numam-dpdk/lib/librte_vhost/vhost_user.c

3024 lines
75 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2018 Intel Corporation
*/
/* Security model
* --------------
* The vhost-user protocol connection is an external interface, so it must be
* robust against invalid inputs.
*
* This is important because the vhost-user master is only one step removed
* from the guest. Malicious guests that have escaped will then launch further
* attacks from the vhost-user master.
*
* Even in deployments where guests are trusted, a bug in the vhost-user master
* can still cause invalid messages to be sent. Such messages must not
* compromise the stability of the DPDK application by causing crashes, memory
* corruption, or other problematic behavior.
*
* Do not assume received VhostUserMsg fields contain sensible values!
*/
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <assert.h>
#ifdef RTE_LIBRTE_VHOST_NUMA
#include <numaif.h>
#endif
#ifdef RTE_LIBRTE_VHOST_POSTCOPY
#include <linux/userfaultfd.h>
#endif
#ifdef F_ADD_SEALS /* if file sealing is supported, so is memfd */
#include <linux/memfd.h>
#define MEMFD_SUPPORTED
#endif
#include <rte_common.h>
#include <rte_malloc.h>
#include <rte_log.h>
#include "iotlb.h"
#include "vhost.h"
#include "vhost_user.h"
#define VIRTIO_MIN_MTU 68
#define VIRTIO_MAX_MTU 65535
#define INFLIGHT_ALIGNMENT 64
#define INFLIGHT_VERSION 0x1
static const char *vhost_message_str[VHOST_USER_MAX] = {
[VHOST_USER_NONE] = "VHOST_USER_NONE",
[VHOST_USER_GET_FEATURES] = "VHOST_USER_GET_FEATURES",
[VHOST_USER_SET_FEATURES] = "VHOST_USER_SET_FEATURES",
[VHOST_USER_SET_OWNER] = "VHOST_USER_SET_OWNER",
[VHOST_USER_RESET_OWNER] = "VHOST_USER_RESET_OWNER",
[VHOST_USER_SET_MEM_TABLE] = "VHOST_USER_SET_MEM_TABLE",
[VHOST_USER_SET_LOG_BASE] = "VHOST_USER_SET_LOG_BASE",
[VHOST_USER_SET_LOG_FD] = "VHOST_USER_SET_LOG_FD",
[VHOST_USER_SET_VRING_NUM] = "VHOST_USER_SET_VRING_NUM",
[VHOST_USER_SET_VRING_ADDR] = "VHOST_USER_SET_VRING_ADDR",
[VHOST_USER_SET_VRING_BASE] = "VHOST_USER_SET_VRING_BASE",
[VHOST_USER_GET_VRING_BASE] = "VHOST_USER_GET_VRING_BASE",
[VHOST_USER_SET_VRING_KICK] = "VHOST_USER_SET_VRING_KICK",
[VHOST_USER_SET_VRING_CALL] = "VHOST_USER_SET_VRING_CALL",
[VHOST_USER_SET_VRING_ERR] = "VHOST_USER_SET_VRING_ERR",
[VHOST_USER_GET_PROTOCOL_FEATURES] = "VHOST_USER_GET_PROTOCOL_FEATURES",
[VHOST_USER_SET_PROTOCOL_FEATURES] = "VHOST_USER_SET_PROTOCOL_FEATURES",
[VHOST_USER_GET_QUEUE_NUM] = "VHOST_USER_GET_QUEUE_NUM",
[VHOST_USER_SET_VRING_ENABLE] = "VHOST_USER_SET_VRING_ENABLE",
[VHOST_USER_SEND_RARP] = "VHOST_USER_SEND_RARP",
[VHOST_USER_NET_SET_MTU] = "VHOST_USER_NET_SET_MTU",
[VHOST_USER_SET_SLAVE_REQ_FD] = "VHOST_USER_SET_SLAVE_REQ_FD",
[VHOST_USER_IOTLB_MSG] = "VHOST_USER_IOTLB_MSG",
[VHOST_USER_CRYPTO_CREATE_SESS] = "VHOST_USER_CRYPTO_CREATE_SESS",
[VHOST_USER_CRYPTO_CLOSE_SESS] = "VHOST_USER_CRYPTO_CLOSE_SESS",
[VHOST_USER_POSTCOPY_ADVISE] = "VHOST_USER_POSTCOPY_ADVISE",
[VHOST_USER_POSTCOPY_LISTEN] = "VHOST_USER_POSTCOPY_LISTEN",
[VHOST_USER_POSTCOPY_END] = "VHOST_USER_POSTCOPY_END",
[VHOST_USER_GET_INFLIGHT_FD] = "VHOST_USER_GET_INFLIGHT_FD",
[VHOST_USER_SET_INFLIGHT_FD] = "VHOST_USER_SET_INFLIGHT_FD",
};
static int send_vhost_reply(int sockfd, struct VhostUserMsg *msg);
static int read_vhost_message(int sockfd, struct VhostUserMsg *msg);
static void
close_msg_fds(struct VhostUserMsg *msg)
{
int i;
for (i = 0; i < msg->fd_num; i++)
close(msg->fds[i]);
}
/*
* Ensure the expected number of FDs is received,
* close all FDs and return an error if this is not the case.
*/
static int
validate_msg_fds(struct VhostUserMsg *msg, int expected_fds)
{
if (msg->fd_num == expected_fds)
return 0;
VHOST_LOG_CONFIG(ERR,
" Expect %d FDs for request %s, received %d\n",
expected_fds,
vhost_message_str[msg->request.master],
msg->fd_num);
close_msg_fds(msg);
return -1;
}
static uint64_t
get_blk_size(int fd)
{
struct stat stat;
int ret;
ret = fstat(fd, &stat);
return ret == -1 ? (uint64_t)-1 : (uint64_t)stat.st_blksize;
}
/*
* Reclaim all the outstanding zmbufs for a virtqueue.
*/
static void
drain_zmbuf_list(struct vhost_virtqueue *vq)
{
struct zcopy_mbuf *zmbuf, *next;
for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
zmbuf != NULL; zmbuf = next) {
next = TAILQ_NEXT(zmbuf, next);
while (!mbuf_is_consumed(zmbuf->mbuf))
usleep(1000);
TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
restore_mbuf(zmbuf->mbuf);
rte_pktmbuf_free(zmbuf->mbuf);
put_zmbuf(zmbuf);
vq->nr_zmbuf -= 1;
}
}
static void
free_mem_region(struct virtio_net *dev)
{
uint32_t i;
struct rte_vhost_mem_region *reg;
struct vhost_virtqueue *vq;
if (!dev || !dev->mem)
return;
if (dev->dequeue_zero_copy) {
for (i = 0; i < dev->nr_vring; i++) {
vq = dev->virtqueue[i];
if (vq)
drain_zmbuf_list(vq);
}
}
for (i = 0; i < dev->mem->nregions; i++) {
reg = &dev->mem->regions[i];
if (reg->host_user_addr) {
munmap(reg->mmap_addr, reg->mmap_size);
close(reg->fd);
}
}
}
void
vhost_backend_cleanup(struct virtio_net *dev)
{
if (dev->mem) {
free_mem_region(dev);
rte_free(dev->mem);
dev->mem = NULL;
}
rte_free(dev->guest_pages);
dev->guest_pages = NULL;
if (dev->log_addr) {
munmap((void *)(uintptr_t)dev->log_addr, dev->log_size);
dev->log_addr = 0;
}
if (dev->inflight_info) {
if (dev->inflight_info->addr) {
munmap(dev->inflight_info->addr,
dev->inflight_info->size);
dev->inflight_info->addr = NULL;
}
if (dev->inflight_info->fd >= 0) {
close(dev->inflight_info->fd);
dev->inflight_info->fd = -1;
}
free(dev->inflight_info);
dev->inflight_info = NULL;
}
if (dev->slave_req_fd >= 0) {
close(dev->slave_req_fd);
dev->slave_req_fd = -1;
}
if (dev->postcopy_ufd >= 0) {
close(dev->postcopy_ufd);
dev->postcopy_ufd = -1;
}
dev->postcopy_listening = 0;
}
/*
* This function just returns success at the moment unless
* the device hasn't been initialised.
*/
static int
vhost_user_set_owner(struct virtio_net **pdev __rte_unused,
struct VhostUserMsg *msg,
int main_fd __rte_unused)
{
if (validate_msg_fds(msg, 0) != 0)
return RTE_VHOST_MSG_RESULT_ERR;
return RTE_VHOST_MSG_RESULT_OK;
}
static int
vhost_user_reset_owner(struct virtio_net **pdev,
struct VhostUserMsg *msg,
int main_fd __rte_unused)
{
struct virtio_net *dev = *pdev;
if (validate_msg_fds(msg, 0) != 0)
return RTE_VHOST_MSG_RESULT_ERR;
vhost_destroy_device_notify(dev);
cleanup_device(dev, 0);
reset_device(dev);
return RTE_VHOST_MSG_RESULT_OK;
}
/*
* The features that we support are requested.
*/
static int
vhost_user_get_features(struct virtio_net **pdev, struct VhostUserMsg *msg,
int main_fd __rte_unused)
{
struct virtio_net *dev = *pdev;
uint64_t features = 0;
if (validate_msg_fds(msg, 0) != 0)
return RTE_VHOST_MSG_RESULT_ERR;
rte_vhost_driver_get_features(dev->ifname, &features);
msg->payload.u64 = features;
msg->size = sizeof(msg->payload.u64);
msg->fd_num = 0;
return RTE_VHOST_MSG_RESULT_REPLY;
}
/*
* The queue number that we support are requested.
*/
static int
vhost_user_get_queue_num(struct virtio_net **pdev, struct VhostUserMsg *msg,
int main_fd __rte_unused)
{
struct virtio_net *dev = *pdev;
uint32_t queue_num = 0;
if (validate_msg_fds(msg, 0) != 0)
return RTE_VHOST_MSG_RESULT_ERR;
rte_vhost_driver_get_queue_num(dev->ifname, &queue_num);
msg->payload.u64 = (uint64_t)queue_num;
msg->size = sizeof(msg->payload.u64);
msg->fd_num = 0;
return RTE_VHOST_MSG_RESULT_REPLY;
}
/*
* We receive the negotiated features supported by us and the virtio device.
*/
static int
vhost_user_set_features(struct virtio_net **pdev, struct VhostUserMsg *msg,
int main_fd __rte_unused)
{
struct virtio_net *dev = *pdev;
uint64_t features = msg->payload.u64;
uint64_t vhost_features = 0;
struct rte_vdpa_device *vdpa_dev;
int did = -1;
if (validate_msg_fds(msg, 0) != 0)
return RTE_VHOST_MSG_RESULT_ERR;
rte_vhost_driver_get_features(dev->ifname, &vhost_features);
if (features & ~vhost_features) {
VHOST_LOG_CONFIG(ERR,
"(%d) received invalid negotiated features.\n",
dev->vid);
return RTE_VHOST_MSG_RESULT_ERR;
}
if (dev->flags & VIRTIO_DEV_RUNNING) {
if (dev->features == features)
return RTE_VHOST_MSG_RESULT_OK;
/*
* Error out if master tries to change features while device is
* in running state. The exception being VHOST_F_LOG_ALL, which
* is enabled when the live-migration starts.
*/
if ((dev->features ^ features) & ~(1ULL << VHOST_F_LOG_ALL)) {
VHOST_LOG_CONFIG(ERR,
"(%d) features changed while device is running.\n",
dev->vid);
return RTE_VHOST_MSG_RESULT_ERR;
}
if (dev->notify_ops->features_changed)
dev->notify_ops->features_changed(dev->vid, features);
}
dev->features = features;
if (dev->features &
((1 << VIRTIO_NET_F_MRG_RXBUF) | (1ULL << VIRTIO_F_VERSION_1))) {
dev->vhost_hlen = sizeof(struct virtio_net_hdr_mrg_rxbuf);
} else {
dev->vhost_hlen = sizeof(struct virtio_net_hdr);
}
VHOST_LOG_CONFIG(INFO,
"negotiated Virtio features: 0x%" PRIx64 "\n", dev->features);
VHOST_LOG_CONFIG(DEBUG,
"(%d) mergeable RX buffers %s, virtio 1 %s\n",
dev->vid,
(dev->features & (1 << VIRTIO_NET_F_MRG_RXBUF)) ? "on" : "off",
(dev->features & (1ULL << VIRTIO_F_VERSION_1)) ? "on" : "off");
if ((dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET) &&
!(dev->features & (1ULL << VIRTIO_NET_F_MQ))) {
/*
* Remove all but first queue pair if MQ hasn't been
* negotiated. This is safe because the device is not
* running at this stage.
*/
while (dev->nr_vring > 2) {
struct vhost_virtqueue *vq;
vq = dev->virtqueue[--dev->nr_vring];
if (!vq)
continue;
dev->virtqueue[dev->nr_vring] = NULL;
cleanup_vq(vq, 1);
cleanup_vq_inflight(dev, vq);
free_vq(dev, vq);
}
}
did = dev->vdpa_dev_id;
vdpa_dev = rte_vdpa_get_device(did);
if (vdpa_dev && vdpa_dev->ops->set_features)
vdpa_dev->ops->set_features(dev->vid);
return RTE_VHOST_MSG_RESULT_OK;
}
/*
* The virtio device sends us the size of the descriptor ring.
