numam-dpdk/drivers/net/mlx4/mlx4_rxtx.c

1398 lines
41 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2017 6WIND S.A.
* Copyright 2017 Mellanox Technologies, Ltd
*/
/**
* @file
* Data plane functions for mlx4 driver.
*/
#include <assert.h>
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
/* Verbs headers do not support -pedantic. */
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#include <infiniband/verbs.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-Wpedantic"
#endif
#include <rte_branch_prediction.h>
#include <rte_common.h>
#include <rte_io.h>
#include <rte_mbuf.h>
#include <rte_mempool.h>
#include <rte_prefetch.h>
#include "mlx4.h"
#include "mlx4_prm.h"
#include "mlx4_rxtx.h"
#include "mlx4_utils.h"
/**
* Pointer-value pair structure used in tx_post_send for saving the first
* DWORD (32 byte) of a TXBB.
*/
struct pv {
union {
volatile struct mlx4_wqe_data_seg *dseg;
volatile uint32_t *dst;
};
uint32_t val;
};
/** A helper structure for TSO packet handling. */
struct tso_info {
/** Pointer to the array of saved first DWORD (32 byte) of a TXBB. */
struct pv *pv;
/** Current entry in the pv array. */
int pv_counter;
/** Total size of the WQE including padding. */
uint32_t wqe_size;
/** Size of TSO header to prepend to each packet to send. */
uint16_t tso_header_size;
/** Total size of the TSO segment in the WQE. */
uint16_t wqe_tso_seg_size;
/** Raw WQE size in units of 16 Bytes and without padding. */
uint8_t fence_size;
};
/** A table to translate Rx completion flags to packet type. */
uint32_t mlx4_ptype_table[0x100] __rte_cache_aligned = {
/*
* The index to the array should have:
* bit[7] - MLX4_CQE_L2_TUNNEL
* bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
* bit[5] - MLX4_CQE_STATUS_UDP
* bit[4] - MLX4_CQE_STATUS_TCP
* bit[3] - MLX4_CQE_STATUS_IPV4OPT
* bit[2] - MLX4_CQE_STATUS_IPV6
* bit[1] - MLX4_CQE_STATUS_IPF
* bit[0] - MLX4_CQE_STATUS_IPV4
* giving a total of up to 256 entries.
*/
/* L2 */
[0x00] = RTE_PTYPE_L2_ETHER,
/* L3 */
[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG,
[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG,
[0x03] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG,
[0x04] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG,
[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG,
[0x08] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
RTE_PTYPE_L4_NONFRAG,
[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
RTE_PTYPE_L4_NONFRAG,
[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
RTE_PTYPE_L4_FRAG,
[0x0b] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
RTE_PTYPE_L4_FRAG,
/* TCP */
[0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP,
[0x14] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP,
[0x16] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG,
[0x18] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
RTE_PTYPE_L4_TCP,
[0x19] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
RTE_PTYPE_L4_TCP,
/* UDP */
[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[0x24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[0x26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG,
[0x28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
RTE_PTYPE_L4_UDP,
[0x29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
RTE_PTYPE_L4_UDP,
/* Tunneled - L3 IPV6 */
[0x80] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[0x83] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[0x84] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[0x88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_NONFRAG,
[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_NONFRAG,
[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_FRAG,
[0x8b] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_FRAG,
/* Tunneled - L3 IPV6, TCP */
[0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[0x94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[0x96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[0x98] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_TCP,
[0x99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_TCP,
/* Tunneled - L3 IPV6, UDP */
[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
[0xa4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
[0xa6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[0xa8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_UDP,
[0xa9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_UDP,
/* Tunneled - L3 IPV4 */
[0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[0xc3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[0xc4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[0xc8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_NONFRAG,
[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_NONFRAG,
[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_FRAG,
[0xcb] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_FRAG,
/* Tunneled - L3 IPV4, TCP */
[0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[0xd4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[0xd6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[0xd8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_TCP,
[0xd9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_TCP,
/* Tunneled - L3 IPV4, UDP */
[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
[0xe4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
[0xe6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[0xe8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_UDP,
[0xe9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT |
RTE_PTYPE_INNER_L4_UDP,
};
/**
* Stamp TXBB burst so it won't be reused by the HW.
*
* Routine is used when freeing WQE used by the chip or when failing
* building an WQ entry has failed leaving partial information on the queue.
*
* @param sq
* Pointer to the SQ structure.
* @param start
* Pointer to the first TXBB to stamp.
* @param end
* Pointer to the followed end TXBB to stamp.
*
* @return
* Stamping burst size in byte units.
*/
static uint32_t
mlx4_txq_stamp_freed_wqe(struct mlx4_sq *sq, volatile uint32_t *start,
volatile uint32_t *end)
{
uint32_t stamp = sq->stamp;
int32_t size = (intptr_t)end - (intptr_t)start;
assert(start != end);
/* Hold SQ ring wrap around. */
if (size < 0) {
size = (int32_t)sq->size + size;
do {
*start = stamp;
start += MLX4_SQ_STAMP_DWORDS;
} while (start != (volatile uint32_t *)sq->eob);
start = (volatile uint32_t *)sq->buf;
/* Flip invalid stamping ownership. */
stamp ^= RTE_BE32(1u << MLX4_SQ_OWNER_BIT);
sq->stamp = stamp;
if (start == end)
return size;
}
do {
*start = stamp;
start += MLX4_SQ_STAMP_DWORDS;
} while (start != end);
return (uint32_t)size;
}
/**
* Manage Tx completions.
*
* When sending a burst, mlx4_tx_burst() posts several WRs.
* To improve performance, a completion event is only required once every
* MLX4_PMD_TX_PER_COMP_REQ sends. Doing so discards completion information
* for other WRs, but this information would not be used anyway.
*
* @param txq
* Pointer to Tx queue structure.
* @param elts_m
* Tx elements number mask.
* @param sq
* Pointer to the SQ structure.
*/
static void
mlx4_txq_complete(struct txq *txq, const unsigned int elts_m,
struct mlx4_sq *sq)
{
unsigned int elts_tail = txq->elts_tail;
struct mlx4_cq *cq = &txq->mcq;
volatile struct mlx4_cqe *cqe;
uint32_t completed;
uint32_t cons_index = cq->cons_index;
volatile uint32_t *first_txbb;
/*
* Traverse over all CQ entries reported and handle each WQ entry
* reported by them.
*/
do {
cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cons_index);
if (unlikely(!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
!!(cons_index & cq->cqe_cnt)))
break;
#ifndef NDEBUG
/*
* Make sure we read the CQE after we read the ownership bit.
*/
rte_io_rmb();
if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
MLX4_CQE_OPCODE_ERROR)) {
volatile struct mlx4_err_cqe *cqe_err =
(volatile struct mlx4_err_cqe *)cqe;
ERROR("%p CQE error - vendor syndrome: 0x%x"
" syndrome: 0x%x\n",
(void *)txq, cqe_err->vendor_err,
cqe_err->syndrome);
break;
}
#endif /* NDEBUG */
cons_index++;
} while (1);
completed = (cons_index - cq->cons_index) * txq->elts_comp_cd_init;
if (unlikely(!completed))
return;
/* First stamping address is the end of the last one. */
first_txbb = (&(*txq->elts)[elts_tail & elts_m])->eocb;
elts_tail += completed;
/* The new tail element holds the end address. */
sq->remain_size += mlx4_txq_stamp_freed_wqe(sq, first_txbb,
(&(*txq->elts)[elts_tail & elts_m])->eocb);
/* Update CQ consumer index. */
cq->cons_index = cons_index;
*cq->set_ci_db = rte_cpu_to_be_32(cons_index & MLX4_CQ_DB_CI_MASK);
txq->elts_tail = elts_tail;
}
/**
* Write Tx data segment to the SQ.
*
* @param dseg
* Pointer to data segment in SQ.
* @param lkey
* Memory region lkey.
* @param addr
* Data address.
* @param byte_count
* Big endian bytes count of the data to send.
