numam-dpdk/config/common_base

974 lines
19 KiB
Plaintext
Raw Normal View History

# SPDX-License-Identifier: BSD-3-Clause
# Copyright(c) 2010-2017 Intel Corporation
#
# define executive environment
# RTE_EXEC_ENV values are the directories in mk/exec-env/
#
CONFIG_RTE_EXEC_ENV=
#
# define the architecture we compile for.
# RTE_ARCH values are the directories in mk/arch/
#
CONFIG_RTE_ARCH=
#
# machine can define specific variables or action for a specific board
# RTE_MACHINE values are the directories in mk/machine/
#
CONFIG_RTE_MACHINE=
#
# The compiler we use.
# RTE_TOOLCHAIN values are the directories in mk/toolchain/
#
CONFIG_RTE_TOOLCHAIN=
#
# Use intrinsics or assembly code for key routines
#
CONFIG_RTE_FORCE_INTRINSICS=n
#
# Machine forces strict alignment constraints.
#
CONFIG_RTE_ARCH_STRICT_ALIGN=n
#
# Compile to share library
#
CONFIG_RTE_BUILD_SHARED_LIB=n
#
# Use newest code breaking previous ABI
#
CONFIG_RTE_NEXT_ABI=y
#
# Major ABI to overwrite library specific LIBABIVER
#
CONFIG_RTE_MAJOR_ABI=
#
# Machine's cache line size
#
CONFIG_RTE_CACHE_LINE_SIZE=64
#
# Memory model
#
CONFIG_RTE_USE_C11_MEM_MODEL=n
#
# Compile Environment Abstraction Layer
#
CONFIG_RTE_LIBRTE_EAL=y
CONFIG_RTE_MAX_LCORE=128
CONFIG_RTE_MAX_NUMA_NODES=8
CONFIG_RTE_MAX_HEAPS=32
mem: replace memseg with memseg lists Before, we were aggregating multiple pages into one memseg, so the number of memsegs was small. Now, each page gets its own memseg, so the list of memsegs is huge. To accommodate the new memseg list size and to keep the under-the-hood workings sane, the memseg list is now not just a single list, but multiple lists. To be precise, each hugepage size available on the system gets one or more memseg lists, per socket. In order to support dynamic memory allocation, we reserve all memory in advance (unless we're in 32-bit legacy mode, in which case we do not preallocate memory). As in, we do an anonymous mmap() of the entire maximum size of memory per hugepage size, per socket (which is limited to either RTE_MAX_MEMSEG_PER_TYPE pages or RTE_MAX_MEM_MB_PER_TYPE megabytes worth of memory, whichever is the smaller one), split over multiple lists (which are limited to either RTE_MAX_MEMSEG_PER_LIST memsegs or RTE_MAX_MEM_MB_PER_LIST megabytes per list, whichever is the smaller one). There is also a global limit of CONFIG_RTE_MAX_MEM_MB megabytes, which is mainly used for 32-bit targets to limit amounts of preallocated memory, but can be used to place an upper limit on total amount of VA memory that can be allocated by DPDK application. So, for each hugepage size, we get (by default) up to 128G worth of memory, per socket, split into chunks of up to 32G in size. The address space is claimed at the start, in eal_common_memory.c. The actual page allocation code is in eal_memalloc.c (Linux-only), and largely consists of copied EAL memory init code. Pages in the list are also indexed by address. That is, in order to figure out where the page belongs, one can simply look at base address for a memseg list. Similarly, figuring out IOVA address of a memzone is a matter of finding the right memseg list, getting offset and dividing by page size to get the appropriate memseg. This commit also removes rte_eal_dump_physmem_layout() call, according to deprecation notice [1], and removes that deprecation notice as well. On 32-bit targets due to limited VA space, DPDK will no longer spread memory to different sockets like before. Instead, it will (by default) allocate all of the memory on socket where master lcore is. To override this behavior, --socket-mem must be used. The rest of the changes are really ripple effects from the memseg change - heap changes, compile fixes, and rewrites to support fbarray-backed memseg lists. Due to