*/
static int
vhost_user_set_vring_num(struct virtio_net **pdev,
struct VhostUserMsg *msg,
int main_fd __rte_unused)
{
struct virtio_net *dev = *pdev;
struct vhost_virtqueue *vq = dev->virtqueue[msg->payload.state.index];
vhost: add dequeue zero copy The basic idea of dequeue zero copy is, instead of copying data from the desc buf, here we let the mbuf reference the desc buf addr directly. Doing so, however, has one major issue: we can't update the used ring at the end of rte_vhost_dequeue_burst. Because we don't do the copy here, an update of the used ring would let the driver to reclaim the desc buf. As a result, DPDK might reference a stale memory region. To update the used ring properly, this patch does several tricks: - when mbuf references a desc buf, refcnt is added by 1. This is to pin lock the mbuf, so that a mbuf free from the DPDK won't actually free it, instead, refcnt is subtracted by 1. - We chain all those mbuf together (by tailq) And we check it every time on the rte_vhost_dequeue_burst entrance, to see if the mbuf is freed (when refcnt equals to 1). If that happens, it means we are the last user of this mbuf and we are safe to update the used ring. - "struct zcopy_mbuf" is introduced, to associate an mbuf with the right desc idx. Dequeue zero copy is introduced for performance reason, and some rough tests show about 50% perfomance boost for packet size 1500B. For small packets, (e.g. 64B), it actually slows a bit down (well, it could up to 15%). That is expected because this patch introduces some extra works, and it outweighs the benefit from saving few bytes copy. Signed-off-by: Yuanhan Liu <yuanhan.liu@linux.intel.com> Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com> Tested-by: Qian Xu <qian.q.xu@intel.com>
2016-10-09 15:27:57 +08:00
if (validate_msg_fds(msg, 0) != 0)
return RTE_VHOST_MSG_RESULT_ERR;
vq->size = msg->payload.state.num;
vhost: add dequeue zero copy The basic idea of dequeue zero copy is, instead of copying data from the desc buf, here we let the mbuf reference the desc buf addr directly. Doing so, however, has one major issue: we can't update the used ring at the end of rte_vhost_dequeue_burst. Because we don't do the copy here, an update of the used ring would let the driver to reclaim the desc buf. As a result, DPDK might reference a stale memory region. To update the used ring properly, this patch does several tricks: - when mbuf references a desc buf, refcnt is added by 1. This is to pin lock the mbuf, so that a mbuf free from the DPDK won't actually free it, instead, refcnt is subtracted by 1. - We chain all those mbuf together (by tailq) And we check it every time on the rte_vhost_dequeue_burst entrance, to see if the mbuf is freed (when refcnt equals to 1). If that happens, it means we are the last user of this mbuf and we are safe to update the used ring. - "struct zcopy_mbuf" is introduced, to associate an mbuf with the right desc idx. Dequeue zero copy is introduced for performance reason, and some rough tests show about 50% perfomance boost for packet size 1500B. For small packets, (e.g. 64B), it actually slows a bit down (well, it could up to 15%). That is expected because this patch introduces some extra works, and it outweighs the benefit from saving few bytes copy. Signed-off-by: Yuanhan Liu <yuanhan.liu@linux.intel.com> Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com> Tested-by: Qian Xu <qian.q.xu@intel.com>
2016-10-09 15:27:57 +08:00
/* VIRTIO 1.0, 2.4 Virtqueues says:
*
* Queue Size value is always a power of 2. The maximum Queue Size
* value is 32768.
*
* VIRTIO 1.1 2.7 Virtqueues says:
*
* Packed virtqueues support up to 2^15 entries each.
*/
if (!vq_is_packed(dev)) {
if (vq->size & (vq->size - 1)) {
VHOST_LOG_CONFIG(ERR,
"invalid virtqueue size %u\n", vq->size);
return RTE_VHOST_MSG_RESULT_ERR;
}
}
if (vq->size > 32768) {
VHOST_LOG_CONFIG(ERR,
"invalid virtqueue size %u\n", vq->size);
return RTE_VHOST_MSG_RESULT_ERR;
}
vhost: add dequeue zero copy The basic idea of dequeue zero copy is, instead of copying data from the desc buf, here we let the mbuf reference the desc buf addr directly. Doing so, however, has one major issue: we can't update the used ring at the end of rte_vhost_dequeue_burst. Because we don't do the copy here, an update of the used ring would let the driver to reclaim the desc buf. As a result, DPDK might reference a stale memory region. To update the used ring properly, this patch does several tricks: - when mbuf references a desc buf, refcnt is added by 1. This is to pin lock the mbuf, so that a mbuf free from the DPDK won't actually free it, instead, refcnt is subtracted by 1. - We chain all those mbuf together (by tailq) And we check it every time on the rte_vhost_dequeue_burst entrance, to see if the mbuf is freed (when refcnt equals to 1). If that happens, it means we are the last user of this mbuf and we are safe to update the used ring. - "struct zcopy_mbuf" is introduced, to associate an mbuf with the right desc idx. Dequeue zero copy is introduced for performance reason, and some rough tests show about 50% perfomance boost for packet size 1500B. For small packets, (e.g. 64B), it actually slows a bit down (well, it could up to 15%). That is expected because this patch introduces some extra works, and it outweighs the benefit from saving few bytes copy. Signed-off-by: Yuanhan Liu <yuanhan.liu@linux.intel.com> Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com> Tested-by: Qian Xu <qian.q.xu@intel.com>
2016-10-09 15:27:57 +08:00
if (dev->dequeue_zero_copy) {
vq->nr_zmbuf = 0;
vq->last_zmbuf_idx = 0;
vq->zmbuf_size = vq->size;
if (vq->zmbufs)
rte_free(vq->zmbufs);
vhost: add dequeue zero copy The basic idea of dequeue zero copy is, instead of copying data from the desc buf, here we let the mbuf reference the desc buf addr directly. Doing so, however, has one major issue: we can't update the used ring at the end of rte_vhost_dequeue_burst. Because we don't do the copy here, an update of the used ring would let the driver to reclaim the desc buf. As a result, DPDK might reference a stale memory region. To update the used ring properly, this patch does several tricks: - when mbuf references a desc buf, refcnt is added by 1. This is to pin lock the mbuf, so that a mbuf free from the DPDK won't actually free it, instead, refcnt is subtracted by 1. - We chain all those mbuf together (by tailq) And we check it every time on the rte_vhost_dequeue_burst entrance, to see if the mbuf is freed (when refcnt equals to 1). If that happens, it means we are the last user of this mbuf and we are safe to update the used ring. - "struct zcopy_mbuf" is introduced, to associate an mbuf with the right desc idx. Dequeue zero copy is introduced for performance reason, and some rough tests show about 50% perfomance boost for packet size 1500B. For small packets, (e.g. 64B), it actually slows a bit down (well, it could up to 15%). That is expected because this patch introduces some extra works, and it outweighs the benefit from saving few bytes copy. Signed-off-by: Yuanhan Liu <yuanhan.liu@linux.intel.com> Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com> Tested-by: Qian Xu <qian.q.xu@intel.com>
2016-10-09 15:27:57 +08:00
vq->zmbufs = rte_zmalloc(NULL, vq->zmbuf_size *
sizeof(struct zcopy_mbuf), 0);
if (vq->zmbufs == NULL) {
VHOST_LOG_CONFIG(WARNING,
vhost: add dequeue zero copy The basic idea of dequeue zero copy is, instead of copying data from the desc buf, here we let the mbuf reference the desc buf addr directly. Doing so, however, has one major issue: we can't update the used ring at the end of rte_vhost_dequeue_burst. Because we don't do the copy here, an update of the used ring would let the driver to reclaim the desc buf. As a result, DPDK might reference a stale memory region. To update the used ring properly, this patch does several tricks: - when mbuf references a desc buf, refcnt is added by 1. This is to pin lock the mbuf, so that a mbuf free from the DPDK won't actually free it, instead, refcnt is subtracted by 1. - We chain all those mbuf together (by tailq) And we check it every time on the rte_vhost_dequeue_burst entrance, to see if the mbuf is freed (when refcnt equals to 1). If that happens, it means we are the last user of this mbuf and we are safe to update the used ring. - "struct zcopy_mbuf" is introduced, to associate an mbuf with the right desc idx. Dequeue zero copy is introduced for performance reason, and some rough tests show about 50% perfomance boost for packet size 1500B. For small packets, (e.g. 64B), it actually slows a bit down (well, it could up to 15%). That is expected because this patch introduces some extra works, and it outweighs the benefit from saving few bytes copy. Signed-off-by: Yuanhan Liu <yuanhan.liu@linux.intel.com> Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com> Tested-by: Qian Xu <qian.q.xu@intel.com>
2016-10-09 15:27:57 +08:00
"failed to allocate mem for zero copy; "
"zero copy is force disabled\n");
dev->dequeue_zero_copy = 0;
}
TAILQ_INIT(&vq->zmbuf_list);
vhost: add dequeue zero copy The basic idea of dequeue zero copy is, instead of copying data from the desc buf, here we let the mbuf reference the desc buf addr directly. Doing so, however, has one major issue: we can't update the used ring at the end of rte_vhost_dequeue_burst. Because we don't do the copy here, an update of the used ring would let the driver to reclaim the desc buf. As a result, DPDK might reference a stale memory region. To update the used ring properly, this patch does several tricks: - when mbuf references a desc buf, refcnt is added by 1. This is to pin lock the mbuf, so that a mbuf free from the DPDK won't actually free it, instead, refcnt is subtracted by 1. - We chain all those mbuf together (by tailq) And we check it every time on the rte_vhost_dequeue_burst entrance, to see if the mbuf is freed (when refcnt equals to 1). If that happens, it means we are the last user of this mbuf and we are safe to update the used ring. - "struct zcopy_mbuf" is introduced, to associate an mbuf with the right desc idx. Dequeue zero copy is introduced for performance reason, and some rough tests show about 50% perfomance boost for packet size 1500B. For small packets, (e.g. 64B), it actually slows a bit down (well, it could up to 15%). That is expected because this patch introduces some extra works, and it outweighs the benefit from saving few bytes copy. Signed-off-by: Yuanhan Liu <yuanhan.liu@linux.intel.com> Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com> Tested-by: Qian Xu <qian.q.xu@intel.com>
2016-10-09 15:27:57 +08:00
}
if (vq_is_packed(dev)) {
if (vq->shadow_used_packed)
rte_free(vq->shadow_used_packed);
vq->shadow_used_packed = rte_malloc(NULL,
vq->size *
sizeof(struct vring_used_elem_packed),
RTE_CACHE_LINE_SIZE);
if (!vq->shadow_used_packed) {
VHOST_LOG_CONFIG(ERR,
"failed to allocate memory for shadow used ring.\n");
return RTE_VHOST_MSG_RESULT_ERR;
}
} else {
if (vq->shadow_used_split)
rte_free(vq->shadow_used_split);
vq->shadow_used_split = rte_malloc(NULL,
vq->size * sizeof(struct vring_used_elem),
RTE_CACHE_LINE_SIZE);
if (!vq->shadow_used_split) {
VHOST_LOG_CONFIG(ERR,
"failed to allocate memory for shadow used ring.\n");
return RTE_VHOST_MSG_RESULT_ERR;
}
}
if (vq->batch_copy_elems)
rte_free(vq->batch_copy_elems);
vq->batch_copy_elems = rte_malloc(NULL,
vq->size * sizeof(struct batch_copy_elem),
RTE_CACHE_LINE_SIZE);
if (!vq->batch_copy_elems) {
VHOST_LOG_CONFIG(ERR,
"failed to allocate memory for batching copy.\n");
return RTE_VHOST_MSG_RESULT_ERR;
}
return RTE_VHOST_MSG_RESULT_OK;
}
/*
* Reallocate virtio_dev and vhost_virtqueue data structure to make them on the
* same numa node as the memory of vring descriptor.
*/
#ifdef RTE_LIBRTE_VHOST_NUMA
static struct virtio_net*
numa_realloc(struct virtio_net *dev, int index)
{
int oldnode, newnode;
struct virtio_net *old_dev;
struct vhost_virtqueue *old_vq, *vq;
struct zcopy_mbuf *new_zmbuf;
struct vring_used_elem *new_shadow_used_split;
struct vring_used_elem_packed *new_shadow_used_packed;
struct batch_copy_elem *new_batch_copy_elems;
int ret;
if (dev->flags & VIRTIO_DEV_RUNNING)
return dev;
old_dev = dev;
vq = old_vq = dev->virtqueue[index];
ret = get_mempolicy(&newnode, NULL, 0, old_vq->desc,
MPOL_F_NODE | MPOL_F_ADDR);
/* check if we need to reallocate vq */
ret |= get_mempolicy(&oldnode, NULL, 0, old_vq,
MPOL_F_NODE | MPOL_F_ADDR);
if (ret) {
VHOST_LOG_CONFIG(ERR,
"Unable to get vq numa information.\n");
return dev;
}
if (oldnode != newnode) {
VHOST_LOG_CONFIG(INFO,
"reallocate vq from %d to %d node\n", oldnode, newnode);
vq = rte_malloc_socket(NULL, sizeof(*vq), 0, newnode);
if (!vq)
return dev;
memcpy(vq, old_vq, sizeof(*vq));
TAILQ_INIT(&vq->zmbuf_list);
if (dev->dequeue_zero_copy) {
new_zmbuf = rte_malloc_socket(NULL, vq->zmbuf_size *
sizeof(struct zcopy_mbuf), 0, newnode);
if (new_zmbuf) {
rte_free(vq->zmbufs);
vq->zmbufs = new_zmbuf;
}
}
if (vq_is_packed(dev)) {
new_shadow_used_packed = rte_malloc_socket(NULL,
vq->size *
sizeof(struct vring_used_elem_packed),
RTE_CACHE_LINE_SIZE,
newnode);
if (new_shadow_used_packed) {
rte_free(vq->shadow_used_packed);
vq->shadow_used_packed = new_shadow_used_packed;
}
} else {
new_shadow_used_split = rte_malloc_socket(NULL,
vq->size *
sizeof(struct vring_used_elem),
RTE_CACHE_LINE_SIZE,
newnode);
if (new_shadow_used_split) {
rte_free(vq->shadow_used_split);
vq->shadow_used_split = new_shadow_used_split;
}
}
new_batch_copy_elems = rte_malloc_socket(NULL,
vq->size * sizeof(struct batch_copy_elem),
RTE_CACHE_LINE_SIZE,
newnode);
if (new_batch_copy_elems) {
rte_free(vq->batch_copy_elems);
vq->batch_copy_elems = new_batch_copy_elems;
}
rte_free(old_vq);
}
/* check if we need to reallocate dev */
ret = get_mempolicy(&oldnode, NULL, 0, old_dev,
MPOL_F_NODE | MPOL_F_ADDR);
if (ret) {
VHOST_LOG_CONFIG(ERR,
"Unable to get dev numa information.\n");
goto out;
}
if (oldnode != newnode) {
VHOST_LOG_CONFIG(INFO,
"reallocate dev from %d to %d node\n",
oldnode, newnode);
dev = rte_malloc_socket(NULL, sizeof(*dev), 0, newnode);
if (!dev) {
dev = old_dev;
goto out;
}
memcpy(dev, old_dev, sizeof(*dev));
rte_free(old_dev);
}
out:
dev->virtqueue[index] = vq;
vhost_devices[dev->vid] = dev;
if (old_vq != vq)
vhost_user_iotlb_init(dev, index);
return dev;
}
#else
static struct virtio_net*
numa_realloc(struct virtio_net *dev, int index __rte_unused)
{
return dev;
}
#endif
/* Converts QEMU virtual address to Vhost virtual address. */
static uint64_t
qva_to_vva(struct virtio_net *dev, uint64_t qva, uint64_t *len)
{
struct rte_vhost_mem_region *r;
uint32_t i;
if (unlikely(!dev || !dev->mem))
goto out_error;
/* Find the region where the address lives. */
for (i = 0; i < dev->mem->nregions; i++) {
r = &dev->mem->regions[i];
if (qva >= r->guest_user_addr &&
qva < r->guest_user_addr + r->size) {
if (unlikely(*len > r->guest_user_addr + r->size - qva))
*len = r->guest_user_addr + r->size - qva;
return qva - r->guest_user_addr +
r->host_user_addr;
}
}
out_error:
*len = 0;
return 0;
}
/*
* Converts ring address to Vhost virtual address.