*/
static inline void
mlx4_fill_tx_data_seg(volatile struct mlx4_wqe_data_seg *dseg,
uint32_t lkey, uintptr_t addr, rte_be32_t byte_count)
{
dseg->addr = rte_cpu_to_be_64(addr);
net/mlx4: add new memory region support This is the new design of Memory Region (MR) for mlx PMD, in order to: - Accommodate the new memory hotplug model. - Support non-contiguous Mempool. There are multiple layers for MR search. L0 is to look up the last-hit entry which is pointed by mr_ctrl->mru (Most Recently Used). If L0 misses, L1 is to look up the address in a fixed-sized array by linear search. L0/L1 is in an inline function - mlx4_mr_lookup_cache(). If L1 misses, the bottom-half function is called to look up the address from the bigger local cache of the queue. This is L2 - mlx4_mr_addr2mr_bh() and it is not an inline function. Data structure for L2 is the Binary Tree. If L2 misses, the search falls into the slowest path which takes locks in order to access global device cache (priv->mr.cache) which is also a B-tree and caches the original MR list (priv->mr.mr_list) of the device. Unless the global cache is overflowed, it is all-inclusive of the MR list. This is L3 - mlx4_mr_lookup_dev(). The size of the L3 cache table is limited and can't be expanded on the fly due to deadlock. Refer to the comments in the code for the details - mr_lookup_dev(). If L3 is overflowed, the list will have to be searched directly bypassing the cache although it is slower. If L3 misses, a new MR for the address should be created - mlx4_mr_create(). When it creates a new MR, it tries to register adjacent memsegs as much as possible which are virtually contiguous around the address. This must take two locks - memory_hotplug_lock and priv->mr.rwlock. Due to memory_hotplug_lock, there can't be any allocation/free of memory inside. In the free callback of the memory hotplug event, freed space is searched from the MR list and corresponding bits are cleared from the bitmap of MRs. This can fragment a MR and the MR will have multiple search entries in the caches. Once there's a change by the event, the global cache must be rebuilt and all the per-queue caches will be flushed as well. If memory is frequently freed in run-time, that may cause jitter on dataplane processing in the worst case by incurring MR cache flush and rebuild. But, it would be the least probable scenario. To guarantee the most optimal performance, it is highly recommended to use an EAL option - '--socket-mem'. Then, the reserved memory will be pinned and won't be freed dynamically. And it is also recommended to configure per-lcore cache of Mempool. Even though there're many MRs for a device or MRs are highly fragmented, the cache of Mempool will be much helpful to reduce misses on per-queue caches anyway. '--legacy-mem' is also supported. Signed-off-by: Yongseok Koh <yskoh@mellanox.com>
2018-05-09 04:09:06 -07:00
dseg->lkey = lkey;
#if RTE_CACHE_LINE_SIZE < 64
/*
* Need a barrier here before writing the byte_count
* fields to make sure that all the data is visible
* before the byte_count field is set.
* Otherwise, if the segment begins a new cacheline,
* the HCA prefetcher could grab the 64-byte chunk and
* get a valid (!= 0xffffffff) byte count but stale
* data, and end up sending the wrong data.
*/
rte_io_wmb();
#endif /* RTE_CACHE_LINE_SIZE */
dseg->byte_count = byte_count;
}
/**
* Obtain and calculate TSO information needed for assembling a TSO WQE.
*
* @param buf
* Pointer to the first packet mbuf.
* @param txq
* Pointer to Tx queue structure.
* @param tinfo
* Pointer to a structure to fill the info with.
*
* @return
* 0 on success, negative value upon error.
*/
static inline int
mlx4_tx_burst_tso_get_params(struct rte_mbuf *buf,
struct txq *txq,
struct tso_info *tinfo)
{
struct mlx4_sq *sq = &txq->msq;
const uint8_t tunneled = txq->priv->hw_csum_l2tun &&
(buf->ol_flags & PKT_TX_TUNNEL_MASK);
tinfo->tso_header_size = buf->l2_len + buf->l3_len + buf->l4_len;
if (tunneled)
tinfo->tso_header_size +=
buf->outer_l2_len + buf->outer_l3_len;
if (unlikely(buf->tso_segsz == 0 ||
tinfo->tso_header_size == 0 ||
tinfo->tso_header_size > MLX4_MAX_TSO_HEADER ||
tinfo->tso_header_size > buf->data_len))
return -EINVAL;
/*
* Calculate the WQE TSO segment size
* Note:
* 1. An LSO segment must be padded such that the subsequent data
* segment is 16-byte aligned.
* 2. The start address of the TSO segment is always 16 Bytes aligned.
*/
tinfo->wqe_tso_seg_size = RTE_ALIGN(sizeof(struct mlx4_wqe_lso_seg) +
tinfo->tso_header_size,
sizeof(struct mlx4_wqe_data_seg));
tinfo->fence_size = ((sizeof(struct mlx4_wqe_ctrl_seg) +
tinfo->wqe_tso_seg_size) >> MLX4_SEG_SHIFT) +
buf->nb_segs;
tinfo->wqe_size =
RTE_ALIGN((uint32_t)(tinfo->fence_size << MLX4_SEG_SHIFT),
MLX4_TXBB_SIZE);
/* Validate WQE size and WQE space in the send queue. */
if (sq->remain_size < tinfo->wqe_size ||
tinfo->wqe_size > MLX4_MAX_WQE_SIZE)
return -ENOMEM;
/* Init pv. */
tinfo->pv = (struct pv *)txq->bounce_buf;
tinfo->pv_counter = 0;
return 0;
}
/**
* Fill the TSO WQE data segments with info on buffers to transmit .
*
* @param buf
* Pointer to the first packet mbuf.
* @param txq
* Pointer to Tx queue structure.
* @param tinfo
* Pointer to TSO info to use.
* @param dseg
* Pointer to the first data segment in the TSO WQE.
* @param ctrl
* Pointer to the control segment in the TSO WQE.
*
* @return
* 0 on success, negative value upon error.
*/
static inline volatile struct mlx4_wqe_ctrl_seg *
mlx4_tx_burst_fill_tso_dsegs(struct rte_mbuf *buf,
struct txq *txq,
struct tso_info *tinfo,
volatile struct mlx4_wqe_data_seg *dseg,
volatile struct mlx4_wqe_ctrl_seg *ctrl)
{
uint32_t lkey;
int nb_segs = buf->nb_segs;
int nb_segs_txbb;
struct mlx4_sq *sq = &txq->msq;
struct rte_mbuf *sbuf = buf;
struct pv *pv = tinfo->pv;
int *pv_counter = &tinfo->pv_counter;
volatile struct mlx4_wqe_ctrl_seg *ctrl_next =
(volatile struct mlx4_wqe_ctrl_seg *)
((volatile uint8_t *)ctrl + tinfo->wqe_size);
uint16_t data_len = sbuf->data_len - tinfo->tso_header_size;
uintptr_t data_addr = rte_pktmbuf_mtod_offset(sbuf, uintptr_t,
tinfo->tso_header_size);
do {
/* how many dseg entries do we have in the current TXBB ? */
nb_segs_txbb = (MLX4_TXBB_SIZE -
((uintptr_t)dseg & (MLX4_TXBB_SIZE - 1))) >>
MLX4_SEG_SHIFT;
switch (nb_segs_txbb) {
#ifndef NDEBUG
default:
/* Should never happen. */
rte_panic("%p: Invalid number of SGEs(%d) for a TXBB",
(void *)txq, nb_segs_txbb);
/* rte_panic never returns. */
break;
#endif /* NDEBUG */
case 4:
/* Memory region key for this memory pool. */
lkey = mlx4_tx_mb2mr(txq, sbuf);
if (unlikely(lkey == (uint32_t)-1))
goto err;
dseg->addr = rte_cpu_to_be_64(data_addr);
dseg->lkey = lkey;
/*
* This data segment starts at the beginning of a new
* TXBB, so we need to postpone its byte_count writing
* for later.
*/
pv[*pv_counter].dseg = dseg;
/*
* Zero length segment is treated as inline segment
* with zero data.
