numam-dpdk/app/test/test_timer_racecond.c

206 lines
5.5 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright(c) 2015 Akamai Technologies.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "test.h"
#include <stdio.h>
#include <unistd.h>
#include <inttypes.h>
#include <rte_cycles.h>
#include <rte_timer.h>
#include <rte_common.h>
#include <rte_lcore.h>
#include <rte_random.h>
#include <rte_malloc.h>
#undef TEST_TIMER_RACECOND_VERBOSE
#ifdef RTE_EXEC_ENV_LINUXAPP
#define usec_delay(us) usleep(us)
#else
#define usec_delay(us) rte_delay_us(us)
#endif
#define BILLION (1UL << 30)
#define TEST_DURATION_S 20 /* in seconds */
#define N_TIMERS 50
static struct rte_timer timer[N_TIMERS];
static unsigned timer_lcore_id[N_TIMERS];
static unsigned master;
static volatile unsigned stop_slaves;
static int reload_timer(struct rte_timer *tim);
static void
timer_cb(struct rte_timer *tim, void *arg __rte_unused)
{
/* Simulate slow callback function, 100 us. */
rte_delay_us(100);
#ifdef TEST_TIMER_RACECOND_VERBOSE
if (tim == &timer[0])
printf("------------------------------------------------\n");
printf("timer_cb: core %u timer %lu\n",
rte_lcore_id(), tim - timer);
#endif
(void)reload_timer(tim);
}
RTE_DEFINE_PER_LCORE(unsigned, n_reset_collisions);
static int
reload_timer(struct rte_timer *tim)
{
/* Make timer expire roughly when the TSC hits the next BILLION
* multiple. Add in timer's index to make them expire in nearly
* sorted order. This makes all timers somewhat synchronized,
* firing ~2-3 times per second, assuming 2-3 GHz TSCs.
*/
uint64_t ticks = BILLION - (rte_get_timer_cycles() % BILLION) +
(tim - timer);
int ret;
ret = rte_timer_reset(tim, ticks, PERIODICAL, master, timer_cb, NULL);
if (ret != 0) {
#ifdef TEST_TIMER_RACECOND_VERBOSE
printf("- core %u failed to reset timer %lu (OK)\n",
rte_lcore_id(), tim - timer);
#endif
RTE_PER_LCORE(n_reset_collisions) += 1;
}
return ret;
}
static int
slave_main_loop(__attribute__((unused)) void *arg)
{
unsigned lcore_id = rte_lcore_id();
unsigned i;
RTE_PER_LCORE(n_reset_collisions) = 0;
printf("Starting main loop on core %u\n", lcore_id);
while (!stop_slaves) {
/* Wait until the timer manager is running.
* We know it's running when we see timer[0] NOT pending.
*/
if (rte_timer_pending(&timer[0])) {
rte_pause();
continue;
}
/* Now, go cause some havoc!
* Reload our timers.
*/
for (i = 0; i < N_TIMERS; i++) {
if (timer_lcore_id[i] == lcore_id)
(void)reload_timer(&timer[i]);
}
usec_delay(100*1000); /* sleep 100 ms */
}
if (RTE_PER_LCORE(n_reset_collisions) != 0) {
printf("- core %u, %u reset collisions (OK)\n",
lcore_id, RTE_PER_LCORE(n_reset_collisions));
}
return 0;
}
static int
test_timer_racecond(void)
{
int ret;
uint64_t hz;
uint64_t cur_time;
uint64_t end_time;
int64_t diff = 0;
unsigned lcore_id;
unsigned i;
master = lcore_id = rte_lcore_id();
hz = rte_get_timer_hz();
/* init and start timers */
for (i = 0; i < N_TIMERS; i++) {
rte_timer_init(&timer[i]);
ret = reload_timer(&timer[i]);
TEST_ASSERT(ret == 0, "reload_timer failed");
/* Distribute timers to slaves.
* Note that we assign timer[0] to the master.
*/
timer_lcore_id[i] = lcore_id;
lcore_id = rte_get_next_lcore(lcore_id, 1, 1);
}
/* calculate the "end of test" time */
cur_time = rte_get_timer_cycles();
end_time = cur_time + (hz * TEST_DURATION_S);
/* start slave cores */
stop_slaves = 0;
printf("Start timer manage race condition test (%u seconds)\n",
TEST_DURATION_S);
rte_eal_mp_remote_launch(slave_main_loop, NULL, SKIP_MASTER);
while (diff >= 0) {
/* run the timers */
rte_timer_manage();
/* wait 100 ms */
usec_delay(100*1000);
cur_time = rte_get_timer_cycles();
diff = end_time - cur_time;
}
/* stop slave cores */
printf("Stopping timer manage race condition test\n");
stop_slaves = 1;
rte_eal_mp_wait_lcore();
/* stop timers */
for (i = 0; i < N_TIMERS; i++) {
ret = rte_timer_stop(&timer[i]);
TEST_ASSERT(ret == 0, "rte_timer_stop failed");
}
return TEST_SUCCESS;
}
REGISTER_TEST_COMMAND(timer_racecond_autotest, test_timer_racecond);