* If IOMMU is enabled, the ring address is a guest IO virtual address,
* else it is a QEMU virtual address.
*/
static uint64_t
ring_addr_to_vva(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint64_t ra, uint64_t *size)
{
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM)) {
uint64_t vva;
vhost_user_iotlb_rd_lock(vq);
vva = vhost_iova_to_vva(dev, vq, ra,
size, VHOST_ACCESS_RW);
vhost_user_iotlb_rd_unlock(vq);
return vva;
}
return qva_to_vva(dev, ra, size);
}
static uint64_t
log_addr_to_gpa(struct virtio_net *dev, struct vhost_virtqueue *vq)
{
uint64_t log_gpa;
vhost_user_iotlb_rd_lock(vq);
log_gpa = translate_log_addr(dev, vq, vq->ring_addrs.log_guest_addr);
vhost_user_iotlb_rd_unlock(vq);
return log_gpa;
}
static struct virtio_net *
translate_ring_addresses(struct virtio_net *dev, int vq_index)
{
struct vhost_virtqueue *vq = dev->virtqueue[vq_index];
struct vhost_vring_addr *addr = &vq->ring_addrs;
uint64_t len, expected_len;
if (addr->flags & (1 << VHOST_VRING_F_LOG)) {
vq->log_guest_addr =
log_addr_to_gpa(dev, vq);
if (vq->log_guest_addr == 0) {
VHOST_LOG_CONFIG(DEBUG,
"(%d) failed to map log_guest_addr.\n",
dev->vid);
return dev;
}
}
if (vq_is_packed(dev)) {
len = sizeof(struct vring_packed_desc) * vq->size;
vq->desc_packed = (struct vring_packed_desc *)(uintptr_t)
ring_addr_to_vva(dev, vq, addr->desc_user_addr, &len);
if (vq->desc_packed == NULL ||
len != sizeof(struct vring_packed_desc) *
vq->size) {
VHOST_LOG_CONFIG(DEBUG,
"(%d) failed to map desc_packed ring.\n",
dev->vid);
return dev;
}
dev = numa_realloc(dev, vq_index);
vq = dev->virtqueue[vq_index];
addr = &vq->ring_addrs;
len = sizeof(struct vring_packed_desc_event);
vq->driver_event = (struct vring_packed_desc_event *)
(uintptr_t)ring_addr_to_vva(dev,
vq, addr->avail_user_addr, &len);
if (vq->driver_event == NULL ||
len != sizeof(struct vring_packed_desc_event)) {
VHOST_LOG_CONFIG(DEBUG,
"(%d) failed to find driver area address.\n",
dev->vid);
return dev;
}
len = sizeof(struct vring_packed_desc_event);
vq->device_event = (struct vring_packed_desc_event *)
(uintptr_t)ring_addr_to_vva(dev,
vq, addr->used_user_addr, &len);
if (vq->device_event == NULL ||
len != sizeof(struct vring_packed_desc_event)) {
VHOST_LOG_CONFIG(DEBUG,
"(%d) failed to find device area address.\n",
dev->vid);
return dev;
}
vq->access_ok = 1;
return dev;
}
/* The addresses are converted from QEMU virtual to Vhost virtual. */
if (vq->desc && vq->avail && vq->used)
return dev;
len = sizeof(struct vring_desc) * vq->size;
vq->desc = (struct vring_desc *)(uintptr_t)ring_addr_to_vva(dev,
vq, addr->desc_user_addr, &len);
if (vq->desc == 0 || len != sizeof(struct vring_desc) * vq->size) {
VHOST_LOG_CONFIG(DEBUG,
"(%d) failed to map desc ring.\n",
dev->vid);
return dev;
}
dev = numa_realloc(dev, vq_index);
vq = dev->virtqueue[vq_index];
addr = &vq->ring_addrs;
len = sizeof(struct vring_avail) + sizeof(uint16_t) * vq->size;
if (dev->features & (1ULL << VIRTIO_RING_F_EVENT_IDX))
len += sizeof(uint16_t);
expected_len = len;
vq->avail = (struct vring_avail *)(uintptr_t)ring_addr_to_vva(dev,
vq, addr->avail_user_addr, &len);
if (vq->avail == 0 || len != expected_len) {
VHOST_LOG_CONFIG(DEBUG,
"(%d) failed to map avail ring.\n",
dev->vid);
return dev;
}
len = sizeof(struct vring_used) +
sizeof(struct vring_used_elem) * vq->size;
if (dev->features & (1ULL << VIRTIO_RING_F_EVENT_IDX))
len += sizeof(uint16_t);
expected_len = len;
vq->used = (struct vring_used *)(uintptr_t)ring_addr_to_vva(dev,
vq, addr->used_user_addr, &len);
if (vq->used == 0 || len != expected_len) {
VHOST_LOG_CONFIG(DEBUG,
"(%d) failed to map used ring.\n",
dev->vid);
return dev;
}
if (vq->last_used_idx != vq->used->idx) {
VHOST_LOG_CONFIG(WARNING,
"last_used_idx (%u) and vq->used->idx (%u) mismatches; "
"some packets maybe resent for Tx and dropped for Rx\n",
vq->last_used_idx, vq->used->idx);
vq->last_used_idx = vq->used->idx;
vq->last_avail_idx = vq->used->idx;
}
vq->access_ok = 1;
VHOST_LOG_CONFIG(DEBUG, "(%d) mapped address desc: %p\n",
dev->vid, vq->desc);
VHOST_LOG_CONFIG(DEBUG, "(%d) mapped address avail: %p\n",
dev->vid, vq->avail);
VHOST_LOG_CONFIG(DEBUG, "(%d) mapped address used: %p\n",
dev->vid, vq->used);
VHOST_LOG_CONFIG(DEBUG, "(%d) log_guest_addr: %" PRIx64 "\n",
dev->vid, vq->log_guest_addr);
return dev;
}
/*
* The virtio device sends us the desc, used and avail ring addresses.
* This function then converts these to our address space.
*/
static int
vhost_user_set_vring_addr(struct virtio_net **pdev, struct VhostUserMsg *msg,
int main_fd __rte_unused)
{
struct virtio_net *dev = *pdev;
struct vhost_virtqueue *vq;
struct vhost_vring_addr *addr = &msg->payload.addr;
bool access_ok;
if (validate_msg_fds(msg, 0) != 0)
return RTE_VHOST_MSG_RESULT_ERR;
if (dev->mem == NULL)
return RTE_VHOST_MSG_RESULT_ERR;
/* addr->index refers to the queue index. The txq 1, rxq is 0. */
vq = dev->virtqueue[msg->payload.addr.index];
access_ok = vq->access_ok;
/*
* Rings addresses should not be interpreted as long as the ring is not
* started and enabled
*/
memcpy(&vq->ring_addrs, addr, sizeof(*addr));
vring_invalidate(dev, vq);
if ((vq->enabled && (dev->features &
(1ULL << VHOST_USER_F_PROTOCOL_FEATURES))) ||
access_ok) {
dev = translate_ring_addresses(dev, msg->payload.addr.index);
if (!dev)
return RTE_VHOST_MSG_RESULT_ERR;
*pdev = dev;
}
return RTE_VHOST_MSG_RESULT_OK;
}
/*
* The virtio device sends us the available ring last used index.
*/
static int
vhost_user_set_vring_base(struct virtio_net **pdev,
struct VhostUserMsg *msg,
int main_fd __rte_unused)
{
struct virtio_net *dev = *pdev;
struct vhost_virtqueue *vq = dev->virtqueue[msg->payload.state.index];
uint64_t val = msg->payload.state.num;
if (validate_msg_fds(msg, 0) != 0)
return RTE_VHOST_MSG_RESULT_ERR;
if (vq_is_packed(dev)) {
/*
* Bit[0:14]: avail index
* Bit[15]: avail wrap counter
*/
vq->last_avail_idx = val & 0x7fff;
vq->avail_wrap_counter = !!(val & (0x1 << 15));
/*
* Set used index to same value as available one, as
* their values should be the same since ring processing
* was stopped at get time.
*/
vq->last_used_idx = vq->last_avail_idx;
vq->used_wrap_counter = vq->avail_wrap_counter;
} else {
vq->last_used_idx = msg->payload.state.num;
vq->last_avail_idx = msg->payload.state.num;
}
return RTE_VHOST_MSG_RESULT_OK;
}
static int
add_one_guest_page(struct virtio_net *dev, uint64_t guest_phys_addr,
uint64_t host_phys_addr, uint64_t size)
{
struct guest_page *page, *last_page;
struct guest_page *old_pages;
if (dev->nr_guest_pages == dev->max_guest_pages) {
dev->max_guest_pages *= 2;
old_pages = dev->guest_pages;
dev->guest_pages = rte_realloc(dev->guest_pages,
dev->max_guest_pages * sizeof(*page),
RTE_CACHE_LINE_SIZE);
if (dev->guest_pages == NULL) {
VHOST_LOG_CONFIG(ERR, "cannot realloc guest_pages\n");
rte_free(old_pages);
return -1;
}
}
if (dev->nr_guest_pages > 0) {
last_page = &dev->guest_pages[dev->nr_guest_pages - 1];
/* merge if the two pages are continuous */
if (host_phys_addr == last_page->host_phys_addr +
last_page->size) {
last_page->size += size;
return 0;
}
}
page = &dev->guest_pages[dev->nr_guest_pages++];
page->guest_phys_addr = guest_phys_addr;
page->host_phys_addr = host_phys_addr;
page->size = size;
return 0;
}
static int
add_guest_pages(struct virtio_net *dev, struct rte_vhost_mem_region *reg,
uint64_t page_size)
{
uint64_t reg_size = reg->size;
uint64_t host_user_addr = reg->host_user_addr;
uint64_t guest_phys_addr = reg->guest_phys_addr;
uint64_t host_phys_addr;
uint64_t size;
host_phys_addr = rte_mem_virt2iova((void *)(uintptr_t)host_user_addr);
size = page_size - (guest_phys_addr & (page_size - 1));
size = RTE_MIN(size, reg_size);
if (add_one_guest_page(dev, guest_phys_addr, host_phys_addr, size) < 0)
return -1;
host_user_addr += size;
guest_phys_addr += size;
reg_size -= size;
while (reg_size > 0) {
size = RTE_MIN(reg_size, page_size);
host_phys_addr = rte_mem_virt2iova((void *)(uintptr_t)
host_user_addr);
if (add_one_guest_page(dev, guest_phys_addr, host_phys_addr,
size) < 0)
return -1;
host_user_addr += size;
guest_phys_addr += size;
reg_size -= size;
}
/* sort guest page array if over binary search threshold */
if (dev->nr_guest_pages >= VHOST_BINARY_SEARCH_THRESH) {
qsort((void *)dev->guest_pages, dev->nr_guest_pages,
sizeof(struct guest_page), guest_page_addrcmp);
}
return 0;
}
#ifdef RTE_LIBRTE_VHOST_DEBUG
/* TODO: enable it only in debug mode? */
static void
dump_guest_pages(struct virtio_net *dev)
{
uint32_t i;
struct guest_page *page;
for (i = 0; i < dev->nr_guest_pages; i++) {
page = &dev->guest_pages[i];
VHOST_LOG_CONFIG(INFO,
"guest physical page region %u\n"
"\t guest_phys_addr: %" PRIx64 "\n"
"\t host_phys_addr : %" PRIx64 "\n"
"\t size : %" PRIx64 "\n",
i,
page->guest_phys_addr,
page->host_phys_addr,
page->size);
}
}
#else
#define dump_guest_pages(dev)
#endif
static bool
vhost_memory_changed(struct VhostUserMemory *new,
struct rte_vhost_memory *old)
{
uint32_t i;
if (new->nregions != old->nregions)
return true;
for (i = 0; i < new->nregions; ++i) {
VhostUserMemoryRegion *new_r = &new->regions[i];
struct rte_vhost_mem_region *old_r = &old->regions[i];
if (new_r->guest_phys_addr != old_r->guest_phys_addr)
return true;
if (new_r->memory_size != old_r->size)
return true;
if (new_r->userspace_addr != old_r->guest_user_addr)
return true;
}
return false;
}
static int
vhost_user_set_mem_table(struct virtio_net **pdev, struct VhostUserMsg *msg,
int main_fd)
{
struct virtio_net *dev = *pdev;
struct VhostUserMemory *memory = &msg->payload.memory;
struct rte_vhost_mem_region *reg;
void *mmap_addr;
uint64_t mmap_size;
uint64_t mmap_offset;
uint64_t alignment;
uint32_t i;
int populate;
int fd;
if (validate_msg_fds(msg, memory->nregions) != 0)
return RTE_VHOST_MSG_RESULT_ERR;
if (memory->nregions > VHOST_MEMORY_MAX_NREGIONS) {
VHOST_LOG_CONFIG(ERR,
"too many memory regions (%u)\n", memory->nregions);
return RTE_VHOST_MSG_RESULT_ERR;
}
if (dev->mem && !vhost_memory_changed(memory, dev->mem)) {
VHOST_LOG_CONFIG(INFO,
"(%d) memory regions not changed\n", dev->vid);
close_msg_fds(msg);
return RTE_VHOST_MSG_RESULT_OK;
}
if (dev->mem) {
free_mem_region(dev);
rte_free(dev->mem);
dev->mem = NULL;
}
/* Flush IOTLB cache as previous HVAs are now invalid */
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
for (i = 0; i < dev->nr_vring; i++)
vhost_user_iotlb_flush_all(dev->virtqueue[i]);
dev->nr_guest_pages = 0;
if (dev->guest_pages == NULL) {
dev->max_guest_pages = 8;
dev->guest_pages = rte_zmalloc(NULL,
dev->max_guest_pages *
sizeof(struct guest_page),
RTE_CACHE_LINE_SIZE);
if (dev->guest_pages == NULL) {
VHOST_LOG_CONFIG(ERR,
"(%d) failed to allocate memory "
"for dev->guest_pages\n",
dev->vid);
return RTE_VHOST_MSG_RESULT_ERR;
}
}
dev->mem = rte_zmalloc("vhost-mem-table", sizeof(struct rte_vhost_memory) +
sizeof(struct rte_vhost_mem_region) * memory->nregions, 0);
if (dev->mem == NULL) {
VHOST_LOG_CONFIG(ERR,
"(%d) failed to allocate memory for dev->mem\n",
dev->vid);
return RTE_VHOST_MSG_RESULT_ERR;
}
dev->mem->nregions = memory->nregions;
for (i = 0; i < memory->nregions; i++) {
fd = msg->fds[i];
reg = &dev->mem->regions[i];
reg->guest_phys_addr = memory->regions[i].guest_phys_addr;
reg->guest_user_addr = memory->regions[i].userspace_addr;
reg->size = memory->regions[i].memory_size;
reg->fd = fd;
mmap_offset = memory->regions[i].mmap_offset;
/* Check for memory_size + mmap_offset overflow */
if (mmap_offset >= -reg->size) {
VHOST_LOG_CONFIG(ERR,
"mmap_offset (%#"PRIx64") and memory_size "
"(%#"PRIx64") overflow\n",
mmap_offset, reg->size);
goto err_mmap;
}
mmap_size = reg->size + mmap_offset;
/* mmap() without flag of MAP_ANONYMOUS, should be called
* with length argument aligned with hugepagesz at older
* longterm version Linux, like 2.6.32 and 3.2.72, or
* mmap() will fail with EINVAL.