*/
pv[(*pv_counter)++].val =
rte_cpu_to_be_32(data_len ?
data_len :
0x80000000);
if (--nb_segs == 0)
return ctrl_next;
/* Prepare next buf info */
sbuf = sbuf->next;
dseg++;
data_len = sbuf->data_len;
data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
/* fallthrough */
case 3:
lkey = mlx4_tx_mb2mr(txq, sbuf);
if (unlikely(lkey == (uint32_t)-1))
goto err;
mlx4_fill_tx_data_seg(dseg, lkey, data_addr,
rte_cpu_to_be_32(data_len ?
data_len :
0x80000000));
if (--nb_segs == 0)
return ctrl_next;
/* Prepare next buf info */
sbuf = sbuf->next;
dseg++;
data_len = sbuf->data_len;
data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
/* fallthrough */
case 2:
lkey = mlx4_tx_mb2mr(txq, sbuf);
if (unlikely(lkey == (uint32_t)-1))
goto err;
mlx4_fill_tx_data_seg(dseg, lkey, data_addr,
rte_cpu_to_be_32(data_len ?
data_len :
0x80000000));
if (--nb_segs == 0)
return ctrl_next;
/* Prepare next buf info */
sbuf = sbuf->next;
dseg++;
data_len = sbuf->data_len;
data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
/* fallthrough */
case 1:
lkey = mlx4_tx_mb2mr(txq, sbuf);
if (unlikely(lkey == (uint32_t)-1))
goto err;
mlx4_fill_tx_data_seg(dseg, lkey, data_addr,
rte_cpu_to_be_32(data_len ?
data_len :
0x80000000));
if (--nb_segs == 0)
return ctrl_next;
/* Prepare next buf info */
sbuf = sbuf->next;
dseg++;
data_len = sbuf->data_len;
data_addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
/* fallthrough */
}
/* Wrap dseg if it points at the end of the queue. */
if ((volatile uint8_t *)dseg >= sq->eob)
dseg = (volatile struct mlx4_wqe_data_seg *)
((volatile uint8_t *)dseg - sq->size);
} while (true);
err:
return NULL;
}
/**
* Fill the packet's l2, l3 and l4 headers to the WQE.
*
* This will be used as the header for each TSO segment that is transmitted.
*
* @param buf
* Pointer to the first packet mbuf.
* @param txq
* Pointer to Tx queue structure.
* @param tinfo
* Pointer to TSO info to use.
* @param ctrl
* Pointer to the control segment in the TSO WQE.
*
* @return
* 0 on success, negative value upon error.
*/
static inline volatile struct mlx4_wqe_data_seg *
mlx4_tx_burst_fill_tso_hdr(struct rte_mbuf *buf,
struct txq *txq,
struct tso_info *tinfo,
volatile struct mlx4_wqe_ctrl_seg *ctrl)
{
volatile struct mlx4_wqe_lso_seg *tseg =
(volatile struct mlx4_wqe_lso_seg *)(ctrl + 1);
struct mlx4_sq *sq = &txq->msq;
struct pv *pv = tinfo->pv;
int *pv_counter = &tinfo->pv_counter;
int remain_size = tinfo->tso_header_size;
char *from = rte_pktmbuf_mtod(buf, char *);
uint16_t txbb_avail_space;
/* Union to overcome volatile constraints when copying TSO header. */
union {
volatile uint8_t *vto;
uint8_t *to;
} thdr = { .vto = (volatile uint8_t *)tseg->header, };
/*
* TSO data always starts at offset 20 from the beginning of the TXBB
* (16 byte ctrl + 4byte TSO desc). Since each TXBB is 64Byte aligned
* we can write the first 44 TSO header bytes without worry for TxQ
* wrapping or overwriting the first TXBB 32bit word.
*/
txbb_avail_space = MLX4_TXBB_SIZE -
(sizeof(struct mlx4_wqe_ctrl_seg) +
sizeof(struct mlx4_wqe_lso_seg));
while (remain_size >= (int)(txbb_avail_space + sizeof(uint32_t))) {
/* Copy to end of txbb. */
rte_memcpy(thdr.to, from, txbb_avail_space);
from += txbb_avail_space;
thdr.to += txbb_avail_space;
/* New TXBB, Check for TxQ wrap. */
if (thdr.to >= sq->eob)
thdr.vto = sq->buf;
/* New TXBB, stash the first 32bits for later use. */
pv[*pv_counter].dst = (volatile uint32_t *)thdr.to;
pv[(*pv_counter)++].val = *(uint32_t *)from,
from += sizeof(uint32_t);
thdr.to += sizeof(uint32_t);
remain_size -= txbb_avail_space + sizeof(uint32_t);
/* Avail space in new TXBB is TXBB size - 4 */
txbb_avail_space = MLX4_TXBB_SIZE - sizeof(uint32_t);
}
if (remain_size > txbb_avail_space) {
rte_memcpy(thdr.to, from, txbb_avail_space);
from += txbb_avail_space;
thdr.to += txbb_avail_space;
remain_size -= txbb_avail_space;
/* New TXBB, Check for TxQ wrap. */
if (thdr.to >= sq->eob)
thdr.vto = sq->buf;
pv[*pv_counter].dst = (volatile uint32_t *)thdr.to;
rte_memcpy(&pv[*pv_counter].val, from, remain_size);
(*pv_counter)++;
} else if (remain_size) {
rte_memcpy(thdr.to, from, remain_size);
}
tseg->mss_hdr_size = rte_cpu_to_be_32((buf->tso_segsz << 16) |
tinfo->tso_header_size);
/* Calculate data segment location */
return (volatile struct mlx4_wqe_data_seg *)
((uintptr_t)tseg + tinfo->wqe_tso_seg_size);
}
/**
* Write data segments and header for TSO uni/multi segment packet.
*
* @param buf
* Pointer to the first packet mbuf.
* @param txq
* Pointer to Tx queue structure.
* @param ctrl
* Pointer to the WQE control segment.
*
* @return
* Pointer to the next WQE control segment on success, NULL otherwise.
*/
static volatile struct mlx4_wqe_ctrl_seg *
mlx4_tx_burst_tso(struct rte_mbuf *buf, struct txq *txq,
volatile struct mlx4_wqe_ctrl_seg *ctrl)
{
volatile struct mlx4_wqe_data_seg *dseg;
volatile struct mlx4_wqe_ctrl_seg *ctrl_next;
struct mlx4_sq *sq = &txq->msq;
struct tso_info tinfo;
struct pv *pv;
int pv_counter;
int ret;
ret = mlx4_tx_burst_tso_get_params(buf, txq, &tinfo);
if (unlikely(ret))
goto error;
dseg = mlx4_tx_burst_fill_tso_hdr(buf, txq, &tinfo, ctrl);
if (unlikely(dseg == NULL))
goto error;
if ((uintptr_t)dseg >= (uintptr_t)sq->eob)
dseg = (volatile struct mlx4_wqe_data_seg *)
((uintptr_t)dseg - sq->size);
ctrl_next = mlx4_tx_burst_fill_tso_dsegs(buf, txq, &tinfo, dseg, ctrl);
if (unlikely(ctrl_next == NULL))
goto error;
/* Write the first DWORD of each TXBB save earlier. */
if (likely(tinfo.pv_counter)) {
pv = tinfo.pv;
pv_counter = tinfo.pv_counter;
/* Need a barrier here before writing the first TXBB word. */
rte_io_wmb();
do {
--pv_counter;
*pv[pv_counter].dst = pv[pv_counter].val;
} while (pv_counter > 0);
}
ctrl->fence_size = tinfo.fence_size;
sq->remain_size -= tinfo.wqe_size;
return ctrl_next;
error:
txq->stats.odropped++;
return NULL;
}
/**
* Write data segments of multi-segment packet.
*
* @param buf
* Pointer to the first packet mbuf.
* @param txq
* Pointer to Tx queue structure.
* @param ctrl
* Pointer to the WQE control segment.
*
* @return
* Pointer to the next WQE control segment on success, NULL otherwise.
*/
static volatile struct mlx4_wqe_ctrl_seg *
mlx4_tx_burst_segs(struct rte_mbuf *buf, struct txq *txq,
volatile struct mlx4_wqe_ctrl_seg *ctrl)
{
struct pv *pv = (struct pv *)txq->bounce_buf;
struct mlx4_sq *sq = &txq->msq;
struct rte_mbuf *sbuf = buf;
uint32_t lkey;
int pv_counter = 0;
int nb_segs = buf->nb_segs;
uint32_t wqe_size;
volatile struct mlx4_wqe_data_seg *dseg =
(volatile struct mlx4_wqe_data_seg *)(ctrl + 1);
ctrl->fence_size = 1 + nb_segs;
wqe_size = RTE_ALIGN((uint32_t)(ctrl->fence_size << MLX4_SEG_SHIFT),
MLX4_TXBB_SIZE);
/* Validate WQE size and WQE space in the send queue. */
if (sq->remain_size < wqe_size ||
wqe_size > MLX4_MAX_WQE_SIZE)
return NULL;
/*
* Fill the data segments with buffer information.
