique VPIDs to
|
|
* satisfy the allocation.
|
|
*
|
|
* The remaining VPIDs are managed by the unit number allocator.
|
|
*/
|
|
vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL);
|
|
}
|
|
|
|
static void
|
|
vmx_disable(void *arg __unused)
|
|
{
|
|
struct invvpid_desc invvpid_desc = { 0 };
|
|
struct invept_desc invept_desc = { 0 };
|
|
|
|
if (vmxon_enabled[curcpu]) {
|
|
/*
|
|
* See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
|
|
*
|
|
* VMXON or VMXOFF are not required to invalidate any TLB
|
|
* caching structures. This prevents potential retention of
|
|
* cached information in the TLB between distinct VMX episodes.
|
|
*/
|
|
invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
|
|
invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
|
|
vmxoff();
|
|
}
|
|
load_cr4(rcr4() & ~CR4_VMXE);
|
|
}
|
|
|
|
static int
|
|
vmx_cleanup(void)
|
|
{
|
|
|
|
if (pirvec >= 0)
|
|
lapic_ipi_free(pirvec);
|
|
|
|
if (vpid_unr != NULL) {
|
|
delete_unrhdr(vpid_unr);
|
|
vpid_unr = NULL;
|
|
}
|
|
|
|
if (nmi_flush_l1d_sw == 1)
|
|
nmi_flush_l1d_sw = 0;
|
|
|
|
smp_rendezvous(NULL, vmx_disable, NULL, NULL);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vmx_enable(void *arg __unused)
|
|
{
|
|
int error;
|
|
uint64_t feature_control;
|
|
|
|
feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
|
|
if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
|
|
(feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
|
|
wrmsr(MSR_IA32_FEATURE_CONTROL,
|
|
feature_control | IA32_FEATURE_CONTROL_VMX_EN |
|
|
IA32_FEATURE_CONTROL_LOCK);
|
|
}
|
|
|
|
load_cr4(rcr4() | CR4_VMXE);
|
|
|
|
*(uint32_t *)vmxon_region[curcpu] = vmx_revision();
|
|
error = vmxon(vmxon_region[curcpu]);
|
|
if (error == 0)
|
|
vmxon_enabled[curcpu] = 1;
|
|
}
|
|
|
|
static void
|
|
vmx_restore(void)
|
|
{
|
|
|
|
if (vmxon_enabled[curcpu])
|
|
vmxon(vmxon_region[curcpu]);
|
|
}
|
|
|
|
static int
|
|
vmx_init(int ipinum)
|
|
{
|
|
int error, use_tpr_shadow;
|
|
uint64_t basic, fixed0, fixed1, feature_control;
|
|
uint32_t tmp, procbased2_vid_bits;
|
|
|
|
/* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
|
|
if (!(cpu_feature2 & CPUID2_VMX)) {
|
|
printf("vmx_init: processor does not support VMX operation\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
|
|
* are set (bits 0 and 2 respectively).
|
|
*/
|
|
feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
|
|
if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 1 &&
|
|
(feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
|
|
printf("vmx_init: VMX operation disabled by BIOS\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Verify capabilities MSR_VMX_BASIC:
|
|
* - bit 54 indicates support for INS/OUTS decoding
|
|
*/
|
|
basic = rdmsr(MSR_VMX_BASIC);
|
|
if ((basic & (1UL << 54)) == 0) {
|
|
printf("vmx_init: processor does not support desired basic "
|
|
"capabilities\n");
|
|
return (EINVAL);
|
|
}
|
|
|
|
/* Check support for primary processor-based VM-execution controls */
|
|
error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
|
|
MSR_VMX_TRUE_PROCBASED_CTLS,
|
|
PROCBASED_CTLS_ONE_SETTING,
|
|
PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
|
|
if (error) {
|
|
printf("vmx_init: processor does not support desired primary "
|
|
"processor-based controls\n");
|
|
return (error);
|
|
}
|
|
|
|
/* Clear the processor-based ctl bits that are set on demand */
|
|
procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
|
|
|
|
/* Check support for secondary processor-based VM-execution controls */
|
|
error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
|
|
MSR_VMX_PROCBASED_CTLS2,
|
|
PROCBASED_CTLS2_ONE_SETTING,
|
|
PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
|
|
if (error) {
|
|
printf("vmx_init: processor does not support desired secondary "
|
|
"processor-based controls\n");
|
|
return (error);
|
|
}
|
|
|
|
/* Check support for VPID */
|
|
error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
|
|
PROCBASED2_ENABLE_VPID, 0, &tmp);
|
|
if (error == 0)
|
|
procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
|
|
|
|
/* Check support for pin-based VM-execution controls */
|
|
error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
|
|
MSR_VMX_TRUE_PINBASED_CTLS,
|
|
PINBASED_CTLS_ONE_SETTING,
|
|
PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
|
|
if (error) {
|
|
printf("vmx_init: processor does not support desired "
|
|
"pin-based controls\n");
|
|
return (error);
|
|
}
|
|
|
|
/* Check support for VM-exit controls */
|
|
error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
|
|
VM_EXIT_CTLS_ONE_SETTING,
|
|
VM_EXIT_CTLS_ZERO_SETTING,
|
|
&exit_ctls);
|
|
if (error) {
|
|
printf("vmx_init: processor does not support desired "
|
|
"exit controls\n");
|
|
return (error);
|
|
}
|
|
|
|
/* Check support for VM-entry controls */
|
|
error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
|
|
VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING,
|
|
&entry_ctls);
|
|
if (error) {
|
|
printf("vmx_init: processor does not support desired "
|
|
"entry controls\n");
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Check support for optional features by testing them
|
|
* as individual bits
|
|
*/
|
|
cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
|
|
MSR_VMX_TRUE_PROCBASED_CTLS,
|
|
PROCBASED_HLT_EXITING, 0,
|
|
&tmp) == 0);
|
|
|
|
cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
|
|
MSR_VMX_PROCBASED_CTLS,
|
|
PROCBASED_MTF, 0,
|
|
&tmp) == 0);
|
|
|
|
cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
|
|
MSR_VMX_TRUE_PROCBASED_CTLS,
|
|
PROCBASED_PAUSE_EXITING, 0,
|
|
&tmp) == 0);
|
|
|
|
cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
|
|
MSR_VMX_PROCBASED_CTLS2,
|
|
PROCBASED2_UNRESTRICTED_GUEST, 0,
|
|
&tmp) == 0);
|
|
|
|
cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
|
|
MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
|
|
&tmp) == 0);
|
|
|
|
/*
|
|
* Check support for virtual interrupt delivery.
|
|
*/
|
|
procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
|
|
PROCBASED2_VIRTUALIZE_X2APIC_MODE |
|
|
PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
|
|
PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
|
|
|
|
use_tpr_shadow = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
|
|
MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0,
|
|
&tmp) == 0);
|
|
|
|
error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
|
|
procbased2_vid_bits, 0, &tmp);
|
|
if (error == 0 && use_tpr_shadow) {
|
|
virtual_interrupt_delivery = 1;
|
|
TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid",
|
|
&virtual_interrupt_delivery);
|
|
}
|
|
|
|
if (virtual_interrupt_delivery) {
|
|
procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
|
|
procbased_ctls2 |= procbased2_vid_bits;
|
|
procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE;
|
|
|
|
/*
|
|
* No need to emulate accesses to %CR8 if virtual
|
|
* interrupt delivery is enabled.
|
|
*/
|
|
procbased_ctls &= ~PROCBASED_CR8_LOAD_EXITING;
|
|
procbased_ctls &= ~PROCBASED_CR8_STORE_EXITING;
|
|
|
|
/*
|
|
* Check for Posted Interrupts only if Virtual Interrupt
|
|
* Delivery is enabled.
|
|
*/
|
|
error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
|
|
MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0,
|
|
&tmp);
|
|
if (error == 0) {
|
|
pirvec = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
|
|
&IDTVEC(justreturn));
|
|
if (pirvec < 0) {
|
|
if (bootverbose) {
|
|
printf("vmx_init: unable to allocate "
|
|
"posted interrupt vector\n");
|
|
}
|
|
} else {
|
|
posted_interrupts = 1;
|
|
TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir",
|
|
&posted_interrupts);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (posted_interrupts)
|
|
pinbased_ctls |= PINBASED_POSTED_INTERRUPT;
|
|
|
|
/* Initialize EPT */
|
|
error = ept_init(ipinum);
|
|
if (error) {
|
|
printf("vmx_init: ept initialization failed (%d)\n", error);
|
|
return (error);
|
|
}
|
|
|
|
guest_l1d_flush = (cpu_ia32_arch_caps &
|
|
IA32_ARCH_CAP_SKIP_L1DFL_VMENTRY) == 0;
|
|
TUNABLE_INT_FETCH("hw.vmm.l1d_flush", &guest_l1d_flush);
|
|
|
|
/*
|
|
* L1D cache flush is enabled. Use IA32_FLUSH_CMD MSR when
|
|
* available. Otherwise fall back to the software flush
|
|
* method which loads enough data from the kernel text to
|
|
* flush existing L1D content, both on VMX entry and on NMI
|
|
* return.
|
|
*/
|
|
if (guest_l1d_flush) {
|
|
if ((cpu_stdext_feature3 & CPUID_STDEXT3_L1D_FLUSH) == 0) {
|
|
guest_l1d_flush_sw = 1;
|
|
TUNABLE_INT_FETCH("hw.vmm.l1d_flush_sw",
|
|
&guest_l1d_flush_sw);
|
|
}
|
|
if (guest_l1d_flush_sw) {
|
|
if (nmi_flush_l1d_sw <= 1)
|
|
nmi_flush_l1d_sw = 1;
|
|
} else {
|
|
msr_load_list[0].index = MSR_IA32_FLUSH_CMD;
|
|
msr_load_list[0].val = IA32_FLUSH_CMD_L1D;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Stash the cr0 and cr4 bits that must be fixed to 0 or 1
|
|
*/
|
|
fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
|
|
fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
|
|
cr0_ones_mask = fixed0 & fixed1;
|
|
cr0_zeros_mask = ~fixed0 & ~fixed1;
|
|
|
|
/*
|
|
* CR0_PE and CR0_PG can be set to zero in VMX non-root operation
|
|
* if unrestricted guest execution is allowed.
|
|
*/
|
|
if (cap_unrestricted_guest)
|
|
cr0_ones_mask &= ~(CR0_PG | CR0_PE);
|
|
|
|
/*
|
|
* Do not allow the guest to set CR0_NW or CR0_CD.
|
|
*/
|
|
cr0_zeros_mask |= (CR0_NW | CR0_CD);
|
|
|
|
fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
|
|
fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
|
|
cr4_ones_mask = fixed0 & fixed1;
|
|
cr4_zeros_mask = ~fixed0 & ~fixed1;
|
|
|
|
vpid_init();
|
|
|
|
vmx_msr_init();
|
|
|
|
/* enable VMX operation */
|
|
smp_rendezvous(NULL, vmx_enable, NULL, NULL);
|
|
|
|
vmx_initialized = 1;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vmx_trigger_hostintr(int vector)
|
|
{
|
|
uintptr_t func;
|
|
struct gate_descriptor *gd;
|
|
|
|
gd = &idt[vector];
|
|
|
|
KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: "
|
|
"invalid vector %d", vector));
|
|
KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present",
|
|
vector));
|
|
KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d "
|
|
"has invalid type %d", vector, gd->gd_type));
|
|
KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d "
|
|
"has invalid dpl %d", vector, gd->gd_dpl));
|
|
KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor "
|
|
"for vector %d has invalid selector %d", vector, gd->gd_selector));
|
|
KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid "
|
|
"IST %d", vector, gd->gd_ist));
|
|
|
|
func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset);
|
|
vmx_call_isr(func);
|
|
}
|
|
|
|
static int
|
|
vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial)
|
|
{
|
|
int error, mask_ident, shadow_ident;
|
|
uint64_t mask_value;
|
|
|
|
if (which != 0 && which != 4)
|
|
panic("vmx_setup_cr_shadow: unknown cr%d", which);
|
|
|
|
if (which == 0) {
|
|
mask_ident = VMCS_CR0_MASK;
|
|
mask_value = cr0_ones_mask | cr0_zeros_mask;
|
|
shadow_ident = VMCS_CR0_SHADOW;
|
|
} else {
|
|
mask_ident = VMCS_CR4_MASK;
|
|
mask_value = cr4_ones_mask | cr4_zeros_mask;
|
|
shadow_ident = VMCS_CR4_SHADOW;
|
|
}
|
|
|
|
error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value);
|
|
if (error)
|
|
return (error);
|
|
|
|
error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial);
|
|
if (error)
|
|
return (error);
|
|
|
|
return (0);
|
|
}
|
|
#define vmx_setup_cr0_shadow(vmcs,init) vmx_setup_cr_shadow(0, (vmcs), (init))
|
|
#define vmx_setup_cr4_shadow(vmcs,init) vmx_setup_cr_shadow(4, (vmcs), (init))
|
|
|
|
static void *
|
|
vmx_vminit(struct vm *vm, pmap_t pmap)
|
|
{
|
|
uint16_t vpid[VM_MAXCPU];
|
|
int i, error;
|
|
struct vmx *vmx;
|
|
struct vmcs *vmcs;
|
|
uint32_t exc_bitmap;
|
|
|
|
vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
|
|
if ((uintptr_t)vmx & PAGE_MASK) {
|
|
panic("malloc of struct vmx not aligned on %d byte boundary",
|
|
PAGE_SIZE);
|
|
}
|
|
vmx->vm = vm;
|
|
|
|
vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pml4));
|
|
|
|
/*
|
|
* Clean up EPTP-tagged guest physical and combined mappings
|
|
*
|
|
* VMX transitions are not required to invalidate any guest physical
|
|
* mappings. So, it may be possible for stale guest physical mappings
|
|
* to be present in the processor TLBs.
|
|
*
|
|
* Combined mappings for this EP4TA are also invalidated for all VPIDs.
|
|
*/
|
|
ept_invalidate_mappings(vmx->eptp);
|
|
|
|
msr_bitmap_initialize(vmx->msr_bitmap);
|
|
|
|
/*
|
|
* It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
|
|
* The guest FSBASE and GSBASE are saved and restored during
|
|
* vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
|
|
* always restored from the vmcs host state area on vm-exit.
|
|
*
|
|
* The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
|
|
* how they are saved/restored so can be directly accessed by the
|
|
* guest.
|
|
*
|
|
* MSR_EFER is saved and restored in the guest VMCS area on a
|
|
* VM exit and entry respectively. It is also restored from the
|
|
* host VMCS area on a VM exit.