*
* to avoid failure, make sure in caller to keep length
* aligned.
*/
alignment = get_blk_size(fd);
if (alignment == (uint64_t)-1) {
VHOST_LOG_CONFIG(ERR,
"couldn't get hugepage size through fstat\n");
goto err_mmap;
}
mmap_size = RTE_ALIGN_CEIL(mmap_size, alignment);
if (mmap_size == 0) {
/*
* It could happen if initial mmap_size + alignment
* overflows the sizeof uint64, which could happen if
* either mmap_size or alignment value is wrong.
*
* mmap() kernel implementation would return an error,
* but better catch it before and provide useful info
* in the logs.
*/
VHOST_LOG_CONFIG(ERR, "mmap size (0x%" PRIx64 ") "
"or alignment (0x%" PRIx64 ") is invalid\n",
reg->size + mmap_offset, alignment);
goto err_mmap;
}
populate = (dev->dequeue_zero_copy) ? MAP_POPULATE : 0;
mmap_addr = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE,
MAP_SHARED | populate, fd, 0);
if (mmap_addr == MAP_FAILED) {
VHOST_LOG_CONFIG(ERR,
"mmap region %u failed.\n", i);
goto err_mmap;
}
reg->mmap_addr = mmap_addr;
reg->mmap_size = mmap_size;
reg->host_user_addr = (uint64_t)(uintptr_t)mmap_addr +
mmap_offset;
if (dev->dequeue_zero_copy)
if (add_guest_pages(dev, reg, alignment) < 0) {
VHOST_LOG_CONFIG(ERR,
"adding guest pages to region %u failed.\n",
i);
goto err_mmap;
}
VHOST_LOG_CONFIG(INFO,
"guest memory region %u, size: 0x%" PRIx64 "\n"
"\t guest physical addr: 0x%" PRIx64 "\n"
"\t guest virtual addr: 0x%" PRIx64 "\n"
"\t host virtual addr: 0x%" PRIx64 "\n"
"\t mmap addr : 0x%" PRIx64 "\n"
"\t mmap size : 0x%" PRIx64 "\n"
"\t mmap align: 0x%" PRIx64 "\n"
"\t mmap off : 0x%" PRIx64 "\n",
i, reg->size,
reg->guest_phys_addr,
reg->guest_user_addr,
reg->host_user_addr,
(uint64_t)(uintptr_t)mmap_addr,
mmap_size,
alignment,
mmap_offset);
if (dev->postcopy_listening) {
/*
* We haven't a better way right now than sharing
* DPDK's virtual address with Qemu, so that Qemu can
* retrieve the region offset when handling userfaults.
*/
memory->regions[i].userspace_addr =
reg->host_user_addr;
}
}
if (dev->postcopy_listening) {
/* Send the addresses back to qemu */
msg->fd_num = 0;
send_vhost_reply(main_fd, msg);
/* Wait for qemu to acknolwedge it's got the addresses
* we've got to wait before we're allowed to generate faults.
*/
VhostUserMsg ack_msg;
if (read_vhost_message(main_fd, &ack_msg) <= 0) {
VHOST_LOG_CONFIG(ERR,
"Failed to read qemu ack on postcopy set-mem-table\n");
goto err_mmap;
}
if (validate_msg_fds(&ack_msg, 0) != 0)
goto err_mmap;
if (ack_msg.request.master != VHOST_USER_SET_MEM_TABLE) {
VHOST_LOG_CONFIG(ERR,
"Bad qemu ack on postcopy set-mem-table (%d)\n",
ack_msg.request.master);
goto err_mmap;
}
/* Now userfault register and we can use the memory */
for (i = 0; i < memory->nregions; i++) {
#ifdef RTE_LIBRTE_VHOST_POSTCOPY
reg = &dev->mem->regions[i];
struct uffdio_register reg_struct;
/*
* Let's register all the mmap'ed area to ensure
* alignment on page boundary.
*/
reg_struct.range.start =
(uint64_t)(uintptr_t)reg->mmap_addr;
reg_struct.range.len = reg->mmap_size;
reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
if (ioctl(dev->postcopy_ufd, UFFDIO_REGISTER,
&reg_struct)) {
VHOST_LOG_CONFIG(ERR,
"Failed to register ufd for region %d: (ufd = %d) %s\n",
i, dev->postcopy_ufd,
strerror(errno));
goto err_mmap;
}
VHOST_LOG_CONFIG(INFO,
"\t userfaultfd registered for range : "
"%" PRIx64 " - %" PRIx64 "\n",
(uint64_t)reg_struct.range.start,
(uint64_t)reg_struct.range.start +
(uint64_t)reg_struct.range.len - 1);
#else
goto err_mmap;
#endif
}
}
for (i = 0; i < dev->nr_vring; i++) {
struct vhost_virtqueue *vq = dev->virtqueue[i];
if (vq->desc || vq->avail || vq->used) {
/*
* If the memory table got updated, the ring addresses
* need to be translated again as virtual addresses have
* changed.
*/
vring_invalidate(dev, vq);
dev = translate_ring_addresses(dev, i);
if (!dev) {
dev = *pdev;
goto err_mmap;
}
*pdev = dev;
}
}
dump_guest_pages(dev);
return RTE_VHOST_MSG_RESULT_OK;
err_mmap:
free_mem_region(dev);
rte_free(dev->mem);
dev->mem = NULL;
return RTE_VHOST_MSG_RESULT_ERR;
}
static bool
vq_is_ready(struct virtio_net *dev, struct vhost_virtqueue *vq)
{
bool rings_ok;
if (!vq)
return false;
if (vq_is_packed(dev))
rings_ok = vq->desc_packed && vq->driver_event &&
vq->device_event;
else
rings_ok = vq->desc && vq->avail && vq->used;
return rings_ok &&
vq->kickfd != VIRTIO_UNINITIALIZED_EVENTFD &&
vq->callfd != VIRTIO_UNINITIALIZED_EVENTFD;
}
static int
virtio_is_ready(struct virtio_net *dev)
{
struct vhost_virtqueue *vq;
uint32_t i;
if (dev->nr_vring == 0)
return 0;
for (i = 0; i < dev->nr_vring; i++) {
vq = dev->virtqueue[i];
if (!vq_is_ready(dev, vq))
return 0;
}
VHOST_LOG_CONFIG(INFO,
"virtio is now ready for processing.\n");
return 1;
}
static void *
inflight_mem_alloc(const char *name, size_t size, int *fd)
{
void *ptr;
int mfd = -1;
char fname[20] = "/tmp/memfd-XXXXXX";
*fd = -1;
#ifdef MEMFD_SUPPORTED
mfd = memfd_create(name, MFD_CLOEXEC);
#else
RTE_SET_USED(name);
#endif
if (mfd == -1) {
mfd = mkstemp(fname);
if (mfd == -1) {
VHOST_LOG_CONFIG(ERR,
"failed to get inflight buffer fd\n");
return NULL;
}
unlink(fname);
}
if (ftruncate(mfd, size) == -1) {
VHOST_LOG_CONFIG(ERR,
"failed to alloc inflight buffer\n");
close(mfd);
return NULL;
}
ptr = mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, mfd, 0);
if (ptr == MAP_FAILED) {
VHOST_LOG_CONFIG(ERR,
"failed to mmap inflight buffer\n");
close(mfd);
return NULL;
}
*fd = mfd;
return ptr;
}
static uint32_t
get_pervq_shm_size_split(uint16_t queue_size)
{
return RTE_ALIGN_MUL_CEIL(sizeof(struct rte_vhost_inflight_desc_split) *
queue_size + sizeof(uint64_t) +
sizeof(uint16_t) * 4, INFLIGHT_ALIGNMENT);
}
static uint32_t
get_pervq_shm_size_packed(uint16_t queue_size)
{
return RTE_ALIGN_MUL_CEIL(sizeof(struct rte_vhost_inflight_desc_packed)
* queue_size + sizeof(uint64_t) +
sizeof(uint16_t) * 6 + sizeof(uint8_t) * 9,
INFLIGHT_ALIGNMENT);
}
static int
vhost_user_get_inflight_fd(struct virtio_net **pdev,
VhostUserMsg *msg,
int main_fd __rte_unused)
{
struct rte_vhost_inflight_info_packed *inflight_packed;
uint64_t pervq_inflight_size, mmap_size;
uint16_t num_queues, queue_size;
struct virtio_net *dev = *pdev;
int fd, i, j;
void *addr;
if (msg->size != sizeof(msg->payload.inflight)) {
VHOST_LOG_CONFIG(ERR,
"invalid get_inflight_fd message size is %d\n",
msg->size);
return RTE_VHOST_MSG_RESULT_ERR;
}
if (dev->inflight_info == NULL) {
dev->inflight_info = calloc(1,
sizeof(struct inflight_mem_info));
if (!dev->inflight_info) {
VHOST_LOG_CONFIG(ERR,
"failed to alloc dev inflight area\n");
return RTE_VHOST_MSG_RESULT_ERR;
}
dev->inflight_info->fd = -1;
}
num_queues = msg->payload.inflight.num_queues;
queue_size = msg->payload.inflight.queue_size;
VHOST_LOG_CONFIG(INFO, "get_inflight_fd num_queues: %u\n",
msg->payload.inflight.num_queues);
VHOST_LOG_CONFIG(INFO, "get_inflight_fd queue_size: %u\n",
msg->payload.inflight.queue_size);
if (vq_is_packed(dev))
pervq_inflight_size = get_pervq_shm_size_packed(queue_size);
else
pervq_inflight_size = get_pervq_shm_size_split(queue_size);
mmap_size = num_queues * pervq_inflight_size;
addr = inflight_mem_alloc("vhost-inflight", mmap_size, &fd);
if (!addr) {
VHOST_LOG_CONFIG(ERR,
"failed to alloc vhost inflight area\n");
msg->payload.inflight.mmap_size = 0;
return RTE_VHOST_MSG_RESULT_ERR;
}
memset(addr, 0, mmap_size);
if (dev->inflight_info->addr) {
munmap(dev->inflight_info->addr, dev->inflight_info->size);
dev->inflight_info->addr = NULL;
}
if (dev->inflight_info->fd >= 0) {
close(dev->inflight_info->fd);
dev->inflight_info->fd = -1;
}
dev->inflight_info->addr = addr;
dev->inflight_info->size = msg->payload.inflight.mmap_size = mmap_size;
dev->inflight_info->fd = msg->fds[0] = fd;
msg->payload.inflight.mmap_offset = 0;
msg->fd_num = 1;
if (vq_is_packed(dev)) {
for (i = 0; i < num_queues; i++) {
inflight_packed =
(struct rte_vhost_inflight_info_packed *)addr;
inflight_packed->used_wrap_counter = 1;
inflight_packed->old_used_wrap_counter = 1;
for (j = 0; j < queue_size; j++)
inflight_packed->desc[j].next = j + 1;
addr = (void *)((char *)addr + pervq_inflight_size);
}
}
VHOST_LOG_CONFIG(INFO,
"send inflight mmap_size: %"PRIu64"\n",
msg->payload.inflight.mmap_size);
VHOST_LOG_CONFIG(INFO,
"send inflight mmap_offset: %"PRIu64"\n",
msg->payload.inflight.mmap_offset);
VHOST_LOG_CONFIG(INFO,
"send inflight fd: %d\n", msg->fds[0]);
return RTE_VHOST_MSG_RESULT_REPLY;
}
static int
vhost_user_set_inflight_fd(struct virtio_net **pdev, VhostUserMsg *msg,
int main_fd __rte_unused)
{
uint64_t mmap_size, mmap_offset;
uint16_t num_queues, queue_size;
struct virtio_net *dev = *pdev;
uint32_t pervq_inflight_size;
struct vhost_virtqueue *vq;
void *addr;
int fd, i;
fd = msg->fds[0];
if (msg->size != sizeof(msg->payload.inflight) || fd < 0) {
VHOST_LOG_CONFIG(ERR,
"invalid set_inflight_fd message size is %d,fd is %d\n",
msg->size, fd);
return RTE_VHOST_MSG_RESULT_ERR;
}