* First WQE TXBB head segment is always control segment,
* so jump to tail TXBB data segments code for the first
* WQE data segments filling.
*/
goto txbb_tail_segs;
txbb_head_seg:
/* Memory region key (big endian) for this memory pool. */
net/mlx4: add new memory region support This is the new design of Memory Region (MR) for mlx PMD, in order to: - Accommodate the new memory hotplug model. - Support non-contiguous Mempool. There are multiple layers for MR search. L0 is to look up the last-hit entry which is pointed by mr_ctrl->mru (Most Recently Used). If L0 misses, L1 is to look up the address in a fixed-sized array by linear search. L0/L1 is in an inline function - mlx4_mr_lookup_cache(). If L1 misses, the bottom-half function is called to look up the address from the bigger local cache of the queue. This is L2 - mlx4_mr_addr2mr_bh() and it is not an inline function. Data structure for L2 is the Binary Tree. If L2 misses, the search falls into the slowest path which takes locks in order to access global device cache (priv->mr.cache) which is also a B-tree and caches the original MR list (priv->mr.mr_list) of the device. Unless the global cache is overflowed, it is all-inclusive of the MR list. This is L3 - mlx4_mr_lookup_dev(). The size of the L3 cache table is limited and can't be expanded on the fly due to deadlock. Refer to the comments in the code for the details - mr_lookup_dev(). If L3 is overflowed, the list will have to be searched directly bypassing the cache although it is slower. If L3 misses, a new MR for the address should be created - mlx4_mr_create(). When it creates a new MR, it tries to register adjacent memsegs as much as possible which are virtually contiguous around the address. This must take two locks - memory_hotplug_lock and priv->mr.rwlock. Due to memory_hotplug_lock, there can't be any allocation/free of memory inside. In the free callback of the memory hotplug event, freed space is searched from the MR list and corresponding bits are cleared from the bitmap of MRs. This can fragment a MR and the MR will have multiple search entries in the caches. Once there's a change by the event, the global cache must be rebuilt and all the per-queue caches will be flushed as well. If memory is frequently freed in run-time, that may cause jitter on dataplane processing in the worst case by incurring MR cache flush and rebuild. But, it would be the least probable scenario. To guarantee the most optimal performance, it is highly recommended to use an EAL option - '--socket-mem'. Then, the reserved memory will be pinned and won't be freed dynamically. And it is also recommended to configure per-lcore cache of Mempool. Even though there're many MRs for a device or MRs are highly fragmented, the cache of Mempool will be much helpful to reduce misses on per-queue caches anyway. '--legacy-mem' is also supported. Signed-off-by: Yongseok Koh <yskoh@mellanox.com>
2018-05-09 04:09:06 -07:00
lkey = mlx4_tx_mb2mr(txq, sbuf);
if (unlikely(lkey == (uint32_t)-1)) {
DEBUG("%p: unable to get MP <-> MR association",
(void *)txq);
return NULL;
}
/* Handle WQE wraparound. */
if (dseg >=
(volatile struct mlx4_wqe_data_seg *)sq->eob)
dseg = (volatile struct mlx4_wqe_data_seg *)
sq->buf;
dseg->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(sbuf, uintptr_t));
net/mlx4: add new memory region support This is the new design of Memory Region (MR) for mlx PMD, in order to: - Accommodate the new memory hotplug model. - Support non-contiguous Mempool. There are multiple layers for MR search. L0 is to look up the last-hit entry which is pointed by mr_ctrl->mru (Most Recently Used). If L0 misses, L1 is to look up the address in a fixed-sized array by linear search. L0/L1 is in an inline function - mlx4_mr_lookup_cache(). If L1 misses, the bottom-half function is called to look up the address from the bigger local cache of the queue. This is L2 - mlx4_mr_addr2mr_bh() and it is not an inline function. Data structure for L2 is the Binary Tree. If L2 misses, the search falls into the slowest path which takes locks in order to access global device cache (priv->mr.cache) which is also a B-tree and caches the original MR list (priv->mr.mr_list) of the device. Unless the global cache is overflowed, it is all-inclusive of the MR list. This is L3 - mlx4_mr_lookup_dev(). The size of the L3 cache table is limited and can't be expanded on the fly due to deadlock. Refer to the comments in the code for the details - mr_lookup_dev(). If L3 is overflowed, the list will have to be searched directly bypassing the cache although it is slower. If L3 misses, a new MR for the address should be created - mlx4_mr_create(). When it creates a new MR, it tries to register adjacent memsegs as much as possible which are virtually contiguous around the address. This must take two locks - memory_hotplug_lock and priv->mr.rwlock. Due to memory_hotplug_lock, there can't be any allocation/free of memory inside. In the free callback of the memory hotplug event, freed space is searched from the MR list and corresponding bits are cleared from the bitmap of MRs. This can fragment a MR and the MR will have multiple search entries in the caches. Once there's a change by the event, the global cache must be rebuilt and all the per-queue caches will be flushed as well. If memory is frequently freed in run-time, that may cause jitter on dataplane processing in the worst case by incurring MR cache flush and rebuild. But, it would be the least probable scenario. To guarantee the most optimal performance, it is highly recommended to use an EAL option - '--socket-mem'. Then, the reserved memory will be pinned and won't be freed dynamically. And it is also recommended to configure per-lcore cache of Mempool. Even though there're many MRs for a device or MRs are highly fragmented, the cache of Mempool will be much helpful to reduce misses on per-queue caches anyway. '--legacy-mem' is also supported. Signed-off-by: Yongseok Koh <yskoh@mellanox.com>
2018-05-09 04:09:06 -07:00
dseg->lkey = lkey;
/*
* This data segment starts at the beginning of a new
* TXBB, so we need to postpone its byte_count writing
* for later.
*/
pv[pv_counter].dseg = dseg;
/*
* Zero length segment is treated as inline segment
* with zero data.
*/
pv[pv_counter++].val = rte_cpu_to_be_32(sbuf->data_len ?
sbuf->data_len : 0x80000000);
sbuf = sbuf->next;
dseg++;
nb_segs--;
txbb_tail_segs:
/* Jump to default if there are more than two segments remaining. */
switch (nb_segs) {
default:
net/mlx4: add new memory region support This is the new design of Memory Region (MR) for mlx PMD, in order to: - Accommodate the new memory hotplug model. - Support non-contiguous Mempool. There are multiple layers for MR search. L0 is to look up the last-hit entry which is pointed by mr_ctrl->mru (Most Recently Used). If L0 misses, L1 is to look up the address in a fixed-sized array by linear search. L0/L1 is in an inline function - mlx4_mr_lookup_cache(). If L1 misses, the bottom-half function is called to look up the address from the bigger local cache of the queue. This is L2 - mlx4_mr_addr2mr_bh() and it is not an inline function. Data structure for L2 is the Binary Tree. If L2 misses, the search falls into the slowest path which takes locks in order to access global device cache (priv->mr.cache) which is also a B-tree and caches the original MR list (priv->mr.mr_list) of the device. Unless the global cache is overflowed, it is all-inclusive of the MR list. This is L3 - mlx4_mr_lookup_dev(). The size of the L3 cache table is limited and can't be expanded on the fly due to deadlock. Refer to the comments in the code for the details - mr_lookup_dev(). If L3 is overflowed, the list will have to be searched directly bypassing the cache although it is slower. If L3 misses, a new MR for the address should be created - mlx4_mr_create(). When it creates a new MR, it tries to register adjacent memsegs as much as possible which are virtually contiguous around the address. This must take two locks - memory_hotplug_lock and priv->mr.rwlock. Due to memory_hotplug_lock, there can't be any allocation/free of memory inside. In the free callback of the memory hotplug event, freed space is searched from the MR list and corresponding bits are cleared from the bitmap of MRs. This can fragment a MR and the MR will have multiple search entries in the caches. Once there's a change by the event, the global cache must be rebuilt and all the per-queue caches will be flushed as well. If memory is frequently freed in run-time, that may cause jitter on dataplane processing in the worst case by incurring MR cache flush and rebuild. But, it would be the least probable scenario. To guarantee the most optimal performance, it is highly recommended to use an EAL option - '--socket-mem'. Then, the reserved memory will be pinned and won't be freed dynamically. And it is also recommended to configure per-lcore cache of Mempool. Even though there're many MRs for a device or MRs are highly fragmented, the cache of Mempool will be much helpful to reduce misses on per-queue caches anyway. '--legacy-mem' is also supported. Signed-off-by: Yongseok Koh <yskoh@mellanox.com>
2018-05-09 04:09:06 -07:00
lkey = mlx4_tx_mb2mr(txq, sbuf);
if (unlikely(lkey == (uint32_t)-1)) {
DEBUG("%p: unable to get MP <-> MR association",
(void *)txq);
return NULL;
}
mlx4_fill_tx_data_seg(dseg, lkey,
rte_pktmbuf_mtod(sbuf, uintptr_t),
rte_cpu_to_be_32(sbuf->data_len ?