|
|
*
|
|
* The TSC MSR is exposed read-only. Writes are disallowed as
|
|
* that will impact the host TSC. If the guest does a write
|
|
* the "use TSC offsetting" execution control is enabled and the
|
|
* difference between the host TSC and the guest TSC is written
|
|
* into the TSC offset in the VMCS.
|
|
*/
|
|
if (guest_msr_rw(vmx, MSR_GSBASE) ||
|
|
guest_msr_rw(vmx, MSR_FSBASE) ||
|
|
guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
|
|
guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
|
|
guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
|
|
guest_msr_rw(vmx, MSR_EFER) ||
|
|
guest_msr_ro(vmx, MSR_TSC))
|
|
panic("vmx_vminit: error setting guest msr access");
|
|
|
|
vpid_alloc(vpid, VM_MAXCPU);
|
|
|
|
if (virtual_interrupt_delivery) {
|
|
error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
|
|
APIC_ACCESS_ADDRESS);
|
|
/* XXX this should really return an error to the caller */
|
|
KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
|
|
}
|
|
|
|
for (i = 0; i < VM_MAXCPU; i++) {
|
|
vmcs = &vmx->vmcs[i];
|
|
vmcs->identifier = vmx_revision();
|
|
error = vmclear(vmcs);
|
|
if (error != 0) {
|
|
panic("vmx_vminit: vmclear error %d on vcpu %d\n",
|
|
error, i);
|
|
}
|
|
|
|
vmx_msr_guest_init(vmx, i);
|
|
|
|
error = vmcs_init(vmcs);
|
|
KASSERT(error == 0, ("vmcs_init error %d", error));
|
|
|
|
VMPTRLD(vmcs);
|
|
error = 0;
|
|
error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]);
|
|
error += vmwrite(VMCS_EPTP, vmx->eptp);
|
|
error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls);
|
|
error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls);
|
|
error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2);
|
|
error += vmwrite(VMCS_EXIT_CTLS, exit_ctls);
|
|
error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls);
|
|
error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap));
|
|
error += vmwrite(VMCS_VPID, vpid[i]);
|
|
|
|
if (guest_l1d_flush && !guest_l1d_flush_sw) {
|
|
vmcs_write(VMCS_ENTRY_MSR_LOAD, pmap_kextract(
|
|
(vm_offset_t)&msr_load_list[0]));
|
|
vmcs_write(VMCS_ENTRY_MSR_LOAD_COUNT,
|
|
nitems(msr_load_list));
|
|
vmcs_write(VMCS_EXIT_MSR_STORE, 0);
|
|
vmcs_write(VMCS_EXIT_MSR_STORE_COUNT, 0);
|
|
}
|
|
|
|
/* exception bitmap */
|
|
if (vcpu_trace_exceptions(vm, i))
|
|
exc_bitmap = 0xffffffff;
|
|
else
|
|
exc_bitmap = 1 << IDT_MC;
|
|
error += vmwrite(VMCS_EXCEPTION_BITMAP, exc_bitmap);
|
|
|
|
vmx->ctx[i].guest_dr6 = DBREG_DR6_RESERVED1;
|
|
error += vmwrite(VMCS_GUEST_DR7, DBREG_DR7_RESERVED1);
|
|
|
|
if (virtual_interrupt_delivery) {
|
|
error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS);
|
|
error += vmwrite(VMCS_VIRTUAL_APIC,
|
|
vtophys(&vmx->apic_page[i]));
|
|
error += vmwrite(VMCS_EOI_EXIT0, 0);
|
|
error += vmwrite(VMCS_EOI_EXIT1, 0);
|
|
error += vmwrite(VMCS_EOI_EXIT2, 0);
|
|
error += vmwrite(VMCS_EOI_EXIT3, 0);
|
|
}
|
|
if (posted_interrupts) {
|
|
error += vmwrite(VMCS_PIR_VECTOR, pirvec);
|
|
error += vmwrite(VMCS_PIR_DESC,
|
|
vtophys(&vmx->pir_desc[i]));
|
|
}
|
|
VMCLEAR(vmcs);
|
|
KASSERT(error == 0, ("vmx_vminit: error customizing the vmcs"));
|
|
|
|
vmx->cap[i].set = 0;
|
|
vmx->cap[i].proc_ctls = procbased_ctls;
|
|
vmx->cap[i].proc_ctls2 = procbased_ctls2;
|
|
|
|
vmx->state[i].nextrip = ~0;
|
|
vmx->state[i].lastcpu = NOCPU;
|
|
vmx->state[i].vpid = vpid[i];
|
|
|
|
/*
|
|
* Set up the CR0/4 shadows, and init the read shadow
|
|
* to the power-on register value from the Intel Sys Arch.
|
|
* CR0 - 0x60000010
|
|
* CR4 - 0
|
|
*/
|
|
error = vmx_setup_cr0_shadow(vmcs, 0x60000010);
|
|
if (error != 0)
|
|
panic("vmx_setup_cr0_shadow %d", error);
|
|
|
|
error = vmx_setup_cr4_shadow(vmcs, 0);
|
|
if (error != 0)
|
|
panic("vmx_setup_cr4_shadow %d", error);
|
|
|
|
vmx->ctx[i].pmap = pmap;
|
|
}
|
|
|
|
return (vmx);
|
|
}
|
|
|
|
static int
|
|
vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx)
|
|
{
|
|
int handled, func;
|
|
|
|
func = vmxctx->guest_rax;
|
|
|
|
handled = x86_emulate_cpuid(vm, vcpu,
|
|
(uint32_t*)(&vmxctx->guest_rax),
|
|
(uint32_t*)(&vmxctx->guest_rbx),
|
|
(uint32_t*)(&vmxctx->guest_rcx),
|
|
(uint32_t*)(&vmxctx->guest_rdx));
|
|
return (handled);
|
|
}
|
|
|
|
static __inline void
|
|
vmx_run_trace(struct vmx *vmx, int vcpu)
|
|
{
|
|
#ifdef KTR
|
|
VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip());
|
|
#endif
|
|
}
|
|
|
|
static __inline void
|
|
vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason,
|
|
int handled)
|
|
{
|
|
#ifdef KTR
|
|
VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx",
|
|
handled ? "handled" : "unhandled",
|
|
exit_reason_to_str(exit_reason), rip);
|
|
#endif
|
|
}
|
|
|
|
static __inline void
|
|
vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip)
|
|
{
|
|
#ifdef KTR
|
|
VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip);
|
|
#endif
|
|
}
|
|
|
|
static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved");
|
|
static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done");
|
|
|
|
/*
|
|
* Invalidate guest mappings identified by its vpid from the TLB.
|
|
*/
|
|
static __inline void
|
|
vmx_invvpid(struct vmx *vmx, int vcpu, pmap_t pmap, int running)
|
|
{
|
|
struct vmxstate *vmxstate;
|
|
struct invvpid_desc invvpid_desc;
|
|
|
|
vmxstate = &vmx->state[vcpu];
|
|
if (vmxstate->vpid == 0)
|
|
return;
|
|
|
|
if (!running) {
|
|
/*
|
|
* Set the 'lastcpu' to an invalid host cpu.
|
|
*
|
|
* This will invalidate TLB entries tagged with the vcpu's
|
|
* vpid the next time it runs via vmx_set_pcpu_defaults().
|
|
*/
|
|
vmxstate->lastcpu = NOCPU;
|
|
return;
|
|
}
|
|
|
|
KASSERT(curthread->td_critnest > 0, ("%s: vcpu %d running outside "
|
|
"critical section", __func__, vcpu));
|
|
|
|
/*
|
|
* Invalidate all mappings tagged with 'vpid'
|
|
*
|
|
* We do this because this vcpu was executing on a different host
|
|
* cpu when it last ran. We do not track whether it invalidated
|
|
* mappings associated with its 'vpid' during that run. So we must
|
|
* assume that the mappings associated with 'vpid' on 'curcpu' are
|
|
* stale and invalidate them.
|
|
*
|
|
* Note that we incur this penalty only when the scheduler chooses to
|
|
* move the thread associated with this vcpu between host cpus.
|
|
*
|
|
* Note also that this will invalidate mappings tagged with 'vpid'
|
|
* for "all" EP4TAs.
|
|
*/
|
|
if (pmap->pm_eptgen == vmx->eptgen[curcpu]) {
|
|
invvpid_desc._res1 = 0;
|
|
invvpid_desc._res2 = 0;
|
|
invvpid_desc.vpid = vmxstate->vpid;
|
|
invvpid_desc.linear_addr = 0;
|
|
invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
|
|
vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_DONE, 1);
|
|
} else {
|
|
/*
|
|
* The invvpid can be skipped if an invept is going to
|
|
* be performed before entering the guest. The invept
|
|
* will invalidate combined mappings tagged with
|
|
* 'vmx->eptp' for all vpids.
|
|
*/
|
|
vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu, pmap_t pmap)
|
|
{
|
|
struct vmxstate *vmxstate;
|
|
|
|
vmxstate = &vmx->state[vcpu];
|
|
if (vmxstate->lastcpu == curcpu)
|
|
return;
|
|
|
|
vmxstate->lastcpu = curcpu;
|
|
|
|
vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
|
|
|
|
vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
|
|
vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
|
|
vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
|
|
vmx_invvpid(vmx, vcpu, pmap, 1);
|
|
}
|
|
|
|
/*
|
|
* We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
|
|
*/
|
|
CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
|
|
|
|
static void __inline
|
|
vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
|
|
{
|
|
|
|
if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) {
|
|
vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
|
|
vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
|
|
VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting");
|
|
}
|
|
}
|
|
|
|
static void __inline
|
|
vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
|
|
{
|
|
|
|
KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0,
|
|
("intr_window_exiting not set: %#x", vmx->cap[vcpu].proc_ctls));
|
|
vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
|
|
vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
|
|
VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting");
|
|
}
|
|
|
|
static void __inline
|
|
vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
|
|
{
|
|
|
|
if ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) {
|
|
vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
|
|
vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
|
|
VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting");
|
|
}
|
|
}
|
|
|
|
static void __inline
|
|
vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
|
|
{
|
|
|
|
KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0,
|
|
("nmi_window_exiting not set %#x", vmx->cap[vcpu].proc_ctls));
|
|
vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
|
|
vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
|
|
VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting");
|
|
}
|
|
|
|
int
|
|
vmx_set_tsc_offset(struct vmx *vmx, int vcpu, uint64_t offset)
|
|
{
|
|
int error;
|
|
|
|
if ((vmx->cap[vcpu].proc_ctls & PROCBASED_TSC_OFFSET) == 0) {
|
|
vmx->cap[vcpu].proc_ctls |= PROCBASED_TSC_OFFSET;
|
|
vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
|
|
VCPU_CTR0(vmx->vm, vcpu, "Enabling TSC offsetting");
|
|
}
|
|
|
|
error = vmwrite(VMCS_TSC_OFFSET, offset);
|
|
|
|
return (error);
|
|
}
|
|
|
|
#define NMI_BLOCKING (VMCS_INTERRUPTIBILITY_NMI_BLOCKING | \
|
|
VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
|
|
#define HWINTR_BLOCKING (VMCS_INTERRUPTIBILITY_STI_BLOCKING | \
|
|
VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
|
|
|
|
static void
|
|
vmx_inject_nmi(struct vmx *vmx, int vcpu)
|
|
{
|
|
uint32_t gi, info;
|
|
|
|
gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
|
|
KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest "
|
|
"interruptibility-state %#x", gi));
|
|
|
|
info = vmcs_read(VMCS_ENTRY_INTR_INFO);
|
|
KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid "
|
|
"VM-entry interruption information %#x", info));
|
|
|
|
/*
|
|
* Inject the virtual NMI. The vector must be the NMI IDT entry
|
|
* or the VMCS entry check will fail.
|
|
*/
|
|
info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID;
|
|
vmcs_write(VMCS_ENTRY_INTR_INFO, info);
|
|
|
|
VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI");
|
|
|
|
/* Clear the request */
|
|
vm_nmi_clear(vmx->vm, vcpu);
|
|
}
|
|
|
|
static void
|
|
vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic,
|
|
uint64_t guestrip)
|
|
{
|
|
int vector, need_nmi_exiting, extint_pending;
|
|
uint64_t rflags, entryinfo;
|
|
uint32_t gi, info;
|
|
|
|
if (vmx->state[vcpu].nextrip != guestrip) {
|
|
gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
|
|
if (gi & HWINTR_BLOCKING) {
|
|
VCPU_CTR2(vmx->vm, vcpu, "Guest interrupt blocking "
|
|
"cleared due to rip change: %#lx/%#lx",
|
|
vmx->state[vcpu].nextrip, guestrip);
|
|
gi &= ~HWINTR_BLOCKING;
|
|
vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
|
|
}
|
|
}
|
|
|
|
if (vm_entry_intinfo(vmx->vm, vcpu, &entryinfo)) {
|
|
KASSERT((entryinfo & VMCS_INTR_VALID) != 0, ("%s: entry "
|
|
"intinfo is not valid: %#lx", __func__, entryinfo));
|
|
|
|
info = vmcs_read(VMCS_ENTRY_INTR_INFO);
|
|
KASSERT((info & VMCS_INTR_VALID) == 0, ("%s: cannot inject "
|
|
"pending exception: %#lx/%#x", __func__, entryinfo, info));
|
|
|
|
info = entryinfo;
|
|
vector = info & 0xff;
|
|
if (vector == IDT_BP || vector == IDT_OF) {
|
|
/*
|
|
* VT-x requires #BP and #OF to be injected as software
|
|
* exceptions.
|
|
*/
|
|
info &= ~VMCS_INTR_T_MASK;
|
|
info |= VMCS_INTR_T_SWEXCEPTION;
|
|
}
|
|
|
|
if (info & VMCS_INTR_DEL_ERRCODE)
|
|
vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32);
|
|
|
|
vmcs_write(VMCS_ENTRY_INTR_INFO, info);
|
|
}
|
|
|
|
if (vm_nmi_pending(vmx->vm, vcpu)) {
|
|
/*
|
|
* If there are no conditions blocking NMI injection then
|
|
* inject it directly here otherwise enable "NMI window
|
|
* exiting" to inject it as soon as we can.
|
|
*
|
|
* We also check for STI_BLOCKING because some implementations
|
|
* don't allow NMI injection in this case. If we are running
|
|
* on a processor that doesn't have this restriction it will
|
|
* immediately exit and the NMI will be injected in the
|
|
* "NMI window exiting" handler.