mmap_size = msg->payload.inflight.mmap_size;
mmap_offset = msg->payload.inflight.mmap_offset;
num_queues = msg->payload.inflight.num_queues;
queue_size = msg->payload.inflight.queue_size;
if (vq_is_packed(dev))
pervq_inflight_size = get_pervq_shm_size_packed(queue_size);
else
pervq_inflight_size = get_pervq_shm_size_split(queue_size);
VHOST_LOG_CONFIG(INFO,
"set_inflight_fd mmap_size: %"PRIu64"\n", mmap_size);
VHOST_LOG_CONFIG(INFO,
"set_inflight_fd mmap_offset: %"PRIu64"\n", mmap_offset);
VHOST_LOG_CONFIG(INFO,
"set_inflight_fd num_queues: %u\n", num_queues);
VHOST_LOG_CONFIG(INFO,
"set_inflight_fd queue_size: %u\n", queue_size);
VHOST_LOG_CONFIG(INFO,
"set_inflight_fd fd: %d\n", fd);
VHOST_LOG_CONFIG(INFO,
"set_inflight_fd pervq_inflight_size: %d\n",
pervq_inflight_size);
if (!dev->inflight_info) {
dev->inflight_info = calloc(1,
sizeof(struct inflight_mem_info));
if (dev->inflight_info == NULL) {
VHOST_LOG_CONFIG(ERR,
"failed to alloc dev inflight area\n");
return RTE_VHOST_MSG_RESULT_ERR;
}
dev->inflight_info->fd = -1;
}
if (dev->inflight_info->addr) {
munmap(dev->inflight_info->addr, dev->inflight_info->size);
dev->inflight_info->addr = NULL;
}
addr = mmap(0, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
fd, mmap_offset);
if (addr == MAP_FAILED) {
VHOST_LOG_CONFIG(ERR, "failed to mmap share memory.\n");
return RTE_VHOST_MSG_RESULT_ERR;
}
if (dev->inflight_info->fd >= 0) {
close(dev->inflight_info->fd);
dev->inflight_info->fd = -1;
}
dev->inflight_info->fd = fd;
dev->inflight_info->addr = addr;
dev->inflight_info->size = mmap_size;
for (i = 0; i < num_queues; i++) {
vq = dev->virtqueue[i];
if (vq_is_packed(dev)) {
vq->inflight_packed = addr;
vq->inflight_packed->desc_num = queue_size;
} else {
vq->inflight_split = addr;
vq->inflight_split->desc_num = queue_size;
}
addr = (void *)((char *)addr + pervq_inflight_size);
}
return RTE_VHOST_MSG_RESULT_OK;
}
static int
vhost_user_set_vring_call(struct virtio_net **pdev, struct VhostUserMsg *msg,
int main_fd __rte_unused)
{
struct virtio_net *dev = *pdev;
struct vhost_vring_file file;
struct vhost_virtqueue *vq;
int expected_fds;
expected_fds = (msg->payload.u64 & VHOST_USER_VRING_NOFD_MASK) ? 0 : 1;
if (validate_msg_fds(msg, expected_fds) != 0)
return RTE_VHOST_MSG_RESULT_ERR;
file.index = msg->payload.u64 & VHOST_USER_VRING_IDX_MASK;
if (msg->payload.u64 & VHOST_USER_VRING_NOFD_MASK)
file.fd = VIRTIO_INVALID_EVENTFD;
else
file.fd = msg->fds[0];
VHOST_LOG_CONFIG(INFO,
"vring call idx:%d file:%d\n", file.index, file.fd);
vq = dev->virtqueue[file.index];
if (vq->callfd >= 0)
close(vq->callfd);
vq->callfd = file.fd;
return RTE_VHOST_MSG_RESULT_OK;
}
static int vhost_user_set_vring_err(struct virtio_net **pdev __rte_unused,
struct VhostUserMsg *msg,
int main_fd __rte_unused)
{
int expected_fds;
expected_fds = (msg->payload.u64 & VHOST_USER_VRING_NOFD_MASK) ? 0 : 1;
if (validate_msg_fds(msg, expected_fds) != 0)
return RTE_VHOST_MSG_RESULT_ERR;
if (!(msg->payload.u64 & VHOST_USER_VRING_NOFD_MASK))
close(msg->fds[0]);
VHOST_LOG_CONFIG(INFO, "not implemented\n");
return RTE_VHOST_MSG_RESULT_OK;
}
static int
resubmit_desc_compare(const void *a, const void *b)
{
const struct rte_vhost_resubmit_desc *desc0 = a;
const struct rte_vhost_resubmit_desc *desc1 = b;
if (desc1->counter > desc0->counter)
return 1;
return -1;
}
static int
vhost_check_queue_inflights_split(struct virtio_net *dev,
struct vhost_virtqueue *vq)
{
uint16_t i;
uint16_t resubmit_num = 0, last_io, num;
struct vring_used *used = vq->used;
struct rte_vhost_resubmit_info *resubmit;
struct rte_vhost_inflight_info_split *inflight_split;
if (!(dev->protocol_features &
(1ULL << VHOST_USER_PROTOCOL_F_INFLIGHT_SHMFD)))
return RTE_VHOST_MSG_RESULT_OK;
/* The frontend may still not support the inflight feature
* although we negotiate the protocol feature.
*/
if ((!vq->inflight_split))
return RTE_VHOST_MSG_RESULT_OK;
if (!vq->inflight_split->version) {
vq->inflight_split->version = INFLIGHT_VERSION;
return RTE_VHOST_MSG_RESULT_OK;
}
if (vq->resubmit_inflight)
return RTE_VHOST_MSG_RESULT_OK;
inflight_split = vq->inflight_split;
vq->global_counter = 0;
last_io = inflight_split->last_inflight_io;
if (inflight_split->used_idx != used->idx) {
inflight_split->desc[last_io].inflight = 0;
rte_smp_mb();
inflight_split->used_idx = used->idx;
}
for (i = 0; i < inflight_split->desc_num; i++) {
if (inflight_split->desc[i].inflight == 1)
resubmit_num++;
}
vq->last_avail_idx += resubmit_num;
if (resubmit_num) {
resubmit = calloc(1, sizeof(struct rte_vhost_resubmit_info));
if (!resubmit) {
VHOST_LOG_CONFIG(ERR,
"failed to allocate memory for resubmit info.\n");
return RTE_VHOST_MSG_RESULT_ERR;
}
resubmit->resubmit_list = calloc(resubmit_num,
sizeof(struct rte_vhost_resubmit_desc));
if (!resubmit->resubmit_list) {
VHOST_LOG_CONFIG(ERR,
"failed to allocate memory for inflight desc.\n");
free(resubmit);
return RTE_VHOST_MSG_RESULT_ERR;
}
num = 0;
for (i = 0; i < vq->inflight_split->desc_num; i++) {
if (vq->inflight_split->desc[i].inflight == 1) {
resubmit->resubmit_list[num].index = i;
resubmit->resubmit_list[num].counter =
inflight_split->desc[i].counter;
num++;
}
}
resubmit->resubmit_num = num;
if (resubmit->resubmit_num > 1)
qsort(resubmit->resubmit_list, resubmit->resubmit_num,
sizeof(struct rte_vhost_resubmit_desc),
resubmit_desc_compare);
vq->global_counter = resubmit->resubmit_list[0].counter + 1;
vq->resubmit_inflight = resubmit;
}
return RTE_VHOST_MSG_RESULT_OK;
}
static int
vhost_check_queue_inflights_packed(struct virtio_net *dev,
struct vhost_virtqueue *vq)
{
uint16_t i;
uint16_t resubmit_num = 0, old_used_idx, num;
struct rte_vhost_resubmit_info *resubmit;
struct rte_vhost_inflight_info_packed *inflight_packed;
if (!(dev->protocol_features &
(1ULL << VHOST_USER_PROTOCOL_F_INFLIGHT_SHMFD)))
return RTE_VHOST_MSG_RESULT_OK;
/* The frontend may still not support the inflight feature
* although we negotiate the protocol feature.
*/
if ((!vq->inflight_packed))
return RTE_VHOST_MSG_RESULT_OK;
if (!vq->inflight_packed->version) {
vq->inflight_packed->version = INFLIGHT_VERSION;
return RTE_VHOST_MSG_RESULT_OK;
}
if (vq->resubmit_inflight)
return RTE_VHOST_MSG_RESULT_OK;
inflight_packed = vq->inflight_packed;
vq->global_counter = 0;
old_used_idx = inflight_packed->old_used_idx;
if (inflight_packed->used_idx != old_used_idx) {
if (inflight_packed->desc[old_used_idx].inflight == 0) {
inflight_packed->old_used_idx =
inflight_packed->used_idx;
inflight_packed->old_used_wrap_counter =
inflight_packed->used_wrap_counter;
inflight_packed->old_free_head =
inflight_packed->free_head;
} else {
inflight_packed->used_idx =
inflight_packed->old_used_idx;
inflight_packed->used_wrap_counter =
inflight_packed->old_used_wrap_counter;
inflight_packed->free_head =
inflight_packed->old_free_head;
}
}
for (i = 0; i < inflight_packed->desc_num; i++) {
if (inflight_packed->desc[i].inflight == 1)
resubmit_num++;
}
if (resubmit_num) {
resubmit = calloc(1, sizeof(struct rte_vhost_resubmit_info));
if (resubmit == NULL) {
VHOST_LOG_CONFIG(ERR,
"failed to allocate memory for resubmit info.\n");
return RTE_VHOST_MSG_RESULT_ERR;
}
resubmit->resubmit_list = calloc(resubmit_num,
sizeof(struct rte_vhost_resubmit_desc));
if (resubmit->resubmit_list == NULL) {
VHOST_LOG_CONFIG(ERR,
"failed to allocate memory for resubmit desc.\n");
free(resubmit);
return RTE_VHOST_MSG_RESULT_ERR;
}
num = 0;
for (i = 0; i < inflight_packed->desc_num; i++) {
if (vq->inflight_packed->desc[i].inflight == 1) {
resubmit->resubmit_list[num].index = i;
resubmit->resubmit_list[num].counter =
inflight_packed->desc[i].counter;
num++;
}
}
resubmit->resubmit_num = num;
if (resubmit->resubmit_num > 1)
qsort(resubmit->resubmit_list, resubmit->resubmit_num,
sizeof(struct rte_vhost_resubmit_desc),
resubmit_desc_compare);
vq->global_counter = resubmit->resubmit_list[0].counter + 1;
vq->resubmit_inflight = resubmit;
}
return RTE_VHOST_MSG_RESULT_OK;
}
static int
vhost_user_set_vring_kick(struct virtio_net **pdev, struct VhostUserMsg *msg,
int main_fd __rte_unused)
{
struct virtio_net *dev = *pdev;
struct vhost_vring_file file;
struct vhost_virtqueue *vq;
int expected_fds;
expected_fds = (msg->payload.u64 & VHOST_USER_VRING_NOFD_MASK) ? 0 : 1;
if (validate_msg_fds(msg, expected_fds) != 0)
return RTE_VHOST_MSG_RESULT_ERR;
file.index = msg->payload.u64 & VHOST_USER_VRING_IDX_MASK;
if (msg->payload.u64 & VHOST_USER_VRING_NOFD_MASK)
file.fd = VIRTIO_INVALID_EVENTFD;
else
file.fd = msg->fds[0];
VHOST_LOG_CONFIG(INFO,
"vring kick idx:%d file:%d\n", file.index, file.fd);
/* Interpret ring addresses only when ring is started. */
dev = translate_ring_addresses(dev, file.index);
if (!dev)
return RTE_VHOST_MSG_RESULT_ERR;
*pdev = dev;
vq = dev->virtqueue[file.index];
/*
* When VHOST_USER_F_PROTOCOL_FEATURES is not negotiated,
* the ring starts already enabled. Otherwise, it is enabled via
* the SET_VRING_ENABLE message.