sbuf->data_len :
0x80000000));
sbuf = sbuf->next;
dseg++;
nb_segs--;
/* fallthrough */
case 2:
net/mlx4: add new memory region support This is the new design of Memory Region (MR) for mlx PMD, in order to: - Accommodate the new memory hotplug model. - Support non-contiguous Mempool. There are multiple layers for MR search. L0 is to look up the last-hit entry which is pointed by mr_ctrl->mru (Most Recently Used). If L0 misses, L1 is to look up the address in a fixed-sized array by linear search. L0/L1 is in an inline function - mlx4_mr_lookup_cache(). If L1 misses, the bottom-half function is called to look up the address from the bigger local cache of the queue. This is L2 - mlx4_mr_addr2mr_bh() and it is not an inline function. Data structure for L2 is the Binary Tree. If L2 misses, the search falls into the slowest path which takes locks in order to access global device cache (priv->mr.cache) which is also a B-tree and caches the original MR list (priv->mr.mr_list) of the device. Unless the global cache is overflowed, it is all-inclusive of the MR list. This is L3 - mlx4_mr_lookup_dev(). The size of the L3 cache table is limited and can't be expanded on the fly due to deadlock. Refer to the comments in the code for the details - mr_lookup_dev(). If L3 is overflowed, the list will have to be searched directly bypassing the cache although it is slower. If L3 misses, a new MR for the address should be created - mlx4_mr_create(). When it creates a new MR, it tries to register adjacent memsegs as much as possible which are virtually contiguous around the address. This must take two locks - memory_hotplug_lock and priv->mr.rwlock. Due to memory_hotplug_lock, there can't be any allocation/free of memory inside. In the free callback of the memory hotplug event, freed space is searched from the MR list and corresponding bits are cleared from the bitmap of MRs. This can fragment a MR and the MR will have multiple search entries in the caches. Once there's a change by the event, the global cache must be rebuilt and all the per-queue caches will be flushed as well. If memory is frequently freed in run-time, that may cause jitter on dataplane processing in the worst case by incurring MR cache flush and rebuild. But, it would be the least probable scenario. To guarantee the most optimal performance, it is highly recommended to use an EAL option - '--socket-mem'. Then, the reserved memory will be pinned and won't be freed dynamically. And it is also recommended to configure per-lcore cache of Mempool. Even though there're many MRs for a device or MRs are highly fragmented, the cache of Mempool will be much helpful to reduce misses on per-queue caches anyway. '--legacy-mem' is also supported. Signed-off-by: Yongseok Koh <yskoh@mellanox.com>
2018-05-09 04:09:06 -07:00
lkey = mlx4_tx_mb2mr(txq, sbuf);
if (unlikely(lkey == (uint32_t)-1)) {
DEBUG("%p: unable to get MP <-> MR association",
(void *)txq);
return NULL;
}
mlx4_fill_tx_data_seg(dseg, lkey,
rte_pktmbuf_mtod(sbuf, uintptr_t),
rte_cpu_to_be_32(sbuf->data_len ?
sbuf->data_len :
0x80000000));
sbuf = sbuf->next;
dseg++;
nb_segs--;
/* fallthrough */
case 1:
net/mlx4: add new memory region support This is the new design of Memory Region (MR) for mlx PMD, in order to: - Accommodate the new memory hotplug model. - Support non-contiguous Mempool. There are multiple layers for MR search. L0 is to look up the last-hit entry which is pointed by mr_ctrl->mru (Most Recently Used). If L0 misses, L1 is to look up the address in a fixed-sized array by linear search. L0/L1 is in an inline function - mlx4_mr_lookup_cache(). If L1 misses, the bottom-half function is called to look up the address from the bigger local cache of the queue. This is L2 - mlx4_mr_addr2mr_bh() and it is not an inline function. Data structure for L2 is the Binary Tree. If L2 misses, the search falls into the slowest path which takes locks in order to access global device cache (priv->mr.cache) which is also a B-tree and caches the original MR list (priv->mr.mr_list) of the device. Unless the global cache is overflowed, it is all-inclusive of the MR list. This is L3 - mlx4_mr_lookup_dev(). The size of the L3 cache table is limited and can't be expanded on the fly due to deadlock. Refer to the comments in the code for the details - mr_lookup_dev(). If L3 is overflowed, the list will have to be searched directly bypassing the cache although it is slower. If L3 misses, a new MR for the address should be created - mlx4_mr_create(). When it creates a new MR, it tries to register adjacent memsegs as much as possible which are virtually contiguous around the address. This must take two locks - memory_hotplug_lock and priv->mr.rwlock. Due to memory_hotplug_lock, there can't be any allocation/free of memory inside. In the free callback of the memory hotplug event, freed space is searched from the MR list and corresponding bits are cleared from the bitmap of MRs. This can fragment a MR and the MR will have multiple search entries in the caches. Once there's a change by the event, the global cache must be rebuilt and all the per-queue caches will be flushed as well. If memory is frequently freed in run-time, that may cause jitter on dataplane processing in the worst case by incurring MR cache flush and rebuild. But, it would be the least probable scenario. To guarantee the most optimal performance, it is highly recommended to use an EAL option - '--socket-mem'. Then, the reserved memory will be pinned and won't be freed dynamically. And it is also recommended to configure per-lcore cache of Mempool. Even though there're many MRs for a device or MRs are highly fragmented, the cache of Mempool will be much helpful to reduce misses on per-queue caches anyway. '--legacy-mem' is also supported. Signed-off-by: Yongseok Koh <yskoh@mellanox.com>
2018-05-09 04:09:06 -07:00
lkey = mlx4_tx_mb2mr(txq, sbuf);
if (unlikely(lkey == (uint32_t)-1)) {
DEBUG("%p: unable to get MP <-> MR association",
(void *)txq);
return NULL;
}
mlx4_fill_tx_data_seg(dseg, lkey,
rte_pktmbuf_mtod(sbuf, uintptr_t),
rte_cpu_to_be_32(sbuf->data_len ?
sbuf->data_len :
0x80000000));
nb_segs--;
if (nb_segs) {
sbuf = sbuf->next;
dseg++;
goto txbb_head_seg;
}
/* fallthrough */
case 0:
break;
}
/* Write the first DWORD of each TXBB save earlier. */
if (pv_counter) {
/* Need a barrier here before writing the byte_count. */
rte_io_wmb();
for (--pv_counter; pv_counter >= 0; pv_counter--)
pv[pv_counter].dseg->byte_count = pv[pv_counter].val;
}
sq->remain_size -= wqe_size;
/* Align next WQE address to the next TXBB. */
return (volatile struct mlx4_wqe_ctrl_seg *)
((volatile uint8_t *)ctrl + wqe_size);
}
/**
* DPDK callback for Tx.