earlier switch to _walk() functions, most of the changes are simple fixes, however some of the _walk() calls were switched to memseg list walk, where it made sense to do so. Additionally, we are also switching locks from flock() to fcntl(). Down the line, we will be introducing single-file segments option, and we cannot use flock() locks to lock parts of the file. Therefore, we will use fcntl() locks for legacy mem as well, in case someone is unfortunate enough to accidentally start legacy mem primary process alongside an already working non-legacy mem-based primary process. [1] http://dpdk.org/dev/patchwork/patch/34002/ Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 12:30:24 +00:00
CONFIG_RTE_MAX_MEMSEG_LISTS=64
# each memseg list will be limited to either RTE_MAX_MEMSEG_PER_LIST pages
# or RTE_MAX_MEM_MB_PER_LIST megabytes worth of memory, whichever is smaller
CONFIG_RTE_MAX_MEMSEG_PER_LIST=8192
CONFIG_RTE_MAX_MEM_MB_PER_LIST=32768
# a "type" is a combination of page size and NUMA node. total number of memseg
# lists per type will be limited to either RTE_MAX_MEMSEG_PER_TYPE pages (split
# over multiple lists of RTE_MAX_MEMSEG_PER_LIST pages), or
# RTE_MAX_MEM_MB_PER_TYPE megabytes of memory (split over multiple lists of
# RTE_MAX_MEM_MB_PER_LIST), whichever is smaller
CONFIG_RTE_MAX_MEMSEG_PER_TYPE=32768
CONFIG_RTE_MAX_MEM_MB_PER_TYPE=131072
# global maximum usable amount of VA, in megabytes
CONFIG_RTE_MAX_MEM_MB=524288
CONFIG_RTE_MAX_MEMZONE=2560
CONFIG_RTE_MAX_TAILQ=32
CONFIG_RTE_ENABLE_ASSERT=n
CONFIG_RTE_LOG_DP_LEVEL=RTE_LOG_INFO
CONFIG_RTE_LOG_HISTORY=256
CONFIG_RTE_BACKTRACE=y
CONFIG_RTE_LIBEAL_USE_HPET=n
CONFIG_RTE_EAL_ALLOW_INV_SOCKET_ID=n
CONFIG_RTE_EAL_ALWAYS_PANIC_ON_ERROR=n
CONFIG_RTE_EAL_IGB_UIO=n
CONFIG_RTE_EAL_VFIO=n
CONFIG_RTE_MAX_VFIO_GROUPS=64
CONFIG_RTE_MAX_VFIO_CONTAINERS=64
CONFIG_RTE_MALLOC_DEBUG=n
mem: balanced allocation of hugepages Currently EAL allocates hugepages one by one not paying attention from which NUMA node allocation was done. Such behaviour leads to allocation failure if number of available hugepages for application limited by cgroups or hugetlbfs and memory requested not only from the first socket. Example: # 90 x 1GB hugepages availavle in a system cgcreate -g hugetlb:/test # Limit to 32GB of hugepages cgset -r hugetlb.1GB.limit_in_bytes=34359738368 test # Request 4GB from each of 2 sockets cgexec -g hugetlb:test testpmd --socket-mem=4096,4096 ... EAL: SIGBUS: Cannot mmap more hugepages of size 1024 MB EAL: 32 not 90 hugepages of size 1024 MB allocated EAL: Not enough memory available on socket 1! Requested: 4096MB, available: 0MB PANIC in rte_eal_init(): Cannot init memory This happens beacause all allocated pages are on socket 0. Fix this issue by setting mempolicy MPOL_PREFERRED for each hugepage to one of requested nodes using following schema: 1) Allocate essential hugepages: 1.1) Allocate as many hugepages from numa N to only fit requested memory for this numa. 1.2) repeat 1.1 for all numa nodes. 2) Try to map all remaining free hugepages in a round-robin fashion. 3) Sort pages and choose the most suitable. In this case all essential memory will be allocated and all remaining pages will be fairly distributed between all requested nodes. New config option RTE_EAL_NUMA_AWARE_HUGEPAGES introduced and enabled by default for linuxapp except armv7 and dpaa2. Enabling of this option adds libnuma as a dependency for EAL. Fixes: 77988fc08dc5 ("mem: fix allocating all free hugepages") Signed-off-by: Ilya Maximets <i.maximets@samsung.com> Acked-by: Sergio Gonzalez Monroy <sergio.gonzalez.monroy@intel.com> Acked-by: Hemant Agrawal <hemant.agrawal@nxp.com> Acked-by: Jerin Jacob <jerin.jacob@caviumnetworks.com> Tested-by: Jerin Jacob <jerin.jacob@caviumnetworks.com>