*/
if (!(dev->features & (1ULL << VHOST_USER_F_PROTOCOL_FEATURES))) {
vq->enabled = 1;
if (dev->notify_ops->vring_state_changed)
dev->notify_ops->vring_state_changed(
dev->vid, file.index, 1);
}
if (vq->kickfd >= 0)
close(vq->kickfd);
vq->kickfd = file.fd;
if (vq_is_packed(dev)) {
if (vhost_check_queue_inflights_packed(dev, vq)) {
VHOST_LOG_CONFIG(ERR,
"failed to inflights for vq: %d\n", file.index);
return RTE_VHOST_MSG_RESULT_ERR;
}
} else {
if (vhost_check_queue_inflights_split(dev, vq)) {
VHOST_LOG_CONFIG(ERR,
"failed to inflights for vq: %d\n", file.index);
return RTE_VHOST_MSG_RESULT_ERR;
}
}
return RTE_VHOST_MSG_RESULT_OK;
}
vhost: add dequeue zero copy The basic idea of dequeue zero copy is, instead of copying data from the desc buf, here we let the mbuf reference the desc buf addr directly. Doing so, however, has one major issue: we can't update the used ring at the end of rte_vhost_dequeue_burst. Because we don't do the copy here, an update of the used ring would let the driver to reclaim the desc buf. As a result, DPDK might reference a stale memory region. To update the used ring properly, this patch does several tricks: - when mbuf references a desc buf, refcnt is added by 1. This is to pin lock the mbuf, so that a mbuf free from the DPDK won't actually free it, instead, refcnt is subtracted by 1. - We chain all those mbuf together (by tailq) And we check it every time on the rte_vhost_dequeue_burst entrance, to see if the mbuf is freed (when refcnt equals to 1). If that happens, it means we are the last user of this mbuf and we are safe to update the used ring. - "struct zcopy_mbuf" is introduced, to associate an mbuf with the right desc idx. Dequeue zero copy is introduced for performance reason, and some rough tests show about 50% perfomance boost for packet size 1500B. For small packets, (e.g. 64B), it actually slows a bit down (well, it could up to 15%). That is expected because this patch introduces some extra works, and it outweighs the benefit from saving few bytes copy. Signed-off-by: Yuanhan Liu <yuanhan.liu@linux.intel.com> Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com> Tested-by: Qian Xu <qian.q.xu@intel.com>
2016-10-09 15:27:57 +08:00
static void
free_zmbufs(struct vhost_virtqueue *vq)
{
drain_zmbuf_list(vq);
vhost: add dequeue zero copy The basic idea of dequeue zero copy is, instead of copying data from the desc buf, here we let the mbuf reference the desc buf addr directly. Doing so, however, has one major issue: we can't update the used ring at the end of rte_vhost_dequeue_burst. Because we don't do the copy here, an update of the used ring would let the driver to reclaim the desc buf. As a result, DPDK might reference a stale memory region. To update the used ring properly, this patch does several tricks: - when mbuf references a desc buf, refcnt is added by 1. This is to pin lock the mbuf, so that a mbuf free from the DPDK won't actually free it, instead, refcnt is subtracted by 1. - We chain all those mbuf together (by tailq) And we check it every time on the rte_vhost_dequeue_burst entrance, to see if the mbuf is freed (when refcnt equals to 1). If that happens, it means we are the last user of this mbuf and we are safe to update the used ring. - "struct zcopy_mbuf" is introduced, to associate an mbuf with the right desc idx. Dequeue zero copy is introduced for performance reason, and some rough tests show about 50% perfomance boost for packet size 1500B. For small packets, (e.g. 64B), it actually slows a bit down (well, it could up to 15%). That is expected because this patch introduces some extra works, and it outweighs the benefit from saving few bytes copy. Signed-off-by: Yuanhan Liu <yuanhan.liu@linux.intel.com> Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com> Tested-by: Qian Xu <qian.q.xu@intel.com>
2016-10-09 15:27:57 +08:00
rte_free(vq->zmbufs);
}
/*
* when virtio is stopped, qemu will send us the GET_VRING_BASE message.
*/
static int
vhost_user_get_vring_base(struct virtio_net **pdev,
struct VhostUserMsg *msg,
int main_fd __rte_unused)
{
struct virtio_net *dev = *pdev;
struct vhost_virtqueue *vq = dev->virtqueue[msg->payload.state.index];
uint64_t val;
if (validate_msg_fds(msg, 0) != 0)
return RTE_VHOST_MSG_RESULT_ERR;
/* We have to stop the queue (virtio) if it is running. */
vhost_destroy_device_notify(dev);
dev->flags &= ~VIRTIO_DEV_READY;
dev->flags &= ~VIRTIO_DEV_VDPA_CONFIGURED;
/* Here we are safe to get the indexes */
if (vq_is_packed(dev)) {
/*
* Bit[0:14]: avail index
* Bit[15]: avail wrap counter
*/
val = vq->last_avail_idx & 0x7fff;
val |= vq->avail_wrap_counter << 15;
msg->payload.state.num = val;
} else {
msg->payload.state.num = vq->last_avail_idx;
}
VHOST_LOG_CONFIG(INFO,
"vring base idx:%d file:%d\n", msg->payload.state.index,
msg->payload.state.num);
/*
* Based on current qemu vhost-user implementation, this message is
* sent and only sent in vhost_vring_stop.
* TODO: cleanup the vring, it isn't usable since here.
*/
if (vq->kickfd >= 0)
close(vq->kickfd);
vq->kickfd = VIRTIO_UNINITIALIZED_EVENTFD;
if (vq->callfd >= 0)
close(vq->callfd);
vq->callfd = VIRTIO_UNINITIALIZED_EVENTFD;
vq->signalled_used_valid = false;
vhost: add dequeue zero copy The basic idea of dequeue zero copy is, instead of copying data from the desc buf, here we let the mbuf reference the desc buf addr directly. Doing so, however, has one major issue: we can't update the used ring at the end of rte_vhost_dequeue_burst. Because we don't do the copy here, an update of the used ring would let the driver to reclaim the desc buf. As a result, DPDK might reference a stale memory region. To update the used ring properly, this patch does several tricks: - when mbuf references a desc buf, refcnt is added by 1. This is to pin lock the mbuf, so that a mbuf free from the DPDK won't actually free it, instead, refcnt is subtracted by 1. - We chain all those mbuf together (by tailq) And we check it every time on the rte_vhost_dequeue_burst entrance, to see if the mbuf is freed (when refcnt equals to 1). If that happens, it means we are the last user of this mbuf and we are safe to update the used ring. - "struct zcopy_mbuf" is introduced, to associate an mbuf with the right desc idx. Dequeue zero copy is introduced for performance reason, and some rough tests show about 50% perfomance boost for packet size 1500B. For small packets, (e.g. 64B), it actually slows a bit down (well, it could up to 15%). That is expected because this patch introduces some extra works, and it outweighs the benefit from saving few bytes copy. Signed-off-by: Yuanhan Liu <yuanhan.liu@linux.intel.com> Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com> Tested-by: Qian Xu <qian.q.xu@intel.com>
2016-10-09 15:27:57 +08:00
if (dev->dequeue_zero_copy)
free_zmbufs(vq);
if (vq_is_packed(dev)) {
rte_free(vq->shadow_used_packed);
vq->shadow_used_packed = NULL;
} else {
rte_free(vq->shadow_used_split);
vq->shadow_used_split = NULL;
}
vhost: add dequeue zero copy The basic idea of dequeue zero copy is, instead of copying data from the desc buf, here we let the mbuf reference the desc buf addr directly. Doing so, however, has one major issue: we can't update the used ring at the end of rte_vhost_dequeue_burst. Because we don't do the copy here, an update of the used ring would let the driver to reclaim the desc buf. As a result, DPDK might reference a stale memory region. To update the used ring properly, this patch does several tricks: - when mbuf references a desc buf, refcnt is added by 1. This is to pin lock the mbuf, so that a mbuf free from the DPDK won't actually free it, instead, refcnt is subtracted by 1. - We chain all those mbuf together (by tailq) And we check it every time on the rte_vhost_dequeue_burst entrance, to see if the mbuf is freed (when refcnt equals to 1). If that happens, it means we are the last user of this mbuf and we are safe to update the used ring. - "struct zcopy_mbuf" is introduced, to associate an mbuf with the right desc idx. Dequeue zero copy is introduced for performance reason, and some rough tests show about 50% perfomance boost for packet size 1500B. For small packets, (e.g. 64B), it actually slows a bit down (well, it could up to 15%). That is expected because this patch introduces some extra works, and it outweighs the benefit from saving few bytes copy. Signed-off-by: Yuanhan Liu <yuanhan.liu@linux.intel.com> Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com> Tested-by: Qian Xu <qian.q.xu@intel.com>
2016-10-09 15:27:57 +08:00
rte_free(vq->batch_copy_elems);
vq->batch_copy_elems = NULL;
msg->size = sizeof(msg->payload.state);
msg->fd_num = 0;
vring_invalidate(dev, vq);
return RTE_VHOST_MSG_RESULT_REPLY;
}
/*
* when virtio queues are ready to work, qemu will send us to
* enable the virtio queue pair.
*/
static int
vhost_user_set_vring_enable(struct virtio_net **pdev,
struct VhostUserMsg *msg,
int main_fd __rte_unused)
{
struct virtio_net *dev = *pdev;
int enable = (int)msg->payload.state.num;
int index = (int)msg->payload.state.index;
struct rte_vdpa_device *vdpa_dev;
int did = -1;
if (validate_msg_fds(msg, 0) != 0)
return RTE_VHOST_MSG_RESULT_ERR;
VHOST_LOG_CONFIG(INFO,
"set queue enable: %d to qp idx: %d\n",
enable, index);
did = dev->vdpa_dev_id;
vdpa_dev = rte_vdpa_get_device(did);
if (vdpa_dev && vdpa_dev->ops->set_vring_state)
vdpa_dev->ops->set_vring_state(dev->vid, index, enable);
if (dev->notify_ops->vring_state_changed)
dev->notify_ops->vring_state_changed(dev->vid,
index, enable);
/* On disable, rings have to be stopped being processed. */
if (!enable && dev->dequeue_zero_copy)
drain_zmbuf_list(dev->virtqueue[index]);
dev->virtqueue[index]->enabled = enable;
return RTE_VHOST_MSG_RESULT_OK;
}
static int
vhost_user_get_protocol_features(struct virtio_net **pdev,
struct VhostUserMsg *msg,
int main_fd __rte_unused)
{
struct virtio_net *dev = *pdev;
uint64_t features, protocol_features;
if (validate_msg_fds(msg, 0) != 0)
return RTE_VHOST_MSG_RESULT_ERR;
rte_vhost_driver_get_features(dev->ifname, &features);
rte_vhost_driver_get_protocol_features(dev->ifname, &protocol_features);
/*
* REPLY_ACK protocol feature is only mandatory for now
* for IOMMU feature. If IOMMU is explicitly disabled by the
* application, disable also REPLY_ACK feature for older buggy
* Qemu versions (from v2.7.0 to v2.9.0).
*/
if (!(features & (1ULL << VIRTIO_F_IOMMU_PLATFORM)))
protocol_features &= ~(1ULL << VHOST_USER_PROTOCOL_F_REPLY_ACK);
msg->payload.u64 = protocol_features;
msg->size = sizeof(msg->payload.u64);
msg->fd_num = 0;
return RTE_VHOST_MSG_RESULT_REPLY;
}
static int
vhost_user_set_protocol_features(struct virtio_net **pdev,
struct VhostUserMsg *msg,
int main_fd __rte_unused)
{
struct virtio_net *dev = *pdev;
uint64_t protocol_features = msg->payload.u64;
uint64_t slave_protocol_features = 0;
if (validate_msg_fds(msg, 0) != 0)
return RTE_VHOST_MSG_RESULT_ERR;
rte_vhost_driver_get_protocol_features(dev->ifname,
&slave_protocol_features);
if (protocol_features & ~slave_protocol_features) {
VHOST_LOG_CONFIG(ERR,
"(%d) received invalid protocol features.\n",
dev->vid);
return RTE_VHOST_MSG_RESULT_ERR;
}
dev->protocol_features = protocol_features;
VHOST_LOG_CONFIG(INFO,
"negotiated Vhost-user protocol features: 0x%" PRIx64 "\n",
dev->protocol_features);
return RTE_VHOST_MSG_RESULT_OK;
}
static int
vhost_user_set_log_base(struct virtio_net **pdev, struct VhostUserMsg *msg,
int main_fd __rte_unused)
{
struct virtio_net *dev = *pdev;
int fd = msg->fds[0];
uint64_t size, off;
void *addr;
if (validate_msg_fds(msg, 1) != 0)
return RTE_VHOST_MSG_RESULT_ERR;
if (fd < 0) {
VHOST_LOG_CONFIG(ERR, "invalid log fd: %d\n", fd);
return RTE_VHOST_MSG_RESULT_ERR;
}
if (msg->size != sizeof(VhostUserLog)) {
VHOST_LOG_CONFIG(ERR,
"invalid log base msg size: %"PRId32" != %d\n",
msg->size, (int)sizeof(VhostUserLog));
return RTE_VHOST_MSG_RESULT_ERR;
}
size = msg->payload.log.mmap_size;
off = msg->payload.log.mmap_offset;
/* Check for mmap size and offset overflow. */
if (off >= -size) {
VHOST_LOG_CONFIG(ERR,
"log offset %#"PRIx64" and log size %#"PRIx64" overflow\n",
off, size);
return RTE_VHOST_MSG_RESULT_ERR;
}
VHOST_LOG_CONFIG(INFO,
"log mmap size: %"PRId64", offset: %"PRId64"\n",
size, off);
/*
* mmap from 0 to workaround a hugepage mmap bug: mmap will
* fail when offset is not page size aligned.
*/
addr = mmap(0, size + off, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
close(fd);
if (addr == MAP_FAILED) {
VHOST_LOG_CONFIG(ERR, "mmap log base failed!\n");
return RTE_VHOST_MSG_RESULT_ERR;
}
/*
* Free previously mapped log memory on occasionally
* multiple VHOST_USER_SET_LOG_BASE.
*/
if (dev->log_addr) {
munmap((void *)(uintptr_t)dev->log_addr, dev->log_size);
}
dev->log_addr = (uint64_t)(uintptr_t)addr;
dev->log_base = dev->log_addr + off;
dev->log_size = size;
/*
* The spec is not clear about it (yet), but QEMU doesn't expect
* any payload in the reply.
*/
msg->size = 0;
msg->fd_num = 0;
return RTE_VHOST_MSG_RESULT_REPLY;
}
static int vhost_user_set_log_fd(struct virtio_net **pdev __rte_unused,
struct VhostUserMsg *msg,
int main_fd __rte_unused)
{
if (validate_msg_fds(msg, 1) != 0)
return RTE_VHOST_MSG_RESULT_ERR;
close(msg->fds[0]);
VHOST_LOG_CONFIG(INFO, "not implemented.\n");
return RTE_VHOST_MSG_RESULT_OK;
}
/*
* An rarp packet is constructed and broadcasted to notify switches about
* the new location of the migrated VM, so that packets from outside will
* not be lost after migration.
*
* However, we don't actually "send" a rarp packet here, instead, we set
* a flag 'broadcast_rarp' to let rte_vhost_dequeue_burst() inject it.