|
|
*/
|
|
need_nmi_exiting = 1;
|
|
gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
|
|
if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
|
|
info = vmcs_read(VMCS_ENTRY_INTR_INFO);
|
|
if ((info & VMCS_INTR_VALID) == 0) {
|
|
vmx_inject_nmi(vmx, vcpu);
|
|
need_nmi_exiting = 0;
|
|
} else {
|
|
VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI "
|
|
"due to VM-entry intr info %#x", info);
|
|
}
|
|
} else {
|
|
VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI due to "
|
|
"Guest Interruptibility-state %#x", gi);
|
|
}
|
|
|
|
if (need_nmi_exiting)
|
|
vmx_set_nmi_window_exiting(vmx, vcpu);
|
|
}
|
|
|
|
extint_pending = vm_extint_pending(vmx->vm, vcpu);
|
|
|
|
if (!extint_pending && virtual_interrupt_delivery) {
|
|
vmx_inject_pir(vlapic);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If interrupt-window exiting is already in effect then don't bother
|
|
* checking for pending interrupts. This is just an optimization and
|
|
* not needed for correctness.
|
|
*/
|
|
if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) {
|
|
VCPU_CTR0(vmx->vm, vcpu, "Skip interrupt injection due to "
|
|
"pending int_window_exiting");
|
|
return;
|
|
}
|
|
|
|
if (!extint_pending) {
|
|
/* Ask the local apic for a vector to inject */
|
|
if (!vlapic_pending_intr(vlapic, &vector))
|
|
return;
|
|
|
|
/*
|
|
* From the Intel SDM, Volume 3, Section "Maskable
|
|
* Hardware Interrupts":
|
|
* - maskable interrupt vectors [16,255] can be delivered
|
|
* through the local APIC.
|
|
*/
|
|
KASSERT(vector >= 16 && vector <= 255,
|
|
("invalid vector %d from local APIC", vector));
|
|
} else {
|
|
/* Ask the legacy pic for a vector to inject */
|
|
vatpic_pending_intr(vmx->vm, &vector);
|
|
|
|
/*
|
|
* From the Intel SDM, Volume 3, Section "Maskable
|
|
* Hardware Interrupts":
|
|
* - maskable interrupt vectors [0,255] can be delivered
|
|
* through the INTR pin.
|
|
*/
|
|
KASSERT(vector >= 0 && vector <= 255,
|
|
("invalid vector %d from INTR", vector));
|
|
}
|
|
|
|
/* Check RFLAGS.IF and the interruptibility state of the guest */
|
|
rflags = vmcs_read(VMCS_GUEST_RFLAGS);
|
|
if ((rflags & PSL_I) == 0) {
|
|
VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
|
|
"rflags %#lx", vector, rflags);
|
|
goto cantinject;
|
|
}
|
|
|
|
gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
|
|
if (gi & HWINTR_BLOCKING) {
|
|
VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
|
|
"Guest Interruptibility-state %#x", vector, gi);
|
|
goto cantinject;
|
|
}
|
|
|
|
info = vmcs_read(VMCS_ENTRY_INTR_INFO);
|
|
if (info & VMCS_INTR_VALID) {
|
|
/*
|
|
* This is expected and could happen for multiple reasons:
|
|
* - A vectoring VM-entry was aborted due to astpending
|
|
* - A VM-exit happened during event injection.
|
|
* - An exception was injected above.
|
|
* - An NMI was injected above or after "NMI window exiting"
|
|
*/
|
|
VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
|
|
"VM-entry intr info %#x", vector, info);
|
|
goto cantinject;
|
|
}
|
|
|
|
/* Inject the interrupt */
|
|
info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID;
|
|
info |= vector;
|
|
vmcs_write(VMCS_ENTRY_INTR_INFO, info);
|
|
|
|
if (!extint_pending) {
|
|
/* Update the Local APIC ISR */
|
|
vlapic_intr_accepted(vlapic, vector);
|
|
} else {
|
|
vm_extint_clear(vmx->vm, vcpu);
|
|
vatpic_intr_accepted(vmx->vm, vector);
|
|
|
|
/*
|
|
* After we accepted the current ExtINT the PIC may
|
|
* have posted another one. If that is the case, set
|
|
* the Interrupt Window Exiting execution control so
|
|
* we can inject that one too.
|
|
*
|
|
* Also, interrupt window exiting allows us to inject any
|
|
* pending APIC vector that was preempted by the ExtINT
|
|
* as soon as possible. This applies both for the software
|
|
* emulated vlapic and the hardware assisted virtual APIC.
|
|
*/
|
|
vmx_set_int_window_exiting(vmx, vcpu);
|
|
}
|
|
|
|
VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector);
|
|
|
|
return;
|
|
|
|
cantinject:
|
|
/*
|
|
* Set the Interrupt Window Exiting execution control so we can inject
|
|
* the interrupt as soon as blocking condition goes away.
|
|
*/
|
|
vmx_set_int_window_exiting(vmx, vcpu);
|
|
}
|
|
|
|
/*
|
|
* If the Virtual NMIs execution control is '1' then the logical processor
|
|
* tracks virtual-NMI blocking in the Guest Interruptibility-state field of
|
|
* the VMCS. An IRET instruction in VMX non-root operation will remove any
|
|
* virtual-NMI blocking.
|
|
*
|
|
* This unblocking occurs even if the IRET causes a fault. In this case the
|
|
* hypervisor needs to restore virtual-NMI blocking before resuming the guest.
|
|
*/
|
|
static void
|
|
vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid)
|
|
{
|
|
uint32_t gi;
|
|
|
|
VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking");
|
|
gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
|
|
gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
|
|
vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
|
|
}
|
|
|
|
static void
|
|
vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid)
|
|
{
|
|
uint32_t gi;
|
|
|
|
VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking");
|
|
gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
|
|
gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
|
|
vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
|
|
}
|
|
|
|
static void
|
|
vmx_assert_nmi_blocking(struct vmx *vmx, int vcpuid)
|
|
{
|
|
uint32_t gi;
|
|
|
|
gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
|
|
KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING,
|
|
("NMI blocking is not in effect %#x", gi));
|
|
}
|
|
|
|
static int
|
|
vmx_emulate_xsetbv(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
|
|
{
|
|
struct vmxctx *vmxctx;
|
|
uint64_t xcrval;
|
|
const struct xsave_limits *limits;
|
|
|
|
vmxctx = &vmx->ctx[vcpu];
|
|
limits = vmm_get_xsave_limits();
|
|
|
|
/*
|
|
* Note that the processor raises a GP# fault on its own if
|
|
* xsetbv is executed for CPL != 0, so we do not have to
|
|
* emulate that fault here.
|
|
*/
|
|
|
|
/* Only xcr0 is supported. */
|
|
if (vmxctx->guest_rcx != 0) {
|
|
vm_inject_gp(vmx->vm, vcpu);
|
|
return (HANDLED);
|
|
}
|
|
|
|
/* We only handle xcr0 if both the host and guest have XSAVE enabled. */
|
|
if (!limits->xsave_enabled || !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) {
|
|
vm_inject_ud(vmx->vm, vcpu);
|
|
return (HANDLED);
|
|
}
|
|
|
|
xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff);
|
|
if ((xcrval & ~limits->xcr0_allowed) != 0) {
|
|
vm_inject_gp(vmx->vm, vcpu);
|
|
return (HANDLED);
|
|
}
|
|
|
|
if (!(xcrval & XFEATURE_ENABLED_X87)) {
|
|
vm_inject_gp(vmx->vm, vcpu);
|
|
return (HANDLED);
|
|
}
|
|
|
|
/* AVX (YMM_Hi128) requires SSE. */
|
|
if (xcrval & XFEATURE_ENABLED_AVX &&
|
|
(xcrval & XFEATURE_AVX) != XFEATURE_AVX) {
|
|
vm_inject_gp(vmx->vm, vcpu);
|
|
return (HANDLED);
|
|
}
|
|
|
|
/*
|
|
* AVX512 requires base AVX (YMM_Hi128) as well as OpMask,
|
|
* ZMM_Hi256, and Hi16_ZMM.
|
|
*/
|
|
if (xcrval & XFEATURE_AVX512 &&
|
|
(xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) !=
|
|
(XFEATURE_AVX512 | XFEATURE_AVX)) {
|
|
vm_inject_gp(vmx->vm, vcpu);
|
|
return (HANDLED);
|
|
}
|
|
|
|
/*
|
|
* Intel MPX requires both bound register state flags to be
|
|
* set.
|
|
*/
|
|
if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) !=
|
|
((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) {
|
|
vm_inject_gp(vmx->vm, vcpu);
|
|
return (HANDLED);
|
|
}
|
|
|
|
/*
|
|
* This runs "inside" vmrun() with the guest's FPU state, so
|
|
* modifying xcr0 directly modifies the guest's xcr0, not the
|
|
* host's.
|
|
*/
|
|
load_xcr(0, xcrval);
|
|
return (HANDLED);
|
|
}
|
|
|
|
static uint64_t
|
|
vmx_get_guest_reg(struct vmx *vmx, int vcpu, int ident)
|
|
{
|
|
const struct vmxctx *vmxctx;
|
|
|
|
vmxctx = &vmx->ctx[vcpu];
|
|
|
|
switch (ident) {
|
|
case 0:
|
|
return (vmxctx->guest_rax);
|
|
case 1:
|
|
return (vmxctx->guest_rcx);
|
|
case 2:
|
|
return (vmxctx->guest_rdx);
|
|
case 3:
|
|
return (vmxctx->guest_rbx);
|
|
case 4:
|
|
return (vmcs_read(VMCS_GUEST_RSP));
|
|
case 5:
|
|
return (vmxctx->guest_rbp);
|
|
case 6:
|
|
return (vmxctx->guest_rsi);
|
|
case 7:
|
|
return (vmxctx->guest_rdi);
|
|
case 8:
|
|
return (vmxctx->guest_r8);
|
|
case 9:
|
|
return (vmxctx->guest_r9);
|
|
case 10:
|
|
return (vmxctx->guest_r10);
|
|
case 11:
|
|
return (vmxctx->guest_r11);
|
|
case 12:
|
|
return (vmxctx->guest_r12);
|
|
case 13:
|
|
return (vmxctx->guest_r13);
|
|
case 14:
|
|
return (vmxctx->guest_r14);
|
|
case 15:
|
|
return (vmxctx->guest_r15);
|
|
default:
|
|
panic("invalid vmx register %d", ident);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vmx_set_guest_reg(struct vmx *vmx, int vcpu, int ident, uint64_t regval)
|
|
{
|
|
struct vmxctx *vmxctx;
|
|
|
|
vmxctx = &vmx->ctx[vcpu];
|
|
|
|
switch (ident) {
|
|
case 0:
|
|
vmxctx->guest_rax = regval;
|
|
break;
|
|
case 1:
|
|
vmxctx->guest_rcx = regval;
|
|
break;
|
|
case 2:
|
|
vmxctx->guest_rdx = regval;
|
|
break;
|
|
case 3:
|
|
vmxctx->guest_rbx = regval;
|
|
break;
|
|
case 4:
|
|
vmcs_write(VMCS_GUEST_RSP, regval);
|
|
break;
|
|
case 5:
|
|
vmxctx->guest_rbp = regval;
|
|
break;
|
|
case 6:
|
|
vmxctx->guest_rsi = regval;
|
|
break;
|
|
case 7:
|
|
vmxctx->guest_rdi = regval;
|
|
break;
|
|
case 8:
|
|
vmxctx->guest_r8 = regval;
|
|
break;
|
|
case 9:
|
|
vmxctx->guest_r9 = regval;
|
|
break;
|
|
case 10:
|
|
vmxctx->guest_r10 = regval;
|
|
break;
|
|
case 11:
|
|
vmxctx->guest_r11 = regval;
|
|
break;
|
|
case 12:
|
|
vmxctx->guest_r12 = regval;
|
|
break;
|
|
case 13:
|
|
vmxctx->guest_r13 = regval;
|
|
break;
|
|
case 14:
|
|
vmxctx->guest_r14 = regval;
|
|
break;
|
|
case 15:
|
|
vmxctx->guest_r15 = regval;
|
|
break;
|
|
default:
|
|
panic("invalid vmx register %d", ident);
|
|
}
|
|
}
|
|
|
|
static int
|
|
vmx_emulate_cr0_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
|
|
{
|
|
uint64_t crval, regval;
|
|
|
|
/* We only handle mov to %cr0 at this time */
|
|
if ((exitqual & 0xf0) != 0x00)
|
|
return (UNHANDLED);
|
|
|
|
regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
|
|
|
|
vmcs_write(VMCS_CR0_SHADOW, regval);
|
|
|
|
crval = regval | cr0_ones_mask;
|
|
crval &= ~cr0_zeros_mask;
|
|
vmcs_write(VMCS_GUEST_CR0, crval);
|
|
|
|
if (regval & CR0_PG) {
|
|
uint64_t efer, entry_ctls;
|
|
|
|
/*
|
|
* If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
|
|
* the "IA-32e mode guest" bit in VM-entry control must be
|
|
* equal.