2017-06-29 05:59:19 +00:00
CONFIG_RTE_EAL_NUMA_AWARE_HUGEPAGES=n
CONFIG_RTE_USE_LIBBSD=n
#
# Recognize/ignore the AVX/AVX512 CPU flags for performance/power testing.
# AVX512 is marked as experimental for now, will enable it after enough
# field test and possible optimization.
#
CONFIG_RTE_ENABLE_AVX=y
CONFIG_RTE_ENABLE_AVX512=n
# Default driver path (or "" to disable)
CONFIG_RTE_EAL_PMD_PATH=""
#
# Compile Environment Abstraction Layer to support Vmware TSC map
#
CONFIG_RTE_LIBRTE_EAL_VMWARE_TSC_MAP_SUPPORT=y
#
# Compile the PCI library
#
CONFIG_RTE_LIBRTE_PCI=y
#
# Compile the argument parser library
#
CONFIG_RTE_LIBRTE_KVARGS=y
#
# Compile generic ethernet library
#
CONFIG_RTE_LIBRTE_ETHER=y
CONFIG_RTE_LIBRTE_ETHDEV_DEBUG=n
CONFIG_RTE_MAX_ETHPORTS=32
CONFIG_RTE_MAX_QUEUES_PER_PORT=1024
CONFIG_RTE_LIBRTE_IEEE1588=n
CONFIG_RTE_ETHDEV_QUEUE_STAT_CNTRS=16
CONFIG_RTE_ETHDEV_RXTX_CALLBACKS=y
CONFIG_RTE_ETHDEV_PROFILE_WITH_VTUNE=n
ethdev: add Tx preparation Added API for `rte_eth_tx_prepare` uint16_t rte_eth_tx_prepare(uint8_t port_id, uint16_t queue_id, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) Added fields to the `struct rte_eth_desc_lim`: uint16_t nb_seg_max; /**< Max number of segments per whole packet. */ uint16_t nb_mtu_seg_max; /**< Max number of segments per one MTU */ These fields can be used to create valid packets according to the following rules: * For non-TSO packet, a single transmit packet may span up to "nb_mtu_seg_max" buffers. * For TSO packet the total number of data descriptors is "nb_seg_max", and each segment within the TSO may span up to "nb_mtu_seg_max". Added functions: int rte_validate_tx_offload(struct rte_mbuf *m) to validate general requirements for tx offload set in mbuf of packet such a flag completness. In current implementation this function is called optionaly when RTE_LIBRTE_ETHDEV_DEBUG is enabled. int rte_net_intel_cksum_prepare(struct rte_mbuf *m) to prepare pseudo header checksum for TSO and non-TSO tcp/udp packets before hardware tx checksum offload. - for non-TSO tcp/udp packets full pseudo-header checksum is counted and set. - for TSO the IP payload length is not included. int rte_net_intel_cksum_flags_prepare(struct rte_mbuf *m, uint64_t ol_flags) this function uses same logic as rte_net_intel_cksum_prepare, but allows application to choose which offloads should be taken into account, if full preparation is not required. PERFORMANCE TESTS ----------------- This feature was tested with modified csum engine from test-pmd. The packet checksum preparation was moved from application to Tx preparation step placed before burst. We may expect some overhead costs caused by: 1) using additional callback before burst, 2) rescanning burst, 3) additional condition checking (packet validation), 4) worse optimization (e.g. packet data access, etc.) We tested it using ixgbe Tx preparation implementation with some parts disabled to have comparable information about the impact of different parts of implementation. IMPACT: 1) For unimplemented Tx preparation callback the performance impact is negligible, 2) For packet condition check without checksum modifications (nb_segs, available offloads, etc.) is 14626628/14252168 (~2.62% drop), 3) Full support in ixgbe driver (point 2 + packet checksum initialization) is 14060924/13588094 (~3.48% drop) Signed-off-by: Tomasz Kulasek <tomaszx.kulasek@intel.com> Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com> Acked-by: Olivier Matz <olivier.matz@6wind.com> Acked-by: Thomas Monjalon <thomas.monjalon@6wind.com>