*/
static int
vhost_user_send_rarp(struct virtio_net **pdev, struct VhostUserMsg *msg,
int main_fd __rte_unused)
{
struct virtio_net *dev = *pdev;
uint8_t *mac = (uint8_t *)&msg->payload.u64;
struct rte_vdpa_device *vdpa_dev;
int did = -1;
if (validate_msg_fds(msg, 0) != 0)
return RTE_VHOST_MSG_RESULT_ERR;
VHOST_LOG_CONFIG(DEBUG,
":: mac: %02x:%02x:%02x:%02x:%02x:%02x\n",
mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
memcpy(dev->mac.addr_bytes, mac, 6);
/*
* Set the flag to inject a RARP broadcast packet at
* rte_vhost_dequeue_burst().
*
* __ATOMIC_RELEASE ordering is for making sure the mac is
* copied before the flag is set.
*/
__atomic_store_n(&dev->broadcast_rarp, 1, __ATOMIC_RELEASE);
did = dev->vdpa_dev_id;
vdpa_dev = rte_vdpa_get_device(did);
if (vdpa_dev && vdpa_dev->ops->migration_done)
vdpa_dev->ops->migration_done(dev->vid);
return RTE_VHOST_MSG_RESULT_OK;
}
static int
vhost_user_net_set_mtu(struct virtio_net **pdev, struct VhostUserMsg *msg,
int main_fd __rte_unused)
{
struct virtio_net *dev = *pdev;
if (validate_msg_fds(msg, 0) != 0)
return RTE_VHOST_MSG_RESULT_ERR;
if (msg->payload.u64 < VIRTIO_MIN_MTU ||
msg->payload.u64 > VIRTIO_MAX_MTU) {
VHOST_LOG_CONFIG(ERR, "Invalid MTU size (%"PRIu64")\n",
msg->payload.u64);
return RTE_VHOST_MSG_RESULT_ERR;
}
dev->mtu = msg->payload.u64;
return RTE_VHOST_MSG_RESULT_OK;
}
static int
vhost_user_set_req_fd(struct virtio_net **pdev, struct VhostUserMsg *msg,
int main_fd __rte_unused)
{
struct virtio_net *dev = *pdev;
int fd = msg->fds[0];
if (validate_msg_fds(msg, 1) != 0)
return RTE_VHOST_MSG_RESULT_ERR;
if (fd < 0) {
VHOST_LOG_CONFIG(ERR,
"Invalid file descriptor for slave channel (%d)\n",
fd);
return RTE_VHOST_MSG_RESULT_ERR;
}
if (dev->slave_req_fd >= 0)
close(dev->slave_req_fd);
dev->slave_req_fd = fd;
return RTE_VHOST_MSG_RESULT_OK;
}
static int
is_vring_iotlb_split(struct vhost_virtqueue *vq, struct vhost_iotlb_msg *imsg)
{
struct vhost_vring_addr *ra;
uint64_t start, end, len;
start = imsg->iova;
end = start + imsg->size;
ra = &vq->ring_addrs;
len = sizeof(struct vring_desc) * vq->size;
if (ra->desc_user_addr < end && (ra->desc_user_addr + len) > start)
return 1;
len = sizeof(struct vring_avail) + sizeof(uint16_t) * vq->size;
if (ra->avail_user_addr < end && (ra->avail_user_addr + len) > start)
return 1;
len = sizeof(struct vring_used) +
sizeof(struct vring_used_elem) * vq->size;
if (ra->used_user_addr < end && (ra->used_user_addr + len) > start)
return 1;
if (ra->flags & (1 << VHOST_VRING_F_LOG)) {
len = sizeof(uint64_t);
if (ra->log_guest_addr < end &&
(ra->log_guest_addr + len) > start)
return 1;
}
return 0;
}
static int
is_vring_iotlb_packed(struct vhost_virtqueue *vq, struct vhost_iotlb_msg *imsg)
{
struct vhost_vring_addr *ra;
uint64_t start, end, len;
start = imsg->iova;
end = start + imsg->size;
ra = &vq->ring_addrs;
len = sizeof(struct vring_packed_desc) * vq->size;
if (ra->desc_user_addr < end && (ra->desc_user_addr + len) > start)
return 1;
len = sizeof(struct vring_packed_desc_event);
if (ra->avail_user_addr < end && (ra->avail_user_addr + len) > start)
return 1;
len = sizeof(struct vring_packed_desc_event);
if (ra->used_user_addr < end && (ra->used_user_addr + len) > start)
return 1;
if (ra->flags & (1 << VHOST_VRING_F_LOG)) {
len = sizeof(uint64_t);
if (ra->log_guest_addr < end &&
(ra->log_guest_addr + len) > start)
return 1;
}
return 0;
}
static int is_vring_iotlb(struct virtio_net *dev,
struct vhost_virtqueue *vq,
struct vhost_iotlb_msg *imsg)
{
if (vq_is_packed(dev))
return is_vring_iotlb_packed(vq, imsg);
else
return is_vring_iotlb_split(vq, imsg);
}
static int
vhost_user_iotlb_msg(struct virtio_net **pdev, struct VhostUserMsg *msg,
int main_fd __rte_unused)
{
struct virtio_net *dev = *pdev;
struct vhost_iotlb_msg *imsg = &msg->payload.iotlb;
uint16_t i;
uint64_t vva, len;
if (validate_msg_fds(msg, 0) != 0)
return RTE_VHOST_MSG_RESULT_ERR;
switch (imsg->type) {
case VHOST_IOTLB_UPDATE:
len = imsg->size;
vva = qva_to_vva(dev, imsg->uaddr, &len);
if (!vva)
return RTE_VHOST_MSG_RESULT_ERR;
for (i = 0; i < dev->nr_vring; i++) {
struct vhost_virtqueue *vq = dev->virtqueue[i];
vhost_user_iotlb_cache_insert(vq, imsg->iova, vva,
len, imsg->perm);
if (is_vring_iotlb(dev, vq, imsg))
*pdev = dev = translate_ring_addresses(dev, i);
}
break;
case VHOST_IOTLB_INVALIDATE:
for (i = 0; i < dev->nr_vring; i++) {
struct vhost_virtqueue *vq = dev->virtqueue[i];
vhost_user_iotlb_cache_remove(vq, imsg->iova,
imsg->size);
if (is_vring_iotlb(dev, vq, imsg))
vring_invalidate(dev, vq);
}
break;
default:
VHOST_LOG_CONFIG(ERR, "Invalid IOTLB message type (%d)\n",
imsg->type);
return RTE_VHOST_MSG_RESULT_ERR;
}
return RTE_VHOST_MSG_RESULT_OK;
}
static int
vhost_user_set_postcopy_advise(struct virtio_net **pdev,
struct VhostUserMsg *msg,
int main_fd __rte_unused)
{
struct virtio_net *dev = *pdev;
#ifdef RTE_LIBRTE_VHOST_POSTCOPY
struct uffdio_api api_struct;
if (validate_msg_fds(msg, 0) != 0)
return RTE_VHOST_MSG_RESULT_ERR;
dev->postcopy_ufd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
if (dev->postcopy_ufd == -1) {
VHOST_LOG_CONFIG(ERR, "Userfaultfd not available: %s\n",
strerror(errno));
return RTE_VHOST_MSG_RESULT_ERR;
}
api_struct.api = UFFD_API;
api_struct.features = 0;
if (ioctl(dev->postcopy_ufd, UFFDIO_API, &api_struct)) {
VHOST_LOG_CONFIG(ERR, "UFFDIO_API ioctl failure: %s\n",
strerror(errno));
close(dev->postcopy_ufd);
dev->postcopy_ufd = -1;
return RTE_VHOST_MSG_RESULT_ERR;
}
msg->fds[0] = dev->postcopy_ufd;
msg->fd_num = 1;
return RTE_VHOST_MSG_RESULT_REPLY;
#else
dev->postcopy_ufd = -1;
msg->fd_num = 0;
return RTE_VHOST_MSG_RESULT_ERR;
#endif
}
static int
vhost_user_set_postcopy_listen(struct virtio_net **pdev,
struct VhostUserMsg *msg __rte_unused,
int main_fd __rte_unused)
{
struct virtio_net *dev = *pdev;
if (validate_msg_fds(msg, 0) != 0)
return RTE_VHOST_MSG_RESULT_ERR;
if (dev->mem && dev->mem->nregions) {
VHOST_LOG_CONFIG(ERR,
"Regions already registered at postcopy-listen\n");
return RTE_VHOST_MSG_RESULT_ERR;
}
dev->postcopy_listening = 1;
return RTE_VHOST_MSG_RESULT_OK;
}
static int
vhost_user_postcopy_end(struct virtio_net **pdev, struct VhostUserMsg *msg,
int main_fd __rte_unused)
{
struct virtio_net *dev = *pdev;
if (validate_msg_fds(msg, 0) != 0)
return RTE_VHOST_MSG_RESULT_ERR;
dev->postcopy_listening = 0;
if (dev->postcopy_ufd >= 0) {
close(dev->postcopy_ufd);
dev->postcopy_ufd = -1;
}
msg->payload.u64 = 0;
msg->size = sizeof(msg->payload.u64);
msg->fd_num = 0;
return RTE_VHOST_MSG_RESULT_REPLY;
}
typedef int (*vhost_message_handler_t)(struct virtio_net **pdev,
struct VhostUserMsg *msg,
int main_fd);
static vhost_message_handler_t vhost_message_handlers[VHOST_USER_MAX] = {
[VHOST_USER_NONE] = NULL,
[VHOST_USER_GET_FEATURES] = vhost_user_get_features,
[VHOST_USER_SET_FEATURES] = vhost_user_set_features,
[VHOST_USER_SET_OWNER] = vhost_user_set_owner,
[VHOST_USER_RESET_OWNER] = vhost_user_reset_owner,
[VHOST_USER_SET_MEM_TABLE] = vhost_user_set_mem_table,
[VHOST_USER_SET_LOG_BASE] = vhost_user_set_log_base,
[VHOST_USER_SET_LOG_FD] = vhost_user_set_log_fd,
[VHOST_USER_SET_VRING_NUM] = vhost_user_set_vring_num,
[VHOST_USER_SET_VRING_ADDR] = vhost_user_set_vring_addr,
[VHOST_USER_SET_VRING_BASE] = vhost_user_set_vring_base,
[VHOST_USER_GET_VRING_BASE] = vhost_user_get_vring_base,
[VHOST_USER_SET_VRING_KICK] = vhost_user_set_vring_kick,
[VHOST_USER_SET_VRING_CALL] = vhost_user_set_vring_call,
[VHOST_USER_SET_VRING_ERR] = vhost_user_set_vring_err,
[VHOST_USER_GET_PROTOCOL_FEATURES] = vhost_user_get_protocol_features,
[VHOST_USER_SET_PROTOCOL_FEATURES] = vhost_user_set_protocol_features,
[VHOST_USER_GET_QUEUE_NUM] = vhost_user_get_queue_num,
[VHOST_USER_SET_VRING_ENABLE] = vhost_user_set_vring_enable,
[VHOST_USER_SEND_RARP] = vhost_user_send_rarp,
[VHOST_USER_NET_SET_MTU] = vhost_user_net_set_mtu,
[VHOST_USER_SET_SLAVE_REQ_FD] = vhost_user_set_req_fd,
[VHOST_USER_IOTLB_MSG] = vhost_user_iotlb_msg,
[VHOST_USER_POSTCOPY_ADVISE] = vhost_user_set_postcopy_advise,
[VHOST_USER_POSTCOPY_LISTEN] = vhost_user_set_postcopy_listen,
[VHOST_USER_POSTCOPY_END] = vhost_user_postcopy_end,
[VHOST_USER_GET_INFLIGHT_FD] = vhost_user_get_inflight_fd,
[VHOST_USER_SET_INFLIGHT_FD] = vhost_user_set_inflight_fd,
};
/* return bytes# of read on success or negative val on failure. */
static int
read_vhost_message(int sockfd, struct VhostUserMsg *msg)
{
int ret;
ret = read_fd_message(sockfd, (char *)msg, VHOST_USER_HDR_SIZE,
msg->fds, VHOST_MEMORY_MAX_NREGIONS, &msg->fd_num);
if (ret <= 0) {
return ret;
} else if (ret != VHOST_USER_HDR_SIZE) {
VHOST_LOG_CONFIG(ERR, "Unexpected header size read\n");
close_msg_fds(msg);
return -1;
}
if (msg->size) {
if (msg->size > sizeof(msg->payload)) {
VHOST_LOG_CONFIG(ERR,
"invalid msg size: %d\n", msg->size);
return -1;
}
ret = read(sockfd, &msg->payload, msg->size);
if (ret <= 0)
return ret;
if (ret != (int)msg->size) {
VHOST_LOG_CONFIG(ERR,
"read control message failed\n");
return -1;
}
}
return ret;
}
static int
send_vhost_message(int sockfd, struct VhostUserMsg *msg)
{
if (!msg)
return 0;
return send_fd_message(sockfd, (char *)msg,
VHOST_USER_HDR_SIZE + msg->size, msg->fds, msg->fd_num);
}
static int
send_vhost_reply(int sockfd, struct VhostUserMsg *msg)
{
if (!msg)
return 0;
msg->flags &= ~VHOST_USER_VERSION_MASK;
msg->flags &= ~VHOST_USER_NEED_REPLY;
msg->flags |= VHOST_USER_VERSION;
msg->flags |= VHOST_USER_REPLY_MASK;
return send_vhost_message(sockfd, msg);
}
static int
send_vhost_slave_message(struct virtio_net *dev, struct VhostUserMsg *msg)
{
int ret;
if (msg->flags & VHOST_USER_NEED_REPLY)
rte_spinlock_lock(&dev->slave_req_lock);
ret = send_vhost_message(dev->slave_req_fd, msg);
if (ret < 0 && (msg->flags & VHOST_USER_NEED_REPLY))
rte_spinlock_unlock(&dev->slave_req_lock);
return ret;
}
/*
* Allocate a queue pair if it hasn't been allocated yet
*/
static int
vhost_user_check_and_alloc_queue_pair(struct virtio_net *dev,
struct VhostUserMsg *msg)
{
uint32_t vring_idx;
switch (msg->request.master) {
case VHOST_USER_SET_VRING_KICK:
case VHOST_USER_SET_VRING_CALL:
case VHOST_USER_SET_VRING_ERR:
vring_idx = msg->payload.u64 & VHOST_USER_VRING_IDX_MASK;
break;
case VHOST_USER_SET_VRING_NUM:
case VHOST_USER_SET_VRING_BASE:
case VHOST_USER_SET_VRING_ENABLE:
vring_idx = msg->payload.state.index;
break;
case VHOST_USER_SET_VRING_ADDR:
vring_idx = msg->payload.addr.index;
break;
default:
return 0;
}
if (vring_idx >= VHOST_MAX_VRING) {
VHOST_LOG_CONFIG(ERR,
"invalid vring index: %u\n", vring_idx);
return -1;
}
if (dev->virtqueue[vring_idx])
return 0;
return alloc_vring_queue(dev, vring_idx);
}
static void
vhost_user_lock_all_queue_pairs(struct virtio_net *dev)
{
unsigned int i = 0;
unsigned int vq_num = 0;
while (vq_num < dev->nr_vring) {
struct vhost_virtqueue *vq = dev->virtqueue[i];
if (vq) {
rte_spinlock_lock(&vq->access_lock);
vq_num++;
}
i++;
}
}
static void
vhost_user_unlock_all_queue_pairs(struct virtio_net *dev)
{
unsigned int i = 0;
unsigned int vq_num = 0;
while (vq_num < dev->nr_vring) {
struct vhost_virtqueue *vq = dev->virtqueue[i];
if (vq) {
rte_spinlock_unlock(&vq->access_lock);
vq_num++;
}
i++;
}
}
int
vhost_user_msg_handler(int vid, int fd)
{
struct virtio_net *dev;
struct VhostUserMsg msg;
struct rte_vdpa_device *vdpa_dev;
int did = -1;
int ret;
int unlock_required = 0;
bool handled;
int request;
dev = get_device(vid);
if (dev == NULL)
return -1;
if (!dev->notify_ops) {
dev->notify_ops = vhost_driver_callback_get(dev->ifname);
if (!dev->notify_ops) {
VHOST_LOG_CONFIG(ERR,
"failed to get callback ops for driver %s\n",
dev->ifname);
return -1;
}
}
ret = read_vhost_message(fd, &msg);
if (ret <= 0) {
if (ret < 0)
VHOST_LOG_CONFIG(ERR,
"vhost read message failed\n");
else
VHOST_LOG_CONFIG(INFO,
"vhost peer closed\n");
return -1;
}
ret = 0;
request = msg.request.master;
if (request > VHOST_USER_NONE && request < VHOST_USER_MAX &&
vhost_message_str[request]) {
if (request != VHOST_USER_IOTLB_MSG)
VHOST_LOG_CONFIG(INFO, "read message %s\n",
vhost_message_str[request]);
else
VHOST_LOG_CONFIG(DEBUG, "read message %s\n",
vhost_message_str[request]);
} else {
VHOST_LOG_CONFIG(DEBUG, "External request %d\n", request);
}
ret = vhost_user_check_and_alloc_queue_pair(dev, &msg);
if (ret < 0) {
VHOST_LOG_CONFIG(ERR,
"failed to alloc queue\n");
return -1;
}
/*
* Note: we don't lock all queues on VHOST_USER_GET_VRING_BASE
* and VHOST_USER_RESET_OWNER, since it is sent when virtio stops
* and device is destroyed. destroy_device waits for queues to be
* inactive, so it is safe. Otherwise taking the access_lock
* would cause a dead lock.