|
|
*/
|
|
efer = vmcs_read(VMCS_GUEST_IA32_EFER);
|
|
if (efer & EFER_LME) {
|
|
efer |= EFER_LMA;
|
|
vmcs_write(VMCS_GUEST_IA32_EFER, efer);
|
|
entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
|
|
entry_ctls |= VM_ENTRY_GUEST_LMA;
|
|
vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
|
|
}
|
|
}
|
|
|
|
return (HANDLED);
|
|
}
|
|
|
|
static int
|
|
vmx_emulate_cr4_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
|
|
{
|
|
uint64_t crval, regval;
|
|
|
|
/* We only handle mov to %cr4 at this time */
|
|
if ((exitqual & 0xf0) != 0x00)
|
|
return (UNHANDLED);
|
|
|
|
regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
|
|
|
|
vmcs_write(VMCS_CR4_SHADOW, regval);
|
|
|
|
crval = regval | cr4_ones_mask;
|
|
crval &= ~cr4_zeros_mask;
|
|
vmcs_write(VMCS_GUEST_CR4, crval);
|
|
|
|
return (HANDLED);
|
|
}
|
|
|
|
static int
|
|
vmx_emulate_cr8_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
|
|
{
|
|
struct vlapic *vlapic;
|
|
uint64_t cr8;
|
|
int regnum;
|
|
|
|
/* We only handle mov %cr8 to/from a register at this time. */
|
|
if ((exitqual & 0xe0) != 0x00) {
|
|
return (UNHANDLED);
|
|
}
|
|
|
|
vlapic = vm_lapic(vmx->vm, vcpu);
|
|
regnum = (exitqual >> 8) & 0xf;
|
|
if (exitqual & 0x10) {
|
|
cr8 = vlapic_get_cr8(vlapic);
|
|
vmx_set_guest_reg(vmx, vcpu, regnum, cr8);
|
|
} else {
|
|
cr8 = vmx_get_guest_reg(vmx, vcpu, regnum);
|
|
vlapic_set_cr8(vlapic, cr8);
|
|
}
|
|
|
|
return (HANDLED);
|
|
}
|
|
|
|
/*
|
|
* From section "Guest Register State" in the Intel SDM: CPL = SS.DPL
|
|
*/
|
|
static int
|
|
vmx_cpl(void)
|
|
{
|
|
uint32_t ssar;
|
|
|
|
ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS);
|
|
return ((ssar >> 5) & 0x3);
|
|
}
|
|
|
|
static enum vm_cpu_mode
|
|
vmx_cpu_mode(void)
|
|
{
|
|
uint32_t csar;
|
|
|
|
if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) {
|
|
csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
|
|
if (csar & 0x2000)
|
|
return (CPU_MODE_64BIT); /* CS.L = 1 */
|
|
else
|
|
return (CPU_MODE_COMPATIBILITY);
|
|
} else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) {
|
|
return (CPU_MODE_PROTECTED);
|
|
} else {
|
|
return (CPU_MODE_REAL);
|
|
}
|
|
}
|
|
|
|
static enum vm_paging_mode
|
|
vmx_paging_mode(void)
|
|
{
|
|
|
|
if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG))
|
|
return (PAGING_MODE_FLAT);
|
|
if (!(vmcs_read(VMCS_GUEST_CR4) & CR4_PAE))
|
|
return (PAGING_MODE_32);
|
|
if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME)
|
|
return (PAGING_MODE_64);
|
|
else
|
|
return (PAGING_MODE_PAE);
|
|
}
|
|
|
|
static uint64_t
|
|
inout_str_index(struct vmx *vmx, int vcpuid, int in)
|
|
{
|
|
uint64_t val;
|
|
int error;
|
|
enum vm_reg_name reg;
|
|
|
|
reg = in ? VM_REG_GUEST_RDI : VM_REG_GUEST_RSI;
|
|
error = vmx_getreg(vmx, vcpuid, reg, &val);
|
|
KASSERT(error == 0, ("%s: vmx_getreg error %d", __func__, error));
|
|
return (val);
|
|
}
|
|
|
|
static uint64_t
|
|
inout_str_count(struct vmx *vmx, int vcpuid, int rep)
|
|
{
|
|
uint64_t val;
|
|
int error;
|
|
|
|
if (rep) {
|
|
error = vmx_getreg(vmx, vcpuid, VM_REG_GUEST_RCX, &val);
|
|
KASSERT(!error, ("%s: vmx_getreg error %d", __func__, error));
|
|
} else {
|
|
val = 1;
|
|
}
|
|
return (val);
|
|
}
|
|
|
|
static int
|
|
inout_str_addrsize(uint32_t inst_info)
|
|
{
|
|
uint32_t size;
|
|
|
|
size = (inst_info >> 7) & 0x7;
|
|
switch (size) {
|
|
case 0:
|
|
return (2); /* 16 bit */
|
|
case 1:
|
|
return (4); /* 32 bit */
|
|
case 2:
|
|
return (8); /* 64 bit */
|
|
default:
|
|
panic("%s: invalid size encoding %d", __func__, size);
|
|
}
|
|
}
|
|
|
|
static void
|
|
inout_str_seginfo(struct vmx *vmx, int vcpuid, uint32_t inst_info, int in,
|
|
struct vm_inout_str *vis)
|
|
{
|
|
int error, s;
|
|
|
|
if (in) {
|
|
vis->seg_name = VM_REG_GUEST_ES;
|
|
} else {
|
|
s = (inst_info >> 15) & 0x7;
|
|
vis->seg_name = vm_segment_name(s);
|
|
}
|
|
|
|
error = vmx_getdesc(vmx, vcpuid, vis->seg_name, &vis->seg_desc);
|
|
KASSERT(error == 0, ("%s: vmx_getdesc error %d", __func__, error));
|
|
}
|
|
|
|
static void
|
|
vmx_paging_info(struct vm_guest_paging *paging)
|
|
{
|
|
paging->cr3 = vmcs_guest_cr3();
|
|
paging->cpl = vmx_cpl();
|
|
paging->cpu_mode = vmx_cpu_mode();
|
|
paging->paging_mode = vmx_paging_mode();
|
|
}
|
|
|
|
static void
|
|
vmexit_inst_emul(struct vm_exit *vmexit, uint64_t gpa, uint64_t gla)
|
|
{
|
|
struct vm_guest_paging *paging;
|
|
uint32_t csar;
|
|
|
|
paging = &vmexit->u.inst_emul.paging;
|
|
|
|
vmexit->exitcode = VM_EXITCODE_INST_EMUL;
|
|
vmexit->inst_length = 0;
|
|
vmexit->u.inst_emul.gpa = gpa;
|
|
vmexit->u.inst_emul.gla = gla;
|
|
vmx_paging_info(paging);
|
|
switch (paging->cpu_mode) {
|
|
case CPU_MODE_REAL:
|
|
vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
|
|
vmexit->u.inst_emul.cs_d = 0;
|
|
break;
|
|
case CPU_MODE_PROTECTED:
|
|
case CPU_MODE_COMPATIBILITY:
|
|
vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
|
|
csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
|
|
vmexit->u.inst_emul.cs_d = SEG_DESC_DEF32(csar);
|
|
break;
|
|
default:
|
|
vmexit->u.inst_emul.cs_base = 0;
|
|
vmexit->u.inst_emul.cs_d = 0;
|
|
break;
|
|
}
|
|
vie_init(&vmexit->u.inst_emul.vie, NULL, 0);
|
|
}
|
|
|
|
static int
|
|
ept_fault_type(uint64_t ept_qual)
|
|
{
|
|
int fault_type;
|
|
|
|
if (ept_qual & EPT_VIOLATION_DATA_WRITE)
|
|
fault_type = VM_PROT_WRITE;
|
|
else if (ept_qual & EPT_VIOLATION_INST_FETCH)
|
|
fault_type = VM_PROT_EXECUTE;
|
|
else
|
|
fault_type= VM_PROT_READ;
|
|
|
|
return (fault_type);
|
|
}
|
|
|
|
static boolean_t
|
|
ept_emulation_fault(uint64_t ept_qual)
|
|
{
|
|
int read, write;
|
|
|
|
/* EPT fault on an instruction fetch doesn't make sense here */
|
|
if (ept_qual & EPT_VIOLATION_INST_FETCH)
|
|
return (FALSE);
|
|
|
|
/* EPT fault must be a read fault or a write fault */
|
|
read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
|
|
write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
|
|
if ((read | write) == 0)
|
|
return (FALSE);
|
|
|
|
/*
|
|
* The EPT violation must have been caused by accessing a
|
|
* guest-physical address that is a translation of a guest-linear
|
|
* address.
|
|
*/
|
|
if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
|
|
(ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
|
|
return (FALSE);
|
|
}
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
static __inline int
|
|
apic_access_virtualization(struct vmx *vmx, int vcpuid)
|
|
{
|
|
uint32_t proc_ctls2;
|
|
|
|
proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
|
|
return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0);
|
|
}
|
|
|
|
static __inline int
|
|
x2apic_virtualization(struct vmx *vmx, int vcpuid)
|
|
{
|
|
uint32_t proc_ctls2;
|
|
|
|
proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
|
|
return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0);
|
|
}
|
|
|
|
static int
|
|
vmx_handle_apic_write(struct vmx *vmx, int vcpuid, struct vlapic *vlapic,
|
|
uint64_t qual)
|
|
{
|
|
int error, handled, offset;
|
|
uint32_t *apic_regs, vector;
|
|
bool retu;
|
|
|
|
handled = HANDLED;
|
|
offset = APIC_WRITE_OFFSET(qual);
|
|
|
|
if (!apic_access_virtualization(vmx, vcpuid)) {
|
|
/*
|
|
* In general there should not be any APIC write VM-exits
|
|
* unless APIC-access virtualization is enabled.
|
|
*
|
|
* However self-IPI virtualization can legitimately trigger
|
|
* an APIC-write VM-exit so treat it specially.
|
|
*/
|
|
if (x2apic_virtualization(vmx, vcpuid) &&
|
|
offset == APIC_OFFSET_SELF_IPI) {
|
|
apic_regs = (uint32_t *)(vlapic->apic_page);
|
|
vector = apic_regs[APIC_OFFSET_SELF_IPI / 4];
|
|
vlapic_self_ipi_handler(vlapic, vector);
|
|
return (HANDLED);
|
|
} else
|
|
return (UNHANDLED);
|
|
}
|
|
|
|
switch (offset) {
|
|
case APIC_OFFSET_ID:
|
|
vlapic_id_write_handler(vlapic);
|
|
break;
|
|
case APIC_OFFSET_LDR:
|
|
vlapic_ldr_write_handler(vlapic);
|
|
break;
|
|
case APIC_OFFSET_DFR:
|
|
vlapic_dfr_write_handler(vlapic);
|
|
break;
|
|
case APIC_OFFSET_SVR:
|
|
vlapic_svr_write_handler(vlapic);
|
|
break;
|
|
case APIC_OFFSET_ESR:
|
|
vlapic_esr_write_handler(vlapic);
|
|
break;
|
|
case APIC_OFFSET_ICR_LOW:
|
|
retu = false;
|
|
error = vlapic_icrlo_write_handler(vlapic, &retu);
|
|
if (error != 0 || retu)
|
|
handled = UNHANDLED;
|
|
break;
|
|
case APIC_OFFSET_CMCI_LVT:
|
|
case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
|
|
vlapic_lvt_write_handler(vlapic, offset);
|
|
break;
|
|
case APIC_OFFSET_TIMER_ICR:
|
|
vlapic_icrtmr_write_handler(vlapic);
|
|
break;
|
|
case APIC_OFFSET_TIMER_DCR:
|
|
vlapic_dcr_write_handler(vlapic);
|
|
break;
|
|
default:
|
|
handled = UNHANDLED;
|
|
break;
|
|
}
|
|
return (handled);
|
|
}
|
|
|
|
static bool
|
|
apic_access_fault(struct vmx *vmx, int vcpuid, uint64_t gpa)
|
|
{
|
|
|
|
if (apic_access_virtualization(vmx, vcpuid) &&
|
|
(gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
|
|
return (true);
|
|
else
|
|
return (false);
|
|
}
|
|
|
|
static int
|
|
vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
|
|
{
|
|
uint64_t qual;
|
|
int access_type, offset, allowed;
|
|
|
|
if (!apic_access_virtualization(vmx, vcpuid))
|
|
return (UNHANDLED);
|
|
|
|
qual = vmexit->u.vmx.exit_qualification;
|
|
access_type = APIC_ACCESS_TYPE(qual);
|
|
offset = APIC_ACCESS_OFFSET(qual);
|
|
|
|
allowed = 0;
|
|
if (access_type == 0) {
|
|
/*
|
|
* Read data access to the following registers is expected.
|
|
*/
|
|
switch (offset) {
|
|
case APIC_OFFSET_APR:
|
|
case APIC_OFFSET_PPR:
|
|
case APIC_OFFSET_RRR:
|
|
case APIC_OFFSET_CMCI_LVT:
|
|
case APIC_OFFSET_TIMER_CCR:
|
|
allowed = 1;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
} else if (access_type == 1) {
|
|
/*
|
|
* Write data access to the following registers is expected.
|
|
*/
|
|
switch (offset) {
|
|
case APIC_OFFSET_VER:
|
|
case APIC_OFFSET_APR:
|
|
case APIC_OFFSET_PPR:
|
|
case APIC_OFFSET_RRR:
|
|
case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
|
|
case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
|
|
case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
|
|
case APIC_OFFSET_CMCI_LVT:
|
|
case APIC_OFFSET_TIMER_CCR:
|
|
allowed = 1;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (allowed) {
|
|
vmexit_inst_emul(vmexit, DEFAULT_APIC_BASE + offset,
|
|
VIE_INVALID_GLA);
|
|
}
|
|
|
|
/*
|
|
* Regardless of whether the APIC-access is allowed this handler
|
|
* always returns UNHANDLED:
|
|
* - if the access is allowed then it is handled by emulating the
|
|
* instruction that caused the VM-exit (outside the critical section)
|
|
* - if the access is not allowed then it will be converted to an
|
|
* exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
|
|
*/
|
|
return (UNHANDLED);
|
|
}
|
|
|
|
static enum task_switch_reason
|
|
vmx_task_switch_reason(uint64_t qual)
|
|
{
|
|
int reason;
|
|
|
|
reason = (qual >> 30) & 0x3;
|
|
switch (reason) {
|
|
case 0:
|
|
return (TSR_CALL);
|
|
case 1:
|
|
return (TSR_IRET);
|
|
case 2:
|
|
return (TSR_JMP);
|
|
case 3:
|
|
return (TSR_IDT_GATE);
|
|
default:
|
|
panic("%s: invalid reason %d", __func__, reason);
|
|
}
|
|
}
|
|
|
|
static int
|
|
emulate_wrmsr(struct vmx *vmx, int vcpuid, u_int num, uint64_t val, bool *retu)
|
|
{
|
|
int error;
|
|
|
|
if (lapic_msr(num))
|
|
error = lapic_wrmsr(vmx->vm, vcpuid, num, val, retu);
|
|
else
|
|
error = vmx_wrmsr(vmx, vcpuid, num, val, retu);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
emulate_rdmsr(struct vmx *vmx, int vcpuid, u_int num, bool *retu)
|
|
{
|
|
struct vmxctx *vmxctx;
|
|
uint64_t result;
|
|
uint32_t eax, edx;
|
|
int error;
|
|
|
|
if (lapic_msr(num))
|
|
error = lapic_rdmsr(vmx->vm, vcpuid, num, &result, retu);
|
|
else
|
|
error = vmx_rdmsr(vmx, vcpuid, num, &result, retu);
|
|
|
|
if (error == 0) {
|
|
eax = result;
|
|
vmxctx = &vmx->ctx[vcpuid];
|
|
error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RAX, eax);
|
|
KASSERT(error == 0, ("vmxctx_setreg(rax) error %d", error));
|
|
|
|
edx = result >> 32;
|
|
error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RDX, edx);
|
|
KASSERT(error == 0, ("vmxctx_setreg(rdx) error %d", error));
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
|
|
{
|
|
int error, errcode, errcode_valid, handled, in;
|
|
struct vmxctx *vmxctx;
|
|
struct vlapic *vlapic;
|
|
struct vm_inout_str *vis;
|
|
struct vm_task_switch *ts;
|
|
uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, inst_info;
|
|
uint32_t intr_type, intr_vec, reason;
|
|
uint64_t exitintinfo, qual, gpa;
|
|
bool retu;
|
|
|
|
CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
|
|
CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
|
|
|
|
handled = UNHANDLED;
|
|
vmxctx = &vmx->ctx[vcpu];
|
|
|
|
qual = vmexit->u.vmx.exit_qualification;
|
|
reason = vmexit->u.vmx.exit_reason;
|
|
vmexit->exitcode = VM_EXITCODE_BOGUS;
|
|
|
|
vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
|
|
SDT_PROBE3(vmm, vmx, exit, entry, vmx, vcpu, vmexit);
|
|
|
|
/*
|
|
* VM-entry failures during or after loading guest state.