*
* @param dpdk_txq
* Generic pointer to Tx queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
uint16_t
mlx4_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
struct txq *txq = (struct txq *)dpdk_txq;
unsigned int elts_head = txq->elts_head;
const unsigned int elts_n = txq->elts_n;
const unsigned int elts_m = elts_n - 1;
unsigned int bytes_sent = 0;
unsigned int i;
unsigned int max = elts_head - txq->elts_tail;
struct mlx4_sq *sq = &txq->msq;
volatile struct mlx4_wqe_ctrl_seg *ctrl;
struct txq_elt *elt;
assert(txq->elts_comp_cd != 0);
if (likely(max >= txq->elts_comp_cd_init))
mlx4_txq_complete(txq, elts_m, sq);
max = elts_n - max;
assert(max >= 1);
assert(max <= elts_n);
/* Always leave one free entry in the ring. */
--max;
if (max > pkts_n)
max = pkts_n;
elt = &(*txq->elts)[elts_head & elts_m];
/* First Tx burst element saves the next WQE control segment. */
ctrl = elt->wqe;
for (i = 0; (i != max); ++i) {
struct rte_mbuf *buf = pkts[i];
struct txq_elt *elt_next = &(*txq->elts)[++elts_head & elts_m];
uint32_t owner_opcode = sq->owner_opcode;
volatile struct mlx4_wqe_data_seg *dseg =
(volatile struct mlx4_wqe_data_seg *)(ctrl + 1);
volatile struct mlx4_wqe_ctrl_seg *ctrl_next;
union {
uint32_t flags;
uint16_t flags16[2];
} srcrb;
uint32_t lkey;
bool tso = txq->priv->tso && (buf->ol_flags & PKT_TX_TCP_SEG);
/* Clean up old buffer. */
if (likely(elt->buf != NULL)) {
struct rte_mbuf *tmp = elt->buf;
#ifndef NDEBUG
/* Poisoning. */
memset(&elt->buf, 0x66, sizeof(struct rte_mbuf *));
#endif
/* Faster than rte_pktmbuf_free(). */
do {
struct rte_mbuf *next = tmp->next;
rte_pktmbuf_free_seg(tmp);
tmp = next;
} while (tmp != NULL);
}
RTE_MBUF_PREFETCH_TO_FREE(elt_next->buf);
if (tso) {
/* Change opcode to TSO */
owner_opcode &= ~MLX4_OPCODE_CONFIG_CMD;
owner_opcode |= MLX4_OPCODE_LSO | MLX4_WQE_CTRL_RR;
ctrl_next = mlx4_tx_burst_tso(buf, txq, ctrl);
if (!ctrl_next) {
elt->buf = NULL;
break;
}
} else if (buf->nb_segs == 1) {
/* Validate WQE space in the send queue. */
if (sq->remain_size < MLX4_TXBB_SIZE) {
elt->buf = NULL;
break;
}
net/mlx4: add new memory region support This is the new design of Memory Region (MR) for mlx PMD, in order to: - Accommodate the new memory hotplug model. - Support non-contiguous Mempool. There are multiple layers for MR search. L0 is to look up the last-hit entry which is pointed by mr_ctrl->mru (Most Recently Used). If L0 misses, L1 is to look up the address in a fixed-sized array by linear search. L0/L1 is in an inline function - mlx4_mr_lookup_cache(). If L1 misses, the bottom-half function is called to look up the address from the bigger local cache of the queue. This is L2 - mlx4_mr_addr2mr_bh() and it is not an inline function. Data structure for L2 is the Binary Tree. If L2 misses, the search falls into the slowest path which takes locks in order to access global device cache (priv->mr.cache) which is also a B-tree and caches the original MR list (priv->mr.mr_list) of the device. Unless the global cache is overflowed, it is all-inclusive of the MR list. This is L3 - mlx4_mr_lookup_dev(). The size of the L3 cache table is limited and can't be expanded on the fly due to deadlock. Refer to the comments in the code for the details - mr_lookup_dev(). If L3 is overflowed, the list will have to be searched directly bypassing the cache although it is slower. If L3 misses, a new MR for the address should be created - mlx4_mr_create(). When it creates a new MR, it tries to register adjacent memsegs as much as possible which are virtually contiguous around the address. This must take two locks - memory_hotplug_lock and priv->mr.rwlock. Due to memory_hotplug_lock, there can't be any allocation/free of memory inside. In the free callback of the memory hotplug event, freed space is searched from the MR list and corresponding bits are cleared from the bitmap of MRs. This can fragment a MR and the MR will have multiple search entries in the caches. Once there's a change by the event, the global cache must be rebuilt and all the per-queue caches will be flushed as well. If memory is frequently freed in run-time, that may cause jitter on dataplane processing in the worst case by incurring MR cache flush and rebuild. But, it would be the least probable scenario. To guarantee the most optimal performance, it is highly recommended to use an EAL option - '--socket-mem'. Then, the reserved memory will be pinned and won't be freed dynamically. And it is also recommended to configure per-lcore cache of Mempool. Even though there're many MRs for a device or MRs are highly fragmented, the cache of Mempool will be much helpful to reduce misses on per-queue caches anyway. '--legacy-mem' is also supported. Signed-off-by: Yongseok Koh <yskoh@mellanox.com>
2018-05-09 04:09:06 -07:00
lkey = mlx4_tx_mb2mr(txq, buf);
if (unlikely(lkey == (uint32_t)-1)) {
/* MR does not exist. */
DEBUG("%p: unable to get MP <-> MR association",
(void *)txq);
elt->buf = NULL;
break;
}
mlx4_fill_tx_data_seg(dseg++, lkey,
rte_pktmbuf_mtod(buf, uintptr_t),
rte_cpu_to_be_32(buf->data_len));
/* Set WQE size in 16-byte units. */
ctrl->fence_size = 0x2;
sq->remain_size -= MLX4_TXBB_SIZE;
/* Align next WQE address to the next TXBB. */
ctrl_next = ctrl + 0x4;
} else {
ctrl_next = mlx4_tx_burst_segs(buf, txq, ctrl);
if (!ctrl_next) {
elt->buf = NULL;
break;
}
}
/* Hold SQ ring wrap around. */
if ((volatile uint8_t *)ctrl_next >= sq->eob) {
ctrl_next = (volatile struct mlx4_wqe_ctrl_seg *)
((volatile uint8_t *)ctrl_next - sq->size);
/* Flip HW valid ownership. */
sq->owner_opcode ^= 1u << MLX4_SQ_OWNER_BIT;
}
/*
* For raw Ethernet, the SOLICIT flag is used to indicate
* that no ICRC should be calculated.
*/
if (--txq->elts_comp_cd == 0) {
/* Save the completion burst end address. */
elt_next->eocb = (volatile uint32_t *)ctrl_next;
txq->elts_comp_cd = txq->elts_comp_cd_init;
srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT |
MLX4_WQE_CTRL_CQ_UPDATE);
} else {
srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT);
}
/* Enable HW checksum offload if requested */
if (txq->csum &&
(buf->ol_flags &
(PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))) {
const uint64_t is_tunneled = (buf->ol_flags &
(PKT_TX_TUNNEL_GRE |
PKT_TX_TUNNEL_VXLAN));
if (is_tunneled && txq->csum_l2tun) {
owner_opcode |= MLX4_WQE_CTRL_IIP_HDR_CSUM |
MLX4_WQE_CTRL_IL4_HDR_CSUM;
if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
srcrb.flags |=
RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM);
} else {
srcrb.flags |=
RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM |
MLX4_WQE_CTRL_TCP_UDP_CSUM);
}
}
if (txq->lb) {
/*
* Copy destination MAC address to the WQE, this allows
* loopback in eSwitch, so that VFs and PF can
* communicate with each other.
*/
srcrb.flags16[0] = *(rte_pktmbuf_mtod(buf, uint16_t *));
ctrl->imm = *(rte_pktmbuf_mtod_offset(buf, uint32_t *,
sizeof(uint16_t)));
} else {
ctrl->imm = 0;
}
ctrl->srcrb_flags = srcrb.flags;
/*
* Make sure descriptor is fully written before
* setting ownership bit (because HW can start
* executing as soon as we do).
*/
rte_io_wmb();
ctrl->owner_opcode = rte_cpu_to_be_32(owner_opcode);
elt->buf = buf;
bytes_sent += buf->pkt_len;
ctrl = ctrl_next;
elt = elt_next;
}
/* Take a shortcut if nothing must be sent. */
if (unlikely(i == 0))
return 0;
/* Save WQE address of the next Tx burst element. */
elt->wqe = ctrl;
/* Increment send statistics counters. */
txq->stats.opackets += i;
txq->stats.obytes += bytes_sent;
/* Make sure that descriptors are written before doorbell record. */
rte_wmb();
/* Ring QP doorbell. */
rte_write32(txq->msq.doorbell_qpn, MLX4_TX_BFREG(txq));
txq->elts_head += i;
return i;
}
/**
* Translate Rx completion flags to packet type.