*/
switch (request) {
case VHOST_USER_SET_FEATURES:
case VHOST_USER_SET_PROTOCOL_FEATURES:
case VHOST_USER_SET_OWNER:
case VHOST_USER_SET_MEM_TABLE:
case VHOST_USER_SET_LOG_BASE:
case VHOST_USER_SET_LOG_FD:
case VHOST_USER_SET_VRING_NUM:
case VHOST_USER_SET_VRING_ADDR:
case VHOST_USER_SET_VRING_BASE:
case VHOST_USER_SET_VRING_KICK:
case VHOST_USER_SET_VRING_CALL:
case VHOST_USER_SET_VRING_ERR:
case VHOST_USER_SET_VRING_ENABLE:
case VHOST_USER_SEND_RARP:
case VHOST_USER_NET_SET_MTU:
case VHOST_USER_SET_SLAVE_REQ_FD:
vhost_user_lock_all_queue_pairs(dev);
unlock_required = 1;
break;
default:
break;
}
handled = false;
if (dev->extern_ops.pre_msg_handle) {
ret = (*dev->extern_ops.pre_msg_handle)(dev->vid,
(void *)&msg);
switch (ret) {
case RTE_VHOST_MSG_RESULT_REPLY:
send_vhost_reply(fd, &msg);
/* Fall-through */
case RTE_VHOST_MSG_RESULT_ERR:
case RTE_VHOST_MSG_RESULT_OK:
handled = true;
goto skip_to_post_handle;
case RTE_VHOST_MSG_RESULT_NOT_HANDLED:
default:
break;
}
}
if (request > VHOST_USER_NONE && request < VHOST_USER_MAX) {
if (!vhost_message_handlers[request])
goto skip_to_post_handle;
ret = vhost_message_handlers[request](&dev, &msg, fd);
switch (ret) {
case RTE_VHOST_MSG_RESULT_ERR:
VHOST_LOG_CONFIG(ERR,
"Processing %s failed.\n",
vhost_message_str[request]);
handled = true;
break;
case RTE_VHOST_MSG_RESULT_OK:
VHOST_LOG_CONFIG(DEBUG,
"Processing %s succeeded.\n",
vhost_message_str[request]);
handled = true;
break;
case RTE_VHOST_MSG_RESULT_REPLY:
VHOST_LOG_CONFIG(DEBUG,
"Processing %s succeeded and needs reply.\n",
vhost_message_str[request]);
send_vhost_reply(fd, &msg);
handled = true;
break;
default:
break;
}
}
skip_to_post_handle:
if (ret != RTE_VHOST_MSG_RESULT_ERR &&
dev->extern_ops.post_msg_handle) {
ret = (*dev->extern_ops.post_msg_handle)(dev->vid,
(void *)&msg);
switch (ret) {
case RTE_VHOST_MSG_RESULT_REPLY:
send_vhost_reply(fd, &msg);
/* Fall-through */
case RTE_VHOST_MSG_RESULT_ERR:
case RTE_VHOST_MSG_RESULT_OK:
handled = true;
case RTE_VHOST_MSG_RESULT_NOT_HANDLED:
default:
break;
}
}
if (unlock_required)
vhost_user_unlock_all_queue_pairs(dev);
/* If message was not handled at this stage, treat it as an error */
if (!handled) {
VHOST_LOG_CONFIG(ERR,
"vhost message (req: %d) was not handled.\n", request);
close_msg_fds(&msg);
ret = RTE_VHOST_MSG_RESULT_ERR;
}
/*
* If the request required a reply that was already sent,
* this optional reply-ack won't be sent as the
* VHOST_USER_NEED_REPLY was cleared in send_vhost_reply().
*/
if (msg.flags & VHOST_USER_NEED_REPLY) {
msg.payload.u64 = ret == RTE_VHOST_MSG_RESULT_ERR;
msg.size = sizeof(msg.payload.u64);
msg.fd_num = 0;
send_vhost_reply(fd, &msg);
} else if (ret == RTE_VHOST_MSG_RESULT_ERR) {
VHOST_LOG_CONFIG(ERR,
"vhost message handling failed.\n");
return -1;
}
if (!(dev->flags & VIRTIO_DEV_RUNNING) && virtio_is_ready(dev)) {
dev->flags |= VIRTIO_DEV_READY;
if (!(dev->flags & VIRTIO_DEV_RUNNING)) {
if (dev->dequeue_zero_copy) {
VHOST_LOG_CONFIG(INFO,
"dequeue zero copy is enabled\n");
}
if (dev->notify_ops->new_device(dev->vid) == 0)
dev->flags |= VIRTIO_DEV_RUNNING;
}
}
did = dev->vdpa_dev_id;
vdpa_dev = rte_vdpa_get_device(did);
if (vdpa_dev && virtio_is_ready(dev) &&
!(dev->flags & VIRTIO_DEV_VDPA_CONFIGURED) &&
msg.request.master == VHOST_USER_SET_VRING_CALL) {
if (vdpa_dev->ops->dev_conf)
vdpa_dev->ops->dev_conf(dev->vid);
dev->flags |= VIRTIO_DEV_VDPA_CONFIGURED;
}
return 0;
}
static int process_slave_message_reply(struct virtio_net *dev,
const struct VhostUserMsg *msg)
{
struct VhostUserMsg msg_reply;
int ret;
if ((msg->flags & VHOST_USER_NEED_REPLY) == 0)
return 0;
ret = read_vhost_message(dev->slave_req_fd, &msg_reply);
if (ret <= 0) {
if (ret < 0)
VHOST_LOG_CONFIG(ERR,
"vhost read slave message reply failed\n");
else
VHOST_LOG_CONFIG(INFO,
"vhost peer closed\n");
ret = -1;
goto out;
}
ret = 0;
if (msg_reply.request.slave != msg->request.slave) {
VHOST_LOG_CONFIG(ERR,
"Received unexpected msg type (%u), expected %u\n",
msg_reply.request.slave, msg->request.slave);
ret = -1;
goto out;
}
ret = msg_reply.payload.u64 ? -1 : 0;
out:
rte_spinlock_unlock(&dev->slave_req_lock);
return ret;
}
int
vhost_user_iotlb_miss(struct virtio_net *dev, uint64_t iova, uint8_t perm)
{
int ret;
struct VhostUserMsg msg = {
.request.slave = VHOST_USER_SLAVE_IOTLB_MSG,
.flags = VHOST_USER_VERSION,
.size = sizeof(msg.payload.iotlb),
.payload.iotlb = {
.iova = iova,
.perm = perm,
.type = VHOST_IOTLB_MISS,
},
};
ret = send_vhost_message(dev->slave_req_fd, &msg);
if (ret < 0) {
VHOST_LOG_CONFIG(ERR,
"Failed to send IOTLB miss message (%d)\n",
ret);
return ret;
}
return 0;
}
static int
vhost_user_slave_config_change(struct virtio_net *dev, bool need_reply)
{
int ret;
struct VhostUserMsg msg = {
.request.slave = VHOST_USER_SLAVE_CONFIG_CHANGE_MSG,
.flags = VHOST_USER_VERSION,
.size = 0,
};
if (need_reply)
msg.flags |= VHOST_USER_NEED_REPLY;
ret = send_vhost_slave_message(dev, &msg);
if (ret < 0) {
VHOST_LOG_CONFIG(ERR,
"Failed to send config change (%d)\n",
ret);
return ret;
}
return process_slave_message_reply(dev, &msg);
}
int
rte_vhost_slave_config_change(int vid, bool need_reply)
{
struct virtio_net *dev;
dev = get_device(vid);
if (!dev)
return -ENODEV;
return vhost_user_slave_config_change(dev, need_reply);
}
static int vhost_user_slave_set_vring_host_notifier(struct virtio_net *dev,
int index, int fd,
uint64_t offset,
uint64_t size)
{
int ret;
struct VhostUserMsg msg = {
.request.slave = VHOST_USER_SLAVE_VRING_HOST_NOTIFIER_MSG,
.flags = VHOST_USER_VERSION | VHOST_USER_NEED_REPLY,
.size = sizeof(msg.payload.area),
.payload.area = {
.u64 = index & VHOST_USER_VRING_IDX_MASK,
.size = size,
.offset = offset,
},
};
if (fd < 0)
msg.payload.area.u64 |= VHOST_USER_VRING_NOFD_MASK;
else {
msg.fds[0] = fd;
msg.fd_num = 1;
}
ret = send_vhost_slave_message(dev, &msg);
if (ret < 0) {
VHOST_LOG_CONFIG(ERR,
"Failed to set host notifier (%d)\n", ret);
return ret;
}
return process_slave_message_reply(dev, &msg);
}
int rte_vhost_host_notifier_ctrl(int vid, bool enable)
{
struct virtio_net *dev;
struct rte_vdpa_device *vdpa_dev;
int vfio_device_fd, did, ret = 0;
uint64_t offset, size;
unsigned int i;
dev = get_device(vid);
if (!dev)
return -ENODEV;
did = dev->vdpa_dev_id;
if (did < 0)
return -EINVAL;
if (!(dev->features & (1ULL << VIRTIO_F_VERSION_1)) ||
!(dev->features & (1ULL << VHOST_USER_F_PROTOCOL_FEATURES)) ||
!(dev->protocol_features &
(1ULL << VHOST_USER_PROTOCOL_F_SLAVE_REQ)) ||
!(dev->protocol_features &
(1ULL << VHOST_USER_PROTOCOL_F_SLAVE_SEND_FD)) ||
!(dev->protocol_features &
(1ULL << VHOST_USER_PROTOCOL_F_HOST_NOTIFIER)))
return -ENOTSUP;
vdpa_dev = rte_vdpa_get_device(did);
if (!vdpa_dev)
return -ENODEV;
RTE_FUNC_PTR_OR_ERR_RET(vdpa_dev->ops->get_vfio_device_fd, -ENOTSUP);
RTE_FUNC_PTR_OR_ERR_RET(vdpa_dev->ops->get_notify_area, -ENOTSUP);
vfio_device_fd = vdpa_dev->ops->get_vfio_device_fd(vid);
if (vfio_device_fd < 0)
return -ENOTSUP;
if (enable) {
for (i = 0; i < dev->nr_vring; i++) {
if (vdpa_dev->ops->get_notify_area(vid, i, &offset,
&size) < 0) {
ret = -ENOTSUP;
goto disable;
}
if (vhost_user_slave_set_vring_host_notifier(dev, i,
vfio_device_fd, offset, size) < 0) {
ret = -EFAULT;
goto disable;
}
}
} else {
disable:
for (i = 0; i < dev->nr_vring; i++) {
vhost_user_slave_set_vring_host_notifier(dev, i, -1,
0, 0);
}
}
return ret;
}