|
|
*
|
|
* These VM-exits are uncommon but must be handled specially
|
|
* as most VM-exit fields are not populated as usual.
|
|
*/
|
|
if (__predict_false(reason == EXIT_REASON_MCE_DURING_ENTRY)) {
|
|
VCPU_CTR0(vmx->vm, vcpu, "Handling MCE during VM-entry");
|
|
__asm __volatile("int $18");
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* VM exits that can be triggered during event delivery need to
|
|
* be handled specially by re-injecting the event if the IDT
|
|
* vectoring information field's valid bit is set.
|
|
*
|
|
* See "Information for VM Exits During Event Delivery" in Intel SDM
|
|
* for details.
|
|
*/
|
|
idtvec_info = vmcs_idt_vectoring_info();
|
|
if (idtvec_info & VMCS_IDT_VEC_VALID) {
|
|
idtvec_info &= ~(1 << 12); /* clear undefined bit */
|
|
exitintinfo = idtvec_info;
|
|
if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
|
|
idtvec_err = vmcs_idt_vectoring_err();
|
|
exitintinfo |= (uint64_t)idtvec_err << 32;
|
|
}
|
|
error = vm_exit_intinfo(vmx->vm, vcpu, exitintinfo);
|
|
KASSERT(error == 0, ("%s: vm_set_intinfo error %d",
|
|
__func__, error));
|
|
|
|
/*
|
|
* If 'virtual NMIs' are being used and the VM-exit
|
|
* happened while injecting an NMI during the previous
|
|
* VM-entry, then clear "blocking by NMI" in the
|
|
* Guest Interruptibility-State so the NMI can be
|
|
* reinjected on the subsequent VM-entry.
|
|
*
|
|
* However, if the NMI was being delivered through a task
|
|
* gate, then the new task must start execution with NMIs
|
|
* blocked so don't clear NMI blocking in this case.
|
|
*/
|
|
intr_type = idtvec_info & VMCS_INTR_T_MASK;
|
|
if (intr_type == VMCS_INTR_T_NMI) {
|
|
if (reason != EXIT_REASON_TASK_SWITCH)
|
|
vmx_clear_nmi_blocking(vmx, vcpu);
|
|
else
|
|
vmx_assert_nmi_blocking(vmx, vcpu);
|
|
}
|
|
|
|
/*
|
|
* Update VM-entry instruction length if the event being
|
|
* delivered was a software interrupt or software exception.
|
|
*/
|
|
if (intr_type == VMCS_INTR_T_SWINTR ||
|
|
intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION ||
|
|
intr_type == VMCS_INTR_T_SWEXCEPTION) {
|
|
vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
|
|
}
|
|
}
|
|
|
|
switch (reason) {
|
|
case EXIT_REASON_TASK_SWITCH:
|
|
ts = &vmexit->u.task_switch;
|
|
ts->tsssel = qual & 0xffff;
|
|
ts->reason = vmx_task_switch_reason(qual);
|
|
ts->ext = 0;
|
|
ts->errcode_valid = 0;
|
|
vmx_paging_info(&ts->paging);
|
|
/*
|
|
* If the task switch was due to a CALL, JMP, IRET, software
|
|
* interrupt (INT n) or software exception (INT3, INTO),
|
|
* then the saved %rip references the instruction that caused
|
|
* the task switch. The instruction length field in the VMCS
|
|
* is valid in this case.
|
|
*
|
|
* In all other cases (e.g., NMI, hardware exception) the
|
|
* saved %rip is one that would have been saved in the old TSS
|
|
* had the task switch completed normally so the instruction
|
|
* length field is not needed in this case and is explicitly
|
|
* set to 0.
|
|
*/
|
|
if (ts->reason == TSR_IDT_GATE) {
|
|
KASSERT(idtvec_info & VMCS_IDT_VEC_VALID,
|
|
("invalid idtvec_info %#x for IDT task switch",
|
|
idtvec_info));
|
|
intr_type = idtvec_info & VMCS_INTR_T_MASK;
|
|
if (intr_type != VMCS_INTR_T_SWINTR &&
|
|
intr_type != VMCS_INTR_T_SWEXCEPTION &&
|
|
intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) {
|
|
/* Task switch triggered by external event */
|
|
ts->ext = 1;
|
|
vmexit->inst_length = 0;
|
|
if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
|
|
ts->errcode_valid = 1;
|
|
ts->errcode = vmcs_idt_vectoring_err();
|
|
}
|
|
}
|
|
}
|
|
vmexit->exitcode = VM_EXITCODE_TASK_SWITCH;
|
|
SDT_PROBE4(vmm, vmx, exit, taskswitch, vmx, vcpu, vmexit, ts);
|
|
VCPU_CTR4(vmx->vm, vcpu, "task switch reason %d, tss 0x%04x, "
|
|
"%s errcode 0x%016lx", ts->reason, ts->tsssel,
|
|
ts->ext ? "external" : "internal",
|
|
((uint64_t)ts->errcode << 32) | ts->errcode_valid);
|
|
break;
|
|
case EXIT_REASON_CR_ACCESS:
|
|
vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
|
|
SDT_PROBE4(vmm, vmx, exit, craccess, vmx, vcpu, vmexit, qual);
|
|
switch (qual & 0xf) {
|
|
case 0:
|
|
handled = vmx_emulate_cr0_access(vmx, vcpu, qual);
|
|
break;
|
|
case 4:
|
|
handled = vmx_emulate_cr4_access(vmx, vcpu, qual);
|
|
break;
|
|
case 8:
|
|
handled = vmx_emulate_cr8_access(vmx, vcpu, qual);
|
|
break;
|
|
}
|
|
break;
|
|
case EXIT_REASON_RDMSR:
|
|
vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1);
|
|
retu = false;
|
|
ecx = vmxctx->guest_rcx;
|
|
VCPU_CTR1(vmx->vm, vcpu, "rdmsr 0x%08x", ecx);
|
|
SDT_PROBE4(vmm, vmx, exit, rdmsr, vmx, vcpu, vmexit, ecx);
|
|
error = emulate_rdmsr(vmx, vcpu, ecx, &retu);
|
|
if (error) {
|
|
vmexit->exitcode = VM_EXITCODE_RDMSR;
|
|
vmexit->u.msr.code = ecx;
|
|
} else if (!retu) {
|
|
handled = HANDLED;
|
|
} else {
|
|
/* Return to userspace with a valid exitcode */
|
|
KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
|
|
("emulate_rdmsr retu with bogus exitcode"));
|
|
}
|
|
break;
|
|
case EXIT_REASON_WRMSR:
|
|
vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1);
|
|
retu = false;
|
|
eax = vmxctx->guest_rax;
|
|
ecx = vmxctx->guest_rcx;
|
|
edx = vmxctx->guest_rdx;
|
|
VCPU_CTR2(vmx->vm, vcpu, "wrmsr 0x%08x value 0x%016lx",
|
|
ecx, (uint64_t)edx << 32 | eax);
|
|
SDT_PROBE5(vmm, vmx, exit, wrmsr, vmx, vmexit, vcpu, ecx,
|
|
(uint64_t)edx << 32 | eax);
|
|
error = emulate_wrmsr(vmx, vcpu, ecx,
|
|
(uint64_t)edx << 32 | eax, &retu);
|
|
if (error) {
|
|
vmexit->exitcode = VM_EXITCODE_WRMSR;
|
|
vmexit->u.msr.code = ecx;
|
|
vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
|
|
} else if (!retu) {
|
|
handled = HANDLED;
|
|
} else {
|
|
/* Return to userspace with a valid exitcode */
|
|
KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
|
|
("emulate_wrmsr retu with bogus exitcode"));
|
|
}
|
|
break;
|
|
case EXIT_REASON_HLT:
|
|
vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
|
|
SDT_PROBE3(vmm, vmx, exit, halt, vmx, vcpu, vmexit);
|
|
vmexit->exitcode = VM_EXITCODE_HLT;
|
|
vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
|
|
if (virtual_interrupt_delivery)
|
|
vmexit->u.hlt.intr_status =
|
|
vmcs_read(VMCS_GUEST_INTR_STATUS);
|
|
else
|
|
vmexit->u.hlt.intr_status = 0;
|
|
break;
|
|
case EXIT_REASON_MTF:
|
|
vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
|
|
SDT_PROBE3(vmm, vmx, exit, mtrap, vmx, vcpu, vmexit);
|
|
vmexit->exitcode = VM_EXITCODE_MTRAP;
|
|
vmexit->inst_length = 0;
|
|
break;
|
|
case EXIT_REASON_PAUSE:
|
|
vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
|
|
SDT_PROBE3(vmm, vmx, exit, pause, vmx, vcpu, vmexit);
|
|
vmexit->exitcode = VM_EXITCODE_PAUSE;
|
|
break;
|
|
case EXIT_REASON_INTR_WINDOW:
|
|
vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
|
|
SDT_PROBE3(vmm, vmx, exit, intrwindow, vmx, vcpu, vmexit);
|
|
vmx_clear_int_window_exiting(vmx, vcpu);
|
|
return (1);
|
|
case EXIT_REASON_EXT_INTR:
|
|
/*
|
|
* External interrupts serve only to cause VM exits and allow
|
|
* the host interrupt handler to run.
|
|
*
|
|
* If this external interrupt triggers a virtual interrupt
|
|
* to a VM, then that state will be recorded by the
|
|
* host interrupt handler in the VM's softc. We will inject
|
|
* this virtual interrupt during the subsequent VM enter.
|
|
*/
|
|
intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
|
|
SDT_PROBE4(vmm, vmx, exit, interrupt,
|
|
vmx, vcpu, vmexit, intr_info);
|
|
|
|
/*
|
|
* XXX: Ignore this exit if VMCS_INTR_VALID is not set.
|
|
* This appears to be a bug in VMware Fusion?
|
|
*/
|
|
if (!(intr_info & VMCS_INTR_VALID))
|
|
return (1);
|
|
KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
|
|
(intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
|
|
("VM exit interruption info invalid: %#x", intr_info));
|
|
vmx_trigger_hostintr(intr_info & 0xff);
|
|
|
|
/*
|
|
* This is special. We want to treat this as an 'handled'
|
|
* VM-exit but not increment the instruction pointer.
|
|
*/
|
|
vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
|
|
return (1);
|
|
case EXIT_REASON_NMI_WINDOW:
|
|
SDT_PROBE3(vmm, vmx, exit, nmiwindow, vmx, vcpu, vmexit);
|
|
/* Exit to allow the pending virtual NMI to be injected */
|
|
if (vm_nmi_pending(vmx->vm, vcpu))
|
|
vmx_inject_nmi(vmx, vcpu);
|
|
vmx_clear_nmi_window_exiting(vmx, vcpu);
|
|
vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
|
|
return (1);
|
|
case EXIT_REASON_INOUT:
|
|
vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
|
|
vmexit->exitcode = VM_EXITCODE_INOUT;
|
|
vmexit->u.inout.bytes = (qual & 0x7) + 1;
|
|
vmexit->u.inout.in = in = (qual & 0x8) ? 1 : 0;
|
|
vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
|
|
vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
|
|
vmexit->u.inout.port = (uint16_t)(qual >> 16);
|
|
vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
|
|
if (vmexit->u.inout.string) {
|
|
inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO);
|
|
vmexit->exitcode = VM_EXITCODE_INOUT_STR;
|
|
vis = &vmexit->u.inout_str;
|
|
vmx_paging_info(&vis->paging);
|
|
vis->rflags = vmcs_read(VMCS_GUEST_RFLAGS);
|
|
vis->cr0 = vmcs_read(VMCS_GUEST_CR0);
|
|
vis->index = inout_str_index(vmx, vcpu, in);
|
|
vis->count = inout_str_count(vmx, vcpu, vis->inout.rep);
|
|
vis->addrsize = inout_str_addrsize(inst_info);
|
|
inout_str_seginfo(vmx, vcpu, inst_info, in, vis);
|
|
}
|
|
SDT_PROBE3(vmm, vmx, exit, inout, vmx, vcpu, vmexit);
|
|
break;
|
|
case EXIT_REASON_CPUID:
|
|
vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
|
|
SDT_PROBE3(vmm, vmx, exit, cpuid, vmx, vcpu, vmexit);
|
|
handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx);
|
|
break;
|
|
case EXIT_REASON_EXCEPTION:
|
|
vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1);
|
|
intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
|
|
KASSERT((intr_info & VMCS_INTR_VALID) != 0,
|
|
("VM exit interruption info invalid: %#x", intr_info));
|
|
|
|
intr_vec = intr_info & 0xff;
|
|
intr_type = intr_info & VMCS_INTR_T_MASK;
|
|
|
|
/*
|
|
* If Virtual NMIs control is 1 and the VM-exit is due to a
|
|
* fault encountered during the execution of IRET then we must
|
|
* restore the state of "virtual-NMI blocking" before resuming
|
|
* the guest.
|
|
*
|
|
* See "Resuming Guest Software after Handling an Exception".
|
|
* See "Information for VM Exits Due to Vectored Events".
|
|
*/
|
|
if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
|
|
(intr_vec != IDT_DF) &&
|
|
(intr_info & EXIT_QUAL_NMIUDTI) != 0)
|
|
vmx_restore_nmi_blocking(vmx, vcpu);
|
|
|
|
/*
|
|
* The NMI has already been handled in vmx_exit_handle_nmi().
|
|
*/
|
|
if (intr_type == VMCS_INTR_T_NMI)
|
|
return (1);
|
|
|
|
/*
|
|
* Call the machine check handler by hand. Also don't reflect
|
|
* the machine check back into the guest.
|
|
*/
|
|
if (intr_vec == IDT_MC) {
|
|
VCPU_CTR0(vmx->vm, vcpu, "Vectoring to MCE handler");
|
|
__asm __volatile("int $18");
|
|
return (1);
|
|
}
|
|
|
|
if (intr_vec == IDT_PF) {
|
|
error = vmxctx_setreg(vmxctx, VM_REG_GUEST_CR2, qual);
|
|
KASSERT(error == 0, ("%s: vmxctx_setreg(cr2) error %d",
|
|
__func__, error));
|
|
}
|
|
|
|
/*
|
|
* Software exceptions exhibit trap-like behavior. This in
|
|
* turn requires populating the VM-entry instruction length
|
|
* so that the %rip in the trap frame is past the INT3/INTO
|
|
* instruction.