2016-12-23 18:40:47 +00:00
#
# Turn off Tx preparation stage
#
# Warning: rte_eth_tx_prepare() can be safely disabled only if using a
ethdev: add Tx preparation Added API for `rte_eth_tx_prepare` uint16_t rte_eth_tx_prepare(uint8_t port_id, uint16_t queue_id, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) Added fields to the `struct rte_eth_desc_lim`: uint16_t nb_seg_max; /**< Max number of segments per whole packet. */ uint16_t nb_mtu_seg_max; /**< Max number of segments per one MTU */ These fields can be used to create valid packets according to the following rules: * For non-TSO packet, a single transmit packet may span up to "nb_mtu_seg_max" buffers. * For TSO packet the total number of data descriptors is "nb_seg_max", and each segment within the TSO may span up to "nb_mtu_seg_max". Added functions: int rte_validate_tx_offload(struct rte_mbuf *m) to validate general requirements for tx offload set in mbuf of packet such a flag completness. In current implementation this function is called optionaly when RTE_LIBRTE_ETHDEV_DEBUG is enabled. int rte_net_intel_cksum_prepare(struct rte_mbuf *m) to prepare pseudo header checksum for TSO and non-TSO tcp/udp packets before hardware tx checksum offload. - for non-TSO tcp/udp packets full pseudo-header checksum is counted and set. - for TSO the IP payload length is not included. int rte_net_intel_cksum_flags_prepare(struct rte_mbuf *m, uint64_t ol_flags) this function uses same logic as rte_net_intel_cksum_prepare, but allows application to choose which offloads should be taken into account, if full preparation is not required. PERFORMANCE TESTS ----------------- This feature was tested with modified csum engine from test-pmd. The packet checksum preparation was moved from application to Tx preparation step placed before burst. We may expect some overhead costs caused by: 1) using additional callback before burst, 2) rescanning burst, 3) additional condition checking (packet validation), 4) worse optimization (e.g. packet data access, etc.) We tested it using ixgbe Tx preparation implementation with some parts disabled to have comparable information about the impact of different parts of implementation. IMPACT: 1) For unimplemented Tx preparation callback the performance impact is negligible, 2) For packet condition check without checksum modifications (nb_segs, available offloads, etc.) is 14626628/14252168 (~2.62% drop), 3) Full support in ixgbe driver (point 2 + packet checksum initialization) is 14060924/13588094 (~3.48% drop) Signed-off-by: Tomasz Kulasek <tomaszx.kulasek@intel.com> Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com> Acked-by: Olivier Matz <olivier.matz@6wind.com> Acked-by: Thomas Monjalon <thomas.monjalon@6wind.com>