*
* @param[in] cqe
* Pointer to CQE.
*
* @return
* Packet type for struct rte_mbuf.
*/
static inline uint32_t
rxq_cq_to_pkt_type(volatile struct mlx4_cqe *cqe,
uint32_t l2tun_offload)
{
uint8_t idx = 0;
uint32_t pinfo = rte_be_to_cpu_32(cqe->vlan_my_qpn);
uint32_t status = rte_be_to_cpu_32(cqe->status);
/*
* The index to the array should have:
* bit[7] - MLX4_CQE_L2_TUNNEL
* bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
*/
if (l2tun_offload && (pinfo & MLX4_CQE_L2_TUNNEL))
idx |= ((pinfo & MLX4_CQE_L2_TUNNEL) >> 20) |
((pinfo & MLX4_CQE_L2_TUNNEL_IPV4) >> 19);
/*
* The index to the array should have:
* bit[5] - MLX4_CQE_STATUS_UDP
* bit[4] - MLX4_CQE_STATUS_TCP
* bit[3] - MLX4_CQE_STATUS_IPV4OPT
* bit[2] - MLX4_CQE_STATUS_IPV6
* bit[1] - MLX4_CQE_STATUS_IPF
* bit[0] - MLX4_CQE_STATUS_IPV4
* giving a total of up to 256 entries.
*/
idx |= ((status & MLX4_CQE_STATUS_PTYPE_MASK) >> 22);
if (status & MLX4_CQE_STATUS_IPV6)
idx |= ((status & MLX4_CQE_STATUS_IPV6F) >> 11);
return mlx4_ptype_table[idx];
}
/**
* Translate Rx completion flags to offload flags.
*
* @param flags
* Rx completion flags returned by mlx4_cqe_flags().
* @param csum
* Whether Rx checksums are enabled.
* @param csum_l2tun
* Whether Rx L2 tunnel checksums are enabled.
*
* @return
* Offload flags (ol_flags) in mbuf format.
*/
static inline uint32_t
rxq_cq_to_ol_flags(uint32_t flags, int csum, int csum_l2tun)
{
uint32_t ol_flags = 0;
if (csum)
ol_flags |=
mlx4_transpose(flags,
MLX4_CQE_STATUS_IP_HDR_CSUM_OK,
PKT_RX_IP_CKSUM_GOOD) |
mlx4_transpose(flags,
MLX4_CQE_STATUS_TCP_UDP_CSUM_OK,
PKT_RX_L4_CKSUM_GOOD);
if ((flags & MLX4_CQE_L2_TUNNEL) && csum_l2tun)
ol_flags |=
mlx4_transpose(flags,
MLX4_CQE_L2_TUNNEL_IPOK,
PKT_RX_IP_CKSUM_GOOD) |
mlx4_transpose(flags,
MLX4_CQE_L2_TUNNEL_L4_CSUM,
PKT_RX_L4_CKSUM_GOOD);
return ol_flags;
}
/**
* Extract checksum information from CQE flags.
*
* @param cqe
* Pointer to CQE structure.
* @param csum
* Whether Rx checksums are enabled.
* @param csum_l2tun
* Whether Rx L2 tunnel checksums are enabled.
*
* @return
* CQE checksum information.
*/
static inline uint32_t
mlx4_cqe_flags(volatile struct mlx4_cqe *cqe, int csum, int csum_l2tun)
{
uint32_t flags = 0;
/*
* The relevant bits are in different locations on their
* CQE fields therefore we can join them in one 32bit
* variable.
*/
if (csum)
flags = (rte_be_to_cpu_32(cqe->status) &
MLX4_CQE_STATUS_IPV4_CSUM_OK);
if (csum_l2tun)
flags |= (rte_be_to_cpu_32(cqe->vlan_my_qpn) &
(MLX4_CQE_L2_TUNNEL |
MLX4_CQE_L2_TUNNEL_IPOK |
MLX4_CQE_L2_TUNNEL_L4_CSUM |
MLX4_CQE_L2_TUNNEL_IPV4));
return flags;
}
/**
* Poll one CQE from CQ.
*
* @param rxq
* Pointer to the receive queue structure.
* @param[out] out
* Just polled CQE.
*
* @return
* Number of bytes of the CQE, 0 in case there is no completion.
*/
static unsigned int
mlx4_cq_poll_one(struct rxq *rxq, volatile struct mlx4_cqe **out)
{
int ret = 0;
volatile struct mlx4_cqe *cqe = NULL;
struct mlx4_cq *cq = &rxq->mcq;
cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cq->cons_index);
if (!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
!!(cq->cons_index & cq->cqe_cnt))
goto out;
/*
* Make sure we read CQ entry contents after we've checked the
* ownership bit.
*/
rte_rmb();
assert(!(cqe->owner_sr_opcode & MLX4_CQE_IS_SEND_MASK));
assert((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) !=
MLX4_CQE_OPCODE_ERROR);
ret = rte_be_to_cpu_32(cqe->byte_cnt);
++cq->cons_index;
out:
*out = cqe;
return ret;
}
/**
* DPDK callback for Rx with scattered packets support.
*
* @param dpdk_rxq
* Generic pointer to Rx queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received (<= pkts_n).
*/
uint16_t
mlx4_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
struct rxq *rxq = dpdk_rxq;
const uint32_t wr_cnt = (1 << rxq->elts_n) - 1;
const uint16_t sges_n = rxq->sges_n;
struct rte_mbuf *pkt = NULL;
struct rte_mbuf *seg = NULL;
unsigned int i = 0;
uint32_t rq_ci = rxq->rq_ci << sges_n;
int len = 0;
while (pkts_n) {
volatile struct mlx4_cqe *cqe;
uint32_t idx = rq_ci & wr_cnt;
struct rte_mbuf *rep = (*rxq->elts)[idx];
volatile struct mlx4_wqe_data_seg *scat = &(*rxq->wqes)[idx];
/* Update the 'next' pointer of the previous segment. */
if (pkt)
seg->next = rep;
seg = rep;
rte_prefetch0(seg);
rte_prefetch0(scat);
rep = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(rep == NULL)) {
++rxq->stats.rx_nombuf;
if (!pkt) {
/*
* No buffers before we even started,
* bail out silently.