|
|
*/
|
|
if (intr_type == VMCS_INTR_T_SWEXCEPTION)
|
|
vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
|
|
|
|
/* Reflect all other exceptions back into the guest */
|
|
errcode_valid = errcode = 0;
|
|
if (intr_info & VMCS_INTR_DEL_ERRCODE) {
|
|
errcode_valid = 1;
|
|
errcode = vmcs_read(VMCS_EXIT_INTR_ERRCODE);
|
|
}
|
|
VCPU_CTR2(vmx->vm, vcpu, "Reflecting exception %d/%#x into "
|
|
"the guest", intr_vec, errcode);
|
|
SDT_PROBE5(vmm, vmx, exit, exception,
|
|
vmx, vcpu, vmexit, intr_vec, errcode);
|
|
error = vm_inject_exception(vmx->vm, vcpu, intr_vec,
|
|
errcode_valid, errcode, 0);
|
|
KASSERT(error == 0, ("%s: vm_inject_exception error %d",
|
|
__func__, error));
|
|
return (1);
|
|
|
|
case EXIT_REASON_EPT_FAULT:
|
|
/*
|
|
* If 'gpa' lies within the address space allocated to
|
|
* memory then this must be a nested page fault otherwise
|
|
* this must be an instruction that accesses MMIO space.
|
|
*/
|
|
gpa = vmcs_gpa();
|
|
if (vm_mem_allocated(vmx->vm, vcpu, gpa) ||
|
|
apic_access_fault(vmx, vcpu, gpa)) {
|
|
vmexit->exitcode = VM_EXITCODE_PAGING;
|
|
vmexit->inst_length = 0;
|
|
vmexit->u.paging.gpa = gpa;
|
|
vmexit->u.paging.fault_type = ept_fault_type(qual);
|
|
vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
|
|
SDT_PROBE5(vmm, vmx, exit, nestedfault,
|
|
vmx, vcpu, vmexit, gpa, qual);
|
|
} else if (ept_emulation_fault(qual)) {
|
|
vmexit_inst_emul(vmexit, gpa, vmcs_gla());
|
|
vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INST_EMUL, 1);
|
|
SDT_PROBE4(vmm, vmx, exit, mmiofault,
|
|
vmx, vcpu, vmexit, gpa);
|
|
}
|
|
/*
|
|
* If Virtual NMIs control is 1 and the VM-exit is due to an
|
|
* EPT fault during the execution of IRET then we must restore
|
|
* the state of "virtual-NMI blocking" before resuming.
|
|
*
|
|
* See description of "NMI unblocking due to IRET" in
|
|
* "Exit Qualification for EPT Violations".
|
|
*/
|
|
if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
|
|
(qual & EXIT_QUAL_NMIUDTI) != 0)
|
|
vmx_restore_nmi_blocking(vmx, vcpu);
|
|
break;
|
|
case EXIT_REASON_VIRTUALIZED_EOI:
|
|
vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI;
|
|
vmexit->u.ioapic_eoi.vector = qual & 0xFF;
|
|
SDT_PROBE3(vmm, vmx, exit, eoi, vmx, vcpu, vmexit);
|
|
vmexit->inst_length = 0; /* trap-like */
|
|
break;
|
|
case EXIT_REASON_APIC_ACCESS:
|
|
SDT_PROBE3(vmm, vmx, exit, apicaccess, vmx, vcpu, vmexit);
|
|
handled = vmx_handle_apic_access(vmx, vcpu, vmexit);
|
|
break;
|
|
case EXIT_REASON_APIC_WRITE:
|
|
/*
|
|
* APIC-write VM exit is trap-like so the %rip is already
|
|
* pointing to the next instruction.
|
|
*/
|
|
vmexit->inst_length = 0;
|
|
vlapic = vm_lapic(vmx->vm, vcpu);
|
|
SDT_PROBE4(vmm, vmx, exit, apicwrite,
|
|
vmx, vcpu, vmexit, vlapic);
|
|
handled = vmx_handle_apic_write(vmx, vcpu, vlapic, qual);
|
|
break;
|
|
case EXIT_REASON_XSETBV:
|
|
SDT_PROBE3(vmm, vmx, exit, xsetbv, vmx, vcpu, vmexit);
|
|
handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit);
|
|
break;
|
|
case EXIT_REASON_MONITOR:
|
|
SDT_PROBE3(vmm, vmx, exit, monitor, vmx, vcpu, vmexit);
|
|
vmexit->exitcode = VM_EXITCODE_MONITOR;
|
|
break;
|
|
case EXIT_REASON_MWAIT:
|
|
SDT_PROBE3(vmm, vmx, exit, mwait, vmx, vcpu, vmexit);
|
|
vmexit->exitcode = VM_EXITCODE_MWAIT;
|
|
break;
|
|
case EXIT_REASON_VMCALL:
|
|
case EXIT_REASON_VMCLEAR:
|
|
case EXIT_REASON_VMLAUNCH:
|
|
case EXIT_REASON_VMPTRLD:
|
|
case EXIT_REASON_VMPTRST:
|
|
case EXIT_REASON_VMREAD:
|
|
case EXIT_REASON_VMRESUME:
|
|
case EXIT_REASON_VMWRITE:
|
|
case EXIT_REASON_VMXOFF:
|
|
case EXIT_REASON_VMXON:
|
|
SDT_PROBE3(vmm, vmx, exit, vminsn, vmx, vcpu, vmexit);
|
|
vmexit->exitcode = VM_EXITCODE_VMINSN;
|
|
break;
|
|
default:
|
|
SDT_PROBE4(vmm, vmx, exit, unknown,
|
|
vmx, vcpu, vmexit, reason);
|
|
vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
|
|
break;
|
|
}
|
|
|
|
if (handled) {
|
|
/*
|
|
* It is possible that control is returned to userland
|
|
* even though we were able to handle the VM exit in the
|
|
* kernel.
|
|
*
|
|
* In such a case we want to make sure that the userland
|
|
* restarts guest execution at the instruction *after*
|
|
* the one we just processed. Therefore we update the
|
|
* guest rip in the VMCS and in 'vmexit'.
|
|
*/
|
|
vmexit->rip += vmexit->inst_length;
|
|
vmexit->inst_length = 0;
|
|
vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
|
|
} else {
|
|
if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
|
|
/*
|
|
* If this VM exit was not claimed by anybody then
|
|
* treat it as a generic VMX exit.
|
|
*/
|
|
vmexit->exitcode = VM_EXITCODE_VMX;
|
|
vmexit->u.vmx.status = VM_SUCCESS;
|
|
vmexit->u.vmx.inst_type = 0;
|
|
vmexit->u.vmx.inst_error = 0;
|
|
} else {
|
|
/*
|
|
* The exitcode and collateral have been populated.
|
|
* The VM exit will be processed further in userland.
|
|
*/
|
|
}
|
|
}
|
|
|
|
SDT_PROBE4(vmm, vmx, exit, return,
|
|
vmx, vcpu, vmexit, handled);
|
|
return (handled);
|
|
}
|
|
|
|
static __inline void
|
|
vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
|
|
{
|
|
|
|
KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
|
|
("vmx_exit_inst_error: invalid inst_fail_status %d",
|
|
vmxctx->inst_fail_status));
|
|
|
|
vmexit->inst_length = 0;
|
|
vmexit->exitcode = VM_EXITCODE_VMX;
|
|
vmexit->u.vmx.status = vmxctx->inst_fail_status;
|
|
vmexit->u.vmx.inst_error = vmcs_instruction_error();
|
|
vmexit->u.vmx.exit_reason = ~0;
|
|
vmexit->u.vmx.exit_qualification = ~0;
|
|
|
|
switch (rc) {
|
|
case VMX_VMRESUME_ERROR:
|
|
case VMX_VMLAUNCH_ERROR:
|
|
case VMX_INVEPT_ERROR:
|
|
vmexit->u.vmx.inst_type = rc;
|
|
break;
|
|
default:
|
|
panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the NMI-exiting VM execution control is set to '1' then an NMI in
|
|
* non-root operation causes a VM-exit. NMI blocking is in effect so it is
|
|
* sufficient to simply vector to the NMI handler via a software interrupt.
|
|
* However, this must be done before maskable interrupts are enabled
|
|
* otherwise the "iret" issued by an interrupt handler will incorrectly
|
|
* clear NMI blocking.
|
|
*/
|
|
static __inline void
|
|
vmx_exit_handle_nmi(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
|
|
{
|
|
uint32_t intr_info;
|
|
|
|
KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
|
|
|
|
if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION)
|
|
return;
|
|
|
|
intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
|
|
KASSERT((intr_info & VMCS_INTR_VALID) != 0,
|
|
("VM exit interruption info invalid: %#x", intr_info));
|
|
|
|
if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
|
|
KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due "
|
|
"to NMI has invalid vector: %#x", intr_info));
|
|
VCPU_CTR0(vmx->vm, vcpuid, "Vectoring to NMI handler");
|
|
__asm __volatile("int $2");
|
|
}
|
|
}
|
|
|
|
static __inline void
|
|
vmx_dr_enter_guest(struct vmxctx *vmxctx)
|
|
{
|
|
register_t rflags;
|
|
|
|
/* Save host control debug registers. */
|
|
vmxctx->host_dr7 = rdr7();
|
|
vmxctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
|
|
|
|
/*
|
|
* Disable debugging in DR7 and DEBUGCTL to avoid triggering
|
|
* exceptions in the host based on the guest DRx values. The
|
|
* guest DR7 and DEBUGCTL are saved/restored in the VMCS.
|
|
*/
|
|
load_dr7(0);
|
|
wrmsr(MSR_DEBUGCTLMSR, 0);
|
|
|
|
/*
|
|
* Disable single stepping the kernel to avoid corrupting the
|
|
* guest DR6. A debugger might still be able to corrupt the
|
|
* guest DR6 by setting a breakpoint after this point and then
|
|
* single stepping.
|
|
*/
|
|
rflags = read_rflags();
|
|
vmxctx->host_tf = rflags & PSL_T;
|
|
write_rflags(rflags & ~PSL_T);
|
|
|
|
/* Save host debug registers. */
|
|
vmxctx->host_dr0 = rdr0();
|
|
vmxctx->host_dr1 = rdr1();
|
|
vmxctx->host_dr2 = rdr2();
|
|
vmxctx->host_dr3 = rdr3();
|
|
vmxctx->host_dr6 = rdr6();
|
|
|
|
/* Restore guest debug registers. */
|
|
load_dr0(vmxctx->guest_dr0);
|
|
load_dr1(vmxctx->guest_dr1);
|
|
load_dr2(vmxctx->guest_dr2);
|
|
load_dr3(vmxctx->guest_dr3);
|
|
load_dr6(vmxctx->guest_dr6);
|
|
}
|
|
|
|
static __inline void
|
|
vmx_dr_leave_guest(struct vmxctx *vmxctx)
|
|
{
|
|
|
|
/* Save guest debug registers. */
|
|
vmxctx->guest_dr0 = rdr0();
|
|
vmxctx->guest_dr1 = rdr1();
|
|
vmxctx->guest_dr2 = rdr2();
|
|
vmxctx->guest_dr3 = rdr3();
|
|
vmxctx->guest_dr6 = rdr6();
|
|
|
|
/*
|
|
* Restore host debug registers. Restore DR7, DEBUGCTL, and
|
|
* PSL_T last.
|
|
*/
|
|
load_dr0(vmxctx->host_dr0);
|
|
load_dr1(vmxctx->host_dr1);
|
|
load_dr2(vmxctx->host_dr2);
|
|
load_dr3(vmxctx->host_dr3);
|
|
load_dr6(vmxctx->host_dr6);
|
|
wrmsr(MSR_DEBUGCTLMSR, vmxctx->host_debugctl);
|
|
load_dr7(vmxctx->host_dr7);
|
|
write_rflags(read_rflags() | vmxctx->host_tf);
|
|
}
|
|
|
|
static int
|
|
vmx_run(void *arg, int vcpu, register_t rip, pmap_t pmap,
|
|
struct vm_eventinfo *evinfo)
|
|
{
|
|
int rc, handled, launched;
|
|
struct vmx *vmx;
|
|
struct vm *vm;
|
|
struct vmxctx *vmxctx;
|
|
struct vmcs *vmcs;
|
|
struct vm_exit *vmexit;
|
|
struct vlapic *vlapic;
|
|
uint32_t exit_reason;
|
|
struct region_descriptor gdtr, idtr;
|
|
uint16_t ldt_sel;
|
|
|
|
vmx = arg;
|
|
vm = vmx->vm;
|
|
vmcs = &vmx->vmcs[vcpu];
|
|
vmxctx = &vmx->ctx[vcpu];
|
|
vlapic = vm_lapic(vm, vcpu);
|
|
vmexit = vm_exitinfo(vm, vcpu);
|
|
launched = 0;
|
|
|
|
KASSERT(vmxctx->pmap == pmap,
|
|
("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap));
|
|
|
|
vmx_msr_guest_enter(vmx, vcpu);
|
|
|
|
VMPTRLD(vmcs);
|
|
|
|
/*
|
|
* XXX
|
|
* We do this every time because we may setup the virtual machine
|
|
* from a different process than the one that actually runs it.
|
|
*
|
|
* If the life of a virtual machine was spent entirely in the context
|
|
* of a single process we could do this once in vmx_vminit().
|
|
*/
|
|
vmcs_write(VMCS_HOST_CR3, rcr3());
|
|
|
|
vmcs_write(VMCS_GUEST_RIP, rip);
|
|
vmx_set_pcpu_defaults(vmx, vcpu, pmap);
|
|
do {
|
|
KASSERT(vmcs_guest_rip() == rip, ("%s: vmcs guest rip mismatch "
|
|
"%#lx/%#lx", __func__, vmcs_guest_rip(), rip));
|
|
|
|
handled = UNHANDLED;
|
|
/*
|
|
* Interrupts are disabled from this point on until the
|
|
* guest starts executing. This is done for the following
|
|
* reasons:
|
|
*
|
|
* If an AST is asserted on this thread after the check below,
|
|
* then the IPI_AST notification will not be lost, because it
|
|
* will cause a VM exit due to external interrupt as soon as
|
|
* the guest state is loaded.
|
|
*
|
|
* A posted interrupt after 'vmx_inject_interrupts()' will
|
|
* not be "lost" because it will be held pending in the host
|
|
* APIC because interrupts are disabled. The pending interrupt
|
|
* will be recognized as soon as the guest state is loaded.