2016-12-23 18:40:47 +00:00
# driver which do not implement any Tx preparation.
#
CONFIG_RTE_ETHDEV_TX_PREPARE_NOOP=n
#
# Common libraries, before Bus/PMDs
#
CONFIG_RTE_LIBRTE_COMMON_DPAAX=n
#
# Compile the Intel FPGA bus
#
CONFIG_RTE_LIBRTE_IFPGA_BUS=y
#
# Compile PCI bus driver
#
CONFIG_RTE_LIBRTE_PCI_BUS=y
#
# Compile the vdev bus
#
CONFIG_RTE_LIBRTE_VDEV_BUS=y
#
# Compile ARK PMD
#
CONFIG_RTE_LIBRTE_ARK_PMD=y
CONFIG_RTE_LIBRTE_ARK_PAD_TX=y
CONFIG_RTE_LIBRTE_ARK_DEBUG_RX=n
CONFIG_RTE_LIBRTE_ARK_DEBUG_TX=n
CONFIG_RTE_LIBRTE_ARK_DEBUG_STATS=n
CONFIG_RTE_LIBRTE_ARK_DEBUG_TRACE=n
#
# Compile Aquantia Atlantic PMD driver
#
CONFIG_RTE_LIBRTE_ATLANTIC_PMD=y
#
# Compile AMD PMD
#
CONFIG_RTE_LIBRTE_AXGBE_PMD=y
CONFIG_RTE_LIBRTE_AXGBE_PMD_DEBUG=n
#
# Compile burst-oriented Broadcom PMD driver
#
CONFIG_RTE_LIBRTE_BNX2X_PMD=n
CONFIG_RTE_LIBRTE_BNX2X_DEBUG_RX=n
CONFIG_RTE_LIBRTE_BNX2X_DEBUG_TX=n
CONFIG_RTE_LIBRTE_BNX2X_MF_SUPPORT=n
CONFIG_RTE_LIBRTE_BNX2X_DEBUG_PERIODIC=n
#
# Compile burst-oriented Broadcom BNXT PMD driver
#
CONFIG_RTE_LIBRTE_BNXT_PMD=y
#
# Compile burst-oriented Chelsio Terminator (CXGBE) PMD
#
CONFIG_RTE_LIBRTE_CXGBE_PMD=y
CONFIG_RTE_LIBRTE_CXGBE_DEBUG=n
CONFIG_RTE_LIBRTE_CXGBE_DEBUG_REG=n
CONFIG_RTE_LIBRTE_CXGBE_DEBUG_MBOX=n
CONFIG_RTE_LIBRTE_CXGBE_DEBUG_TX=n
CONFIG_RTE_LIBRTE_CXGBE_DEBUG_RX=n
CONFIG_RTE_LIBRTE_CXGBE_TPUT=y
# NXP DPAA Bus
CONFIG_RTE_LIBRTE_DPAA_BUS=n
CONFIG_RTE_LIBRTE_DPAA_MEMPOOL=n
CONFIG_RTE_LIBRTE_DPAA_PMD=n
CONFIG_RTE_LIBRTE_DPAA_HWDEBUG=n
#
# Compile NXP DPAA2 FSL-MC Bus
#
CONFIG_RTE_LIBRTE_FSLMC_BUS=n
#
# Compile Support Libraries for NXP DPAA2
#
CONFIG_RTE_LIBRTE_DPAA2_MEMPOOL=n
CONFIG_RTE_LIBRTE_DPAA2_USE_PHYS_IOVA=y
#
# Compile burst-oriented NXP DPAA2 PMD driver
#
CONFIG_RTE_LIBRTE_DPAA2_PMD=n
CONFIG_RTE_LIBRTE_DPAA2_DEBUG_DRIVER=n
#
# Compile NXP ENETC PMD Driver
#
CONFIG_RTE_LIBRTE_ENETC_PMD=n
#
# Compile burst-oriented Amazon ENA PMD driver
#
CONFIG_RTE_LIBRTE_ENA_PMD=y
CONFIG_RTE_LIBRTE_ENA_DEBUG_RX=n
CONFIG_RTE_LIBRTE_ENA_DEBUG_TX=n
CONFIG_RTE_LIBRTE_ENA_DEBUG_TX_FREE=n
CONFIG_RTE_LIBRTE_ENA_COM_DEBUG=n
#
# Compile burst-oriented Cisco ENIC PMD driver
#
CONFIG_RTE_LIBRTE_ENIC_PMD=y
#
# Compile burst-oriented IGB & EM PMD drivers
#
CONFIG_RTE_LIBRTE_EM_PMD=y
CONFIG_RTE_LIBRTE_IGB_PMD=y
CONFIG_RTE_LIBRTE_E1000_DEBUG_RX=n