*/
break;
}
while (pkt != seg) {
assert(pkt != (*rxq->elts)[idx]);
rep = pkt->next;
pkt->next = NULL;
pkt->nb_segs = 1;
rte_mbuf_raw_free(pkt);
pkt = rep;
}
break;
}
if (!pkt) {
/* Looking for the new packet. */
len = mlx4_cq_poll_one(rxq, &cqe);
if (!len) {
rte_mbuf_raw_free(rep);
break;
}
if (unlikely(len < 0)) {
/* Rx error, packet is likely too large. */
rte_mbuf_raw_free(rep);
++rxq->stats.idropped;
goto skip;
}
pkt = seg;
assert(len >= (rxq->crc_present << 2));
/* Update packet information. */
pkt->packet_type =
rxq_cq_to_pkt_type(cqe, rxq->l2tun_offload);
pkt->ol_flags = PKT_RX_RSS_HASH;
pkt->hash.rss = cqe->immed_rss_invalid;
if (rxq->crc_present)
net: add rte prefix to ether defines Add 'RTE_' prefix to defines: - rename ETHER_ADDR_LEN as RTE_ETHER_ADDR_LEN. - rename ETHER_TYPE_LEN as RTE_ETHER_TYPE_LEN. - rename ETHER_CRC_LEN as RTE_ETHER_CRC_LEN. - rename ETHER_HDR_LEN as RTE_ETHER_HDR_LEN. - rename ETHER_MIN_LEN as RTE_ETHER_MIN_LEN. - rename ETHER_MAX_LEN as RTE_ETHER_MAX_LEN. - rename ETHER_MTU as RTE_ETHER_MTU. - rename ETHER_MAX_VLAN_FRAME_LEN as RTE_ETHER_MAX_VLAN_FRAME_LEN. - rename ETHER_MAX_VLAN_ID as RTE_ETHER_MAX_VLAN_ID. - rename ETHER_MAX_JUMBO_FRAME_LEN as RTE_ETHER_MAX_JUMBO_FRAME_LEN. - rename ETHER_MIN_MTU as RTE_ETHER_MIN_MTU. - rename ETHER_LOCAL_ADMIN_ADDR as RTE_ETHER_LOCAL_ADMIN_ADDR. - rename ETHER_GROUP_ADDR as RTE_ETHER_GROUP_ADDR. - rename ETHER_TYPE_IPv4 as RTE_ETHER_TYPE_IPv4. - rename ETHER_TYPE_IPv6 as RTE_ETHER_TYPE_IPv6. - rename ETHER_TYPE_ARP as RTE_ETHER_TYPE_ARP. - rename ETHER_TYPE_VLAN as RTE_ETHER_TYPE_VLAN. - rename ETHER_TYPE_RARP as RTE_ETHER_TYPE_RARP. - rename ETHER_TYPE_QINQ as RTE_ETHER_TYPE_QINQ. - rename ETHER_TYPE_ETAG as RTE_ETHER_TYPE_ETAG. - rename ETHER_TYPE_1588 as RTE_ETHER_TYPE_1588. - rename ETHER_TYPE_SLOW as RTE_ETHER_TYPE_SLOW. - rename ETHER_TYPE_TEB as RTE_ETHER_TYPE_TEB. - rename ETHER_TYPE_LLDP as RTE_ETHER_TYPE_LLDP. - rename ETHER_TYPE_MPLS as RTE_ETHER_TYPE_MPLS. - rename ETHER_TYPE_MPLSM as RTE_ETHER_TYPE_MPLSM. - rename ETHER_VXLAN_HLEN as RTE_ETHER_VXLAN_HLEN. - rename ETHER_ADDR_FMT_SIZE as RTE_ETHER_ADDR_FMT_SIZE. - rename VXLAN_GPE_TYPE_IPV4 as RTE_VXLAN_GPE_TYPE_IPV4. - rename VXLAN_GPE_TYPE_IPV6 as RTE_VXLAN_GPE_TYPE_IPV6. - rename VXLAN_GPE_TYPE_ETH as RTE_VXLAN_GPE_TYPE_ETH. - rename VXLAN_GPE_TYPE_NSH as RTE_VXLAN_GPE_TYPE_NSH. - rename VXLAN_GPE_TYPE_MPLS as RTE_VXLAN_GPE_TYPE_MPLS. - rename VXLAN_GPE_TYPE_GBP as RTE_VXLAN_GPE_TYPE_GBP. - rename VXLAN_GPE_TYPE_VBNG as RTE_VXLAN_GPE_TYPE_VBNG. - rename ETHER_VXLAN_GPE_HLEN as RTE_ETHER_VXLAN_GPE_HLEN. Do not update the command line library to avoid adding a dependency to librte_net. Signed-off-by: Olivier Matz <olivier.matz@6wind.com> Reviewed-by: Stephen Hemminger <stephen@networkplumber.org> Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com> Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2019-05-21 18:13:05 +02:00
len -= RTE_ETHER_CRC_LEN;
pkt->pkt_len = len;
if (rxq->csum | rxq->csum_l2tun) {
uint32_t flags =
mlx4_cqe_flags(cqe,
rxq->csum,
rxq->csum_l2tun);
pkt->ol_flags =
rxq_cq_to_ol_flags(flags,
rxq->csum,
rxq->csum_l2tun);
}
}
rep->nb_segs = 1;
rep->port = rxq->port_id;
rep->data_len = seg->data_len;
rep->data_off = seg->data_off;
(*rxq->elts)[idx] = rep;
/*
* Fill NIC descriptor with the new buffer. The lkey and size
* of the buffers are already known, only the buffer address
* changes.
*/
scat->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
net/mlx4: add new memory region support This is the new design of Memory Region (MR) for mlx PMD, in order to: - Accommodate the new memory hotplug model. - Support non-contiguous Mempool. There are multiple layers for MR search. L0 is to look up the last-hit entry which is pointed by mr_ctrl->mru (Most Recently Used). If L0 misses, L1 is to look up the address in a fixed-sized array by linear search. L0/L1 is in an inline function - mlx4_mr_lookup_cache(). If L1 misses, the bottom-half function is called to look up the address from the bigger local cache of the queue. This is L2 - mlx4_mr_addr2mr_bh() and it is not an inline function. Data structure for L2 is the Binary Tree. If L2 misses, the search falls into the slowest path which takes locks in order to access global device cache (priv->mr.cache) which is also a B-tree and caches the original MR list (priv->mr.mr_list) of the device. Unless the global cache is overflowed, it is all-inclusive of the MR list. This is L3 - mlx4_mr_lookup_dev(). The size of the L3 cache table is limited and can't be expanded on the fly due to deadlock. Refer to the comments in the code for the details - mr_lookup_dev(). If L3 is overflowed, the list will have to be searched directly bypassing the cache although it is slower. If L3 misses, a new MR for the address should be created - mlx4_mr_create(). When it creates a new MR, it tries to register adjacent memsegs as much as possible which are virtually contiguous around the address. This must take two locks - memory_hotplug_lock and priv->mr.rwlock. Due to memory_hotplug_lock, there can't be any allocation/free of memory inside. In the free callback of the memory hotplug event, freed space is searched from the MR list and corresponding bits are cleared from the bitmap of MRs. This can fragment a MR and the MR will have multiple search entries in the caches. Once there's a change by the event, the global cache must be rebuilt and all the per-queue caches will be flushed as well. If memory is frequently freed in run-time, that may cause jitter on dataplane processing in the worst case by incurring MR cache flush and rebuild. But, it would be the least probable scenario. To guarantee the most optimal performance, it is highly recommended to use an EAL option - '--socket-mem'. Then, the reserved memory will be pinned and won't be freed dynamically. And it is also recommended to configure per-lcore cache of Mempool. Even though there're many MRs for a device or MRs are highly fragmented, the cache of Mempool will be much helpful to reduce misses on per-queue caches anyway. '--legacy-mem' is also supported. Signed-off-by: Yongseok Koh <yskoh@mellanox.com>
2018-05-09 04:09:06 -07:00
/* If there's only one MR, no need to replace LKey in WQE. */
if (unlikely(mlx4_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
scat->lkey = mlx4_rx_mb2mr(rxq, rep);
if (len > seg->data_len) {
len -= seg->data_len;
++pkt->nb_segs;
++rq_ci;
continue;
}
/* The last segment. */
seg->data_len = len;
/* Increment bytes counter. */
rxq->stats.ibytes += pkt->pkt_len;
/* Return packet. */
*(pkts++) = pkt;
pkt = NULL;
--pkts_n;
++i;
skip:
/* Align consumer index to the next stride. */
rq_ci >>= sges_n;
++rq_ci;
rq_ci <<= sges_n;
}
if (unlikely(i == 0 && (rq_ci >> sges_n) == rxq->rq_ci))
return 0;
/* Update the consumer index. */
rxq->rq_ci = rq_ci >> sges_n;
rte_wmb();
*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
*rxq->mcq.set_ci_db =
rte_cpu_to_be_32(rxq->mcq.cons_index & MLX4_CQ_DB_CI_MASK);
/* Increment packets counter. */
rxq->stats.ipackets += i;
return i;
}
/**
* Dummy DPDK callback for Tx.
*
* This function is used to temporarily replace the real callback during
* unsafe control operations on the queue, or in case of error.
*
* @param dpdk_txq
* Generic pointer to Tx queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
uint16_t
mlx4_tx_burst_removed(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
(void)dpdk_txq;
(void)pkts;
(void)pkts_n;
rte_mb();
return 0;
}
/**
* Dummy DPDK callback for Rx.
*
* This function is used to temporarily replace the real callback during
* unsafe control operations on the queue, or in case of error.
*
* @param dpdk_rxq
* Generic pointer to Rx queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received (<= pkts_n).
*/
uint16_t
mlx4_rx_burst_removed(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
(void)dpdk_rxq;
(void)pkts;
(void)pkts_n;
rte_mb();
return 0;
}