|
|
*
|
|
* The same reasoning applies to the IPI generated by
|
|
* pmap_invalidate_ept().
|
|
*/
|
|
disable_intr();
|
|
vmx_inject_interrupts(vmx, vcpu, vlapic, rip);
|
|
|
|
/*
|
|
* Check for vcpu suspension after injecting events because
|
|
* vmx_inject_interrupts() can suspend the vcpu due to a
|
|
* triple fault.
|
|
*/
|
|
if (vcpu_suspended(evinfo)) {
|
|
enable_intr();
|
|
vm_exit_suspended(vmx->vm, vcpu, rip);
|
|
break;
|
|
}
|
|
|
|
if (vcpu_rendezvous_pending(evinfo)) {
|
|
enable_intr();
|
|
vm_exit_rendezvous(vmx->vm, vcpu, rip);
|
|
break;
|
|
}
|
|
|
|
if (vcpu_reqidle(evinfo)) {
|
|
enable_intr();
|
|
vm_exit_reqidle(vmx->vm, vcpu, rip);
|
|
break;
|
|
}
|
|
|
|
if (vcpu_should_yield(vm, vcpu)) {
|
|
enable_intr();
|
|
vm_exit_astpending(vmx->vm, vcpu, rip);
|
|
vmx_astpending_trace(vmx, vcpu, rip);
|
|
handled = HANDLED;
|
|
break;
|
|
}
|
|
|
|
if (vcpu_debugged(vm, vcpu)) {
|
|
enable_intr();
|
|
vm_exit_debug(vmx->vm, vcpu, rip);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* VM exits restore the base address but not the
|
|
* limits of GDTR and IDTR. The VMCS only stores the
|
|
* base address, so VM exits set the limits to 0xffff.
|
|
* Save and restore the full GDTR and IDTR to restore
|
|
* the limits.
|
|
*
|
|
* The VMCS does not save the LDTR at all, and VM
|
|
* exits clear LDTR as if a NULL selector were loaded.
|
|
* The userspace hypervisor probably doesn't use a
|
|
* LDT, but save and restore it to be safe.
|
|
*/
|
|
sgdt(&gdtr);
|
|
sidt(&idtr);
|
|
ldt_sel = sldt();
|
|
|
|
vmx_run_trace(vmx, vcpu);
|
|
vmx_dr_enter_guest(vmxctx);
|
|
rc = vmx_enter_guest(vmxctx, vmx, launched);
|
|
vmx_dr_leave_guest(vmxctx);
|
|
|
|
bare_lgdt(&gdtr);
|
|
lidt(&idtr);
|
|
lldt(ldt_sel);
|
|
|
|
/* Collect some information for VM exit processing */
|
|
vmexit->rip = rip = vmcs_guest_rip();
|
|
vmexit->inst_length = vmexit_instruction_length();
|
|
vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
|
|
vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
|
|
|
|
/* Update 'nextrip' */
|
|
vmx->state[vcpu].nextrip = rip;
|
|
|
|
if (rc == VMX_GUEST_VMEXIT) {
|
|
vmx_exit_handle_nmi(vmx, vcpu, vmexit);
|
|
enable_intr();
|
|
handled = vmx_exit_process(vmx, vcpu, vmexit);
|
|
} else {
|
|
enable_intr();
|
|
vmx_exit_inst_error(vmxctx, rc, vmexit);
|
|
}
|
|
launched = 1;
|
|
vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled);
|
|
rip = vmexit->rip;
|
|
} while (handled);
|
|
|
|
/*
|
|
* If a VM exit has been handled then the exitcode must be BOGUS
|
|
* If a VM exit is not handled then the exitcode must not be BOGUS
|
|
*/
|
|
if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
|
|
(!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
|
|
panic("Mismatch between handled (%d) and exitcode (%d)",
|
|
handled, vmexit->exitcode);
|
|
}
|
|
|
|
if (!handled)
|
|
vmm_stat_incr(vm, vcpu, VMEXIT_USERSPACE, 1);
|
|
|
|
VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d",
|
|
vmexit->exitcode);
|
|
|
|
VMCLEAR(vmcs);
|
|
vmx_msr_guest_exit(vmx, vcpu);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vmx_vmcleanup(void *arg)
|
|
{
|
|
int i;
|
|
struct vmx *vmx = arg;
|
|
|
|
if (apic_access_virtualization(vmx, 0))
|
|
vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
|
|
|
|
for (i = 0; i < VM_MAXCPU; i++)
|
|
vpid_free(vmx->state[i].vpid);
|
|
|
|
free(vmx, M_VMX);
|
|
|
|
return;
|
|
}
|
|
|
|
static register_t *
|
|
vmxctx_regptr(struct vmxctx *vmxctx, int reg)
|
|
{
|
|
|
|
switch (reg) {
|
|
case VM_REG_GUEST_RAX:
|
|
return (&vmxctx->guest_rax);
|
|
case VM_REG_GUEST_RBX:
|
|
return (&vmxctx->guest_rbx);
|
|
case VM_REG_GUEST_RCX:
|
|
return (&vmxctx->guest_rcx);
|
|
case VM_REG_GUEST_RDX:
|
|
return (&vmxctx->guest_rdx);
|
|
case VM_REG_GUEST_RSI:
|
|
return (&vmxctx->guest_rsi);
|
|
case VM_REG_GUEST_RDI:
|
|
return (&vmxctx->guest_rdi);
|
|
case VM_REG_GUEST_RBP:
|
|
return (&vmxctx->guest_rbp);
|
|
case VM_REG_GUEST_R8:
|
|
return (&vmxctx->guest_r8);
|
|
case VM_REG_GUEST_R9:
|
|
return (&vmxctx->guest_r9);
|
|
case VM_REG_GUEST_R10:
|
|
return (&vmxctx->guest_r10);
|
|
case VM_REG_GUEST_R11:
|
|
return (&vmxctx->guest_r11);
|
|
case VM_REG_GUEST_R12:
|
|
return (&vmxctx->guest_r12);
|
|
case VM_REG_GUEST_R13:
|
|
return (&vmxctx->guest_r13);
|
|
case VM_REG_GUEST_R14:
|
|
return (&vmxctx->guest_r14);
|
|
case VM_REG_GUEST_R15:
|
|
return (&vmxctx->guest_r15);
|
|
case VM_REG_GUEST_CR2:
|
|
return (&vmxctx->guest_cr2);
|
|
case VM_REG_GUEST_DR0:
|
|
return (&vmxctx->guest_dr0);
|
|
case VM_REG_GUEST_DR1:
|
|
return (&vmxctx->guest_dr1);
|
|
case VM_REG_GUEST_DR2:
|
|
return (&vmxctx->guest_dr2);
|
|
case VM_REG_GUEST_DR3:
|
|
return (&vmxctx->guest_dr3);
|
|
case VM_REG_GUEST_DR6:
|
|
return (&vmxctx->guest_dr6);
|
|
default:
|
|
break;
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
static int
|
|
vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
|
|
{
|
|
register_t *regp;
|
|
|
|
if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
|
|
*retval = *regp;
|
|
return (0);
|
|
} else
|
|
return (EINVAL);
|
|
}
|
|
|
|
static int
|
|
vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
|
|
{
|
|
register_t *regp;
|
|
|
|
if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
|
|
*regp = val;
|
|
return (0);
|
|
} else
|
|
return (EINVAL);
|
|
}
|
|
|
|
static int
|
|
vmx_get_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t *retval)
|
|
{
|
|
uint64_t gi;
|
|
int error;
|
|
|
|
error = vmcs_getreg(&vmx->vmcs[vcpu], running,
|
|
VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY), &gi);
|
|
*retval = (gi & HWINTR_BLOCKING) ? 1 : 0;
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
vmx_modify_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t val)
|
|
{
|
|
struct vmcs *vmcs;
|
|
uint64_t gi;
|
|
int error, ident;
|
|
|
|
/*
|
|
* Forcing the vcpu into an interrupt shadow is not supported.
|
|
*/
|
|
if (val) {
|
|
error = EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
vmcs = &vmx->vmcs[vcpu];
|
|
ident = VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY);
|
|
error = vmcs_getreg(vmcs, running, ident, &gi);
|
|
if (error == 0) {
|
|
gi &= ~HWINTR_BLOCKING;
|
|
error = vmcs_setreg(vmcs, running, ident, gi);
|
|
}
|
|
done:
|
|
VCPU_CTR2(vmx->vm, vcpu, "Setting intr_shadow to %#lx %s", val,
|
|
error ? "failed" : "succeeded");
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
vmx_shadow_reg(int reg)
|
|
{
|
|
int shreg;
|
|
|
|
shreg = -1;
|
|
|
|
switch (reg) {
|
|
case VM_REG_GUEST_CR0:
|
|
shreg = VMCS_CR0_SHADOW;
|
|
break;
|
|
case VM_REG_GUEST_CR4:
|
|
shreg = VMCS_CR4_SHADOW;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return (shreg);
|
|
}
|
|
|
|
static int
|
|
vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
|
|
{
|
|
int running, hostcpu;
|
|
struct vmx *vmx = arg;
|
|
|
|
running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
|
|
if (running && hostcpu != curcpu)
|
|
panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu);
|
|
|
|
if (reg == VM_REG_GUEST_INTR_SHADOW)
|
|
return (vmx_get_intr_shadow(vmx, vcpu, running, retval));
|
|
|
|
if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0)
|
|
return (0);
|
|
|
|
return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval));
|
|
}
|
|
|
|
static int
|
|
vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
|
|
{
|
|
int error, hostcpu, running, shadow;
|
|
uint64_t ctls;
|
|
pmap_t pmap;
|
|
struct vmx *vmx = arg;
|
|
|
|
running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
|
|
if (running && hostcpu != curcpu)
|
|
panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu);
|
|
|
|
if (reg == VM_REG_GUEST_INTR_SHADOW)
|
|
return (vmx_modify_intr_shadow(vmx, vcpu, running, val));
|
|
|
|
if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0)
|
|
return (0);
|
|
|
|
error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val);
|
|
|
|
if (error == 0) {
|
|
/*
|
|
* If the "load EFER" VM-entry control is 1 then the
|
|
* value of EFER.LMA must be identical to "IA-32e mode guest"
|
|
* bit in the VM-entry control.
|
|
*/
|
|
if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
|
|
(reg == VM_REG_GUEST_EFER)) {
|
|
vmcs_getreg(&vmx->vmcs[vcpu], running,
|
|
VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
|
|
if (val & EFER_LMA)
|
|
ctls |= VM_ENTRY_GUEST_LMA;
|
|
else
|
|
ctls &= ~VM_ENTRY_GUEST_LMA;
|
|
vmcs_setreg(&vmx->vmcs[vcpu], running,
|
|
VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
|
|
}
|
|
|
|
shadow = vmx_shadow_reg(reg);
|
|
if (shadow > 0) {
|
|
/*
|
|
* Store the unmodified value in the shadow
|
|
*/
|
|
error = vmcs_setreg(&vmx->vmcs[vcpu], running,
|
|
VMCS_IDENT(shadow), val);
|
|
}
|
|
|
|
if (reg == VM_REG_GUEST_CR3) {
|
|
/*
|
|
* Invalidate the guest vcpu's TLB mappings to emulate
|
|
* the behavior of updating %cr3.
|
|
*
|
|
* XXX the processor retains global mappings when %cr3
|
|
* is updated but vmx_invvpid() does not.
|
|
*/
|
|
pmap = vmx->ctx[vcpu].pmap;
|
|
vmx_invvpid(vmx, vcpu, pmap, running);
|
|
}
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
|
|
{
|
|
int hostcpu, running;
|
|
struct vmx *vmx = arg;
|
|
|
|
running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
|
|
if (running && hostcpu != curcpu)
|
|
panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm), vcpu);
|
|
|
|
return (vmcs_getdesc(&vmx->vmcs[vcpu], running, reg, desc));
|
|
}
|
|
|
|
static int
|
|
vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
|
|
{
|
|
int hostcpu, running;
|
|
struct vmx *vmx = arg;
|
|
|
|
running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
|
|
if (running && hostcpu != curcpu)
|
|
panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm), vcpu);
|
|
|
|
return (vmcs_setdesc(&vmx->vmcs[vcpu], running, reg, desc));
|
|
}
|
|
|
|
static int
|
|
vmx_getcap(void *arg, int vcpu, int type, int *retval)
|
|
{
|
|
struct vmx *vmx = arg;
|
|
int vcap;
|
|
int ret;
|
|
|
|
ret = ENOENT;
|
|
|
|
vcap = vmx->cap[vcpu].set;
|
|
|
|
switch (type) {
|
|
case VM_CAP_HALT_EXIT:
|
|
if (cap_halt_exit)
|
|
ret = 0;
|
|
break;
|
|
case VM_CAP_PAUSE_EXIT:
|
|
if (cap_pause_exit)
|
|
ret = 0;
|
|
break;
|
|
case VM_CAP_MTRAP_EXIT:
|
|
if (cap_monitor_trap)
|
|
ret = 0;
|
|
break;
|
|
case VM_CAP_UNRESTRICTED_GUEST:
|
|
if (cap_unrestricted_guest)
|
|
ret = 0;
|
|
break;
|
|
case VM_CAP_ENABLE_INVPCID:
|
|
if (cap_invpcid)
|
|
ret = 0;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (ret == 0)
|
|
*retval = (vcap & (1 << type)) ? 1 : 0;
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
vmx_setcap(void *arg, int vcpu, int type, int val)
|
|
{
|
|
struct vmx *vmx = arg;
|
|
struct vmcs *vmcs = &vmx->vmcs[vcpu];
|
|
uint32_t baseval;
|
|
uint32_t *pptr;
|
|
int error;
|
|
int flag;
|
|
int reg;
|
|
int retval;
|
|
|
|
retval = ENOENT;
|
|
pptr = NULL;
|
|
|
|
switch (type) {
|
|
case VM_CAP_HALT_EXIT:
|
|
if (cap_halt_exit) {
|
|
retval = 0;
|
|
pptr = &vmx->cap[vcpu].proc_ctls;
|
|
baseval = *pptr;
|
|
flag = PROCBASED_HLT_EXITING;
|
|
reg = VMCS_PRI_PROC_BASED_CTLS;
|
|
}
|
|
break;
|
|
case VM_CAP_MTRAP_EXIT:
|
|
if (cap_monitor_trap) {
|
|
retval = 0;
|
|
pptr = &vmx->cap[vcpu].proc_ctls;
|
|
baseval = *pptr;
|
|
flag = PROCBASED_MTF;
|
|
reg = VMCS_PRI_PROC_BASED_CTLS;
|
|
}
|
|
break;
|
|
case VM_CAP_PAUSE_EXIT:
|
|
if (cap_pause_exit) {
|
|
retval = 0;
|
|
pptr = &vmx->cap[vcpu].proc_ctls;
|
|
baseval = *pptr;
|
|
flag = PROCBASED_PAUSE_EXITING;
|
|
reg = VMCS_PRI_PROC_BASED_CTLS;
|
|
}
|
|
break;
|
|
case VM_CAP_UNRESTRICTED_GUEST:
|
|
if (cap_unrestricted_guest) {
|
|
retval = 0;
|
|
pptr = &vmx->cap[vcpu].proc_ctls2;
|
|
baseval = *pptr;
|
|
flag = PROCBASED2_UNRESTRICTED_GUEST;
|
|
reg = VMCS_SEC_PROC_BASED_CTLS;
|
|
}
|
|
break;
|
|
case VM_CAP_ENABLE_INVPCID:
|
|
if (cap_invpcid) {
|
|
retval = 0;
|
|
pptr = &vmx->cap[vcpu].proc_ctls2;
|
|
baseval = *pptr;
|
|
flag = PROCBASED2_ENABLE_INVPCID;
|
|
reg = VMCS_SEC_PROC_BASED_CTLS;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (retval == 0) {
|
|
if (val) {
|
|
baseval |= flag;
|
|
} else {
|
|
baseval &= ~flag;
|
|
}
|
|
VMPTRLD(vmcs);
|
|
error = vmwrite(reg, baseval);
|
|
VMCLEAR(vmcs);
|
|
|
|
if (error) {
|
|
retval = error;
|
|
} else {
|
|
/*
|
|
* Update optional stored flags, and record
|
|
* setting
|
|
*/
|
|
if (pptr != NULL) {
|
|
*pptr = baseval;
|
|
}
|
|
|
|
if (val) {
|
|
vmx->cap[vcpu].set |= (1 << type);
|
|
} else {
|
|
vmx->cap[vcpu].set &= ~(1 << type);
|
|
}
|
|
}
|
|
}
|
|
|
|
return (retval);
|
|
}
|
|
|
|
struct vlapic_vtx {
|
|
struct vlapic vlapic;
|
|
struct pir_desc *pir_desc;
|
|
struct vmx *vmx;
|
|
};
|
|
|
|
#define VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg) \
|
|
do { \
|
|
VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d", \
|
|
level ? "level" : "edge", vector); \
|
|
VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]); \
|
|
VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]); \
|
|
VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]); \
|
|
VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]); \
|
|
VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\
|
|
} while (0)
|
|
|
|
/*
|
|
* vlapic->ops handlers that utilize the APICv hardware assist described in
|
|
* Chapter 29 of the Intel SDM.
