5d04e0e4d3
code for reading from the frame buffer. Reading from the frame buffer is usually much slower than writing to the frame buffer. Typically 10 to 100 times slower. It old modes, it takes many more PIOs, and in newer modes with no PIOs writes are often write-combined while reads remain uncached. Reading from the frame buffer is not very common, so this change doesn't give speedups of 10 to 100 times. My main test case is a floodfill() function that reads about as many pixels as it writes. The speedups are typically a factor of 2 to 4. Duplicating writes to the shadow buffer is slower when no reads from the frame buffer are done, but reads are often done for the pixels under the mouse cursor, and doing these reads from the shadow buffer more than compensates for the overhead of writing the shadow buffer in at least the slower modes. Management of the mouse cursor also becomes simpler. The shadow buffer doesn't take any extra memory, except twice as much in old 4-plane modes. A buffer for holding a copy of the frame buffer was allocated up front for use in the screen switching signal handler. This wasn't changed when the handler was made async-signal safe. Use the same buffer the shadow (but make it twice as large in the 4-plane modes), and remove large special code for writing it as well as large special code for reading ut. It used to have a rawer format in the 4-plane modes. Now it has a bitmap format which takes twice as much memory but can be written almost as fast without special code. VIDBUFs that are not the whole frame buffer were never supported, and the change depends on this. Check for invalid VIDBUFs in some places and do nothing. The removed code did something not so good.