|
|
*/
|
|
static int
|
|
vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level)
|
|
{
|
|
struct vlapic_vtx *vlapic_vtx;
|
|
struct pir_desc *pir_desc;
|
|
uint64_t mask;
|
|
int idx, notify;
|
|
|
|
vlapic_vtx = (struct vlapic_vtx *)vlapic;
|
|
pir_desc = vlapic_vtx->pir_desc;
|
|
|
|
/*
|
|
* Keep track of interrupt requests in the PIR descriptor. This is
|
|
* because the virtual APIC page pointed to by the VMCS cannot be
|
|
* modified if the vcpu is running.
|
|
*/
|
|
idx = vector / 64;
|
|
mask = 1UL << (vector % 64);
|
|
atomic_set_long(&pir_desc->pir[idx], mask);
|
|
notify = atomic_cmpset_long(&pir_desc->pending, 0, 1);
|
|
|
|
VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector,
|
|
level, "vmx_set_intr_ready");
|
|
return (notify);
|
|
}
|
|
|
|
static int
|
|
vmx_pending_intr(struct vlapic *vlapic, int *vecptr)
|
|
{
|
|
struct vlapic_vtx *vlapic_vtx;
|
|
struct pir_desc *pir_desc;
|
|
struct LAPIC *lapic;
|
|
uint64_t pending, pirval;
|
|
uint32_t ppr, vpr;
|
|
int i;
|
|
|
|
/*
|
|
* This function is only expected to be called from the 'HLT' exit
|
|
* handler which does not care about the vector that is pending.
|
|
*/
|
|
KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL"));
|
|
|
|
vlapic_vtx = (struct vlapic_vtx *)vlapic;
|
|
pir_desc = vlapic_vtx->pir_desc;
|
|
|
|
pending = atomic_load_acq_long(&pir_desc->pending);
|
|
if (!pending) {
|
|
/*
|
|
* While a virtual interrupt may have already been
|
|
* processed the actual delivery maybe pending the
|
|
* interruptibility of the guest. Recognize a pending
|
|
* interrupt by reevaluating virtual interrupts
|
|
* following Section 29.2.1 in the Intel SDM Volume 3.
|
|
*/
|
|
struct vm_exit *vmexit;
|
|
uint8_t rvi, ppr;
|
|
|
|
vmexit = vm_exitinfo(vlapic->vm, vlapic->vcpuid);
|
|
KASSERT(vmexit->exitcode == VM_EXITCODE_HLT,
|
|
("vmx_pending_intr: exitcode not 'HLT'"));
|
|
rvi = vmexit->u.hlt.intr_status & APIC_TPR_INT;
|
|
lapic = vlapic->apic_page;
|
|
ppr = lapic->ppr & APIC_TPR_INT;
|
|
if (rvi > ppr) {
|
|
return (1);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* If there is an interrupt pending then it will be recognized only
|
|
* if its priority is greater than the processor priority.
|
|
*
|
|
* Special case: if the processor priority is zero then any pending
|
|
* interrupt will be recognized.
|
|
*/
|
|
lapic = vlapic->apic_page;
|
|
ppr = lapic->ppr & APIC_TPR_INT;
|
|
if (ppr == 0)
|
|
return (1);
|
|
|
|
VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d",
|
|
lapic->ppr);
|
|
|
|
for (i = 3; i >= 0; i--) {
|
|
pirval = pir_desc->pir[i];
|
|
if (pirval != 0) {
|
|
vpr = (i * 64 + flsl(pirval) - 1) & APIC_TPR_INT;
|
|
return (vpr > ppr);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vmx_intr_accepted(struct vlapic *vlapic, int vector)
|
|
{
|
|
|
|
panic("vmx_intr_accepted: not expected to be called");
|
|
}
|
|
|
|
static void
|
|
vmx_set_tmr(struct vlapic *vlapic, int vector, bool level)
|
|
{
|
|
struct vlapic_vtx *vlapic_vtx;
|
|
struct vmx *vmx;
|
|
struct vmcs *vmcs;
|
|
uint64_t mask, val;
|
|
|
|
KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector));
|
|
KASSERT(!vcpu_is_running(vlapic->vm, vlapic->vcpuid, NULL),
|
|
("vmx_set_tmr: vcpu cannot be running"));
|
|
|
|
vlapic_vtx = (struct vlapic_vtx *)vlapic;
|
|
vmx = vlapic_vtx->vmx;
|
|
vmcs = &vmx->vmcs[vlapic->vcpuid];
|
|
mask = 1UL << (vector % 64);
|
|
|
|
VMPTRLD(vmcs);
|
|
val = vmcs_read(VMCS_EOI_EXIT(vector));
|
|
if (level)
|
|
val |= mask;
|
|
else
|
|
val &= ~mask;
|
|
vmcs_write(VMCS_EOI_EXIT(vector), val);
|
|
VMCLEAR(vmcs);
|
|
}
|
|
|
|
static void
|
|
vmx_enable_x2apic_mode(struct vlapic *vlapic)
|
|
{
|
|
struct vmx *vmx;
|
|
struct vmcs *vmcs;
|
|
uint32_t proc_ctls2;
|
|
int vcpuid, error;
|
|
|
|
vcpuid = vlapic->vcpuid;
|
|
vmx = ((struct vlapic_vtx *)vlapic)->vmx;
|
|
vmcs = &vmx->vmcs[vcpuid];
|
|
|
|
proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
|
|
KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0,
|
|
("%s: invalid proc_ctls2 %#x", __func__, proc_ctls2));
|
|
|
|
proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES;
|
|
proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE;
|
|
vmx->cap[vcpuid].proc_ctls2 = proc_ctls2;
|
|
|
|
VMPTRLD(vmcs);
|
|
vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2);
|
|
VMCLEAR(vmcs);
|
|
|
|
if (vlapic->vcpuid == 0) {
|
|
/*
|
|
* The nested page table mappings are shared by all vcpus
|
|
* so unmap the APIC access page just once.
|
|
*/
|
|
error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
|
|
KASSERT(error == 0, ("%s: vm_unmap_mmio error %d",
|
|
__func__, error));
|
|
|
|
/*
|
|
* The MSR bitmap is shared by all vcpus so modify it only
|
|
* once in the context of vcpu 0.
|
|
*/
|
|
error = vmx_allow_x2apic_msrs(vmx);
|
|
KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d",
|
|
__func__, error));
|
|
}
|
|
}
|
|
|
|
static void
|
|
vmx_post_intr(struct vlapic *vlapic, int hostcpu)
|
|
{
|
|
|
|
ipi_cpu(hostcpu, pirvec);
|
|
}
|
|
|
|
/*
|
|
* Transfer the pending interrupts in the PIR descriptor to the IRR
|
|
* in the virtual APIC page.
|
|
*/
|
|
static void
|
|
vmx_inject_pir(struct vlapic *vlapic)
|
|
{
|
|
struct vlapic_vtx *vlapic_vtx;
|
|
struct pir_desc *pir_desc;
|
|
struct LAPIC *lapic;
|
|
uint64_t val, pirval;
|
|
int rvi, pirbase = -1;
|
|
uint16_t intr_status_old, intr_status_new;
|
|
|
|
vlapic_vtx = (struct vlapic_vtx *)vlapic;
|
|
pir_desc = vlapic_vtx->pir_desc;
|
|
if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
|
|
VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
|
|
"no posted interrupt pending");
|
|
return;
|
|
}
|
|
|
|
pirval = 0;
|
|
pirbase = -1;
|
|
lapic = vlapic->apic_page;
|
|
|
|
val = atomic_readandclear_long(&pir_desc->pir[0]);
|
|
if (val != 0) {
|
|
lapic->irr0 |= val;
|
|
lapic->irr1 |= val >> 32;
|
|
pirbase = 0;
|
|
pirval = val;
|
|
}
|
|
|
|
val = atomic_readandclear_long(&pir_desc->pir[1]);
|
|
if (val != 0) {
|
|
lapic->irr2 |= val;
|
|
lapic->irr3 |= val >> 32;
|
|
pirbase = 64;
|
|
pirval = val;
|
|
}
|
|
|
|
val = atomic_readandclear_long(&pir_desc->pir[2]);
|
|
if (val != 0) {
|
|
lapic->irr4 |= val;
|
|
lapic->irr5 |= val >> 32;
|
|
pirbase = 128;
|
|
pirval = val;
|
|
}
|
|
|
|
val = atomic_readandclear_long(&pir_desc->pir[3]);
|
|
if (val != 0) {
|
|
lapic->irr6 |= val;
|
|
lapic->irr7 |= val >> 32;
|
|
pirbase = 192;
|
|
pirval = val;
|
|
}
|
|
|
|
VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir");
|
|
|
|
/*
|
|
* Update RVI so the processor can evaluate pending virtual
|
|
* interrupts on VM-entry.
|
|
*
|
|
* It is possible for pirval to be 0 here, even though the
|
|
* pending bit has been set. The scenario is:
|
|
* CPU-Y is sending a posted interrupt to CPU-X, which
|
|
* is running a guest and processing posted interrupts in h/w.
|
|
* CPU-X will eventually exit and the state seen in s/w is
|
|
* the pending bit set, but no PIR bits set.
|
|
*
|
|
* CPU-X CPU-Y
|
|
* (vm running) (host running)
|
|
* rx posted interrupt
|
|
* CLEAR pending bit
|
|
* SET PIR bit
|
|
* READ/CLEAR PIR bits
|
|
* SET pending bit
|
|
* (vm exit)
|
|
* pending bit set, PIR 0
|
|
*/
|
|
if (pirval != 0) {
|
|
rvi = pirbase + flsl(pirval) - 1;
|
|
intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
|
|
intr_status_new = (intr_status_old & 0xFF00) | rvi;
|
|
if (intr_status_new > intr_status_old) {
|
|
vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new);
|
|
VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
|
|
"guest_intr_status changed from 0x%04x to 0x%04x",
|
|
intr_status_old, intr_status_new);
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct vlapic *
|
|
vmx_vlapic_init(void *arg, int vcpuid)
|
|
{
|
|
struct vmx *vmx;
|
|
struct vlapic *vlapic;
|
|
struct vlapic_vtx *vlapic_vtx;
|
|
|
|
vmx = arg;
|
|
|
|
vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO);
|
|
vlapic->vm = vmx->vm;
|
|
vlapic->vcpuid = vcpuid;
|
|
vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid];
|
|
|
|
vlapic_vtx = (struct vlapic_vtx *)vlapic;
|
|
vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid];
|
|
vlapic_vtx->vmx = vmx;
|
|
|
|
if (virtual_interrupt_delivery) {
|
|
vlapic->ops.set_intr_ready = vmx_set_intr_ready;
|
|
vlapic->ops.pending_intr = vmx_pending_intr;
|
|
vlapic->ops.intr_accepted = vmx_intr_accepted;
|
|
vlapic->ops.set_tmr = vmx_set_tmr;
|
|
vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode;
|
|
}
|
|
|
|
if (posted_interrupts)
|
|
vlapic->ops.post_intr = vmx_post_intr;
|
|
|
|
vlapic_init(vlapic);
|
|
|
|
return (vlapic);
|
|
}
|
|
|
|
static void
|
|
vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic)
|
|
{
|
|
|
|
vlapic_cleanup(vlapic);
|
|
free(vlapic, M_VLAPIC);
|
|
}
|
|
|
|
struct vmm_ops vmm_ops_intel = {
|
|
vmx_init,
|
|
vmx_cleanup,
|
|
vmx_restore,
|
|
vmx_vminit,
|
|
vmx_run,
|
|
vmx_vmcleanup,
|
|
vmx_getreg,
|
|
vmx_setreg,
|
|
vmx_getdesc,
|
|
vmx_setdesc,
|
|
vmx_getcap,
|
|
vmx_setcap,
|
|
ept_vmspace_alloc,
|
|
ept_vmspace_free,
|
|
vmx_vlapic_init,
|
|
vmx_vlapic_cleanup,
|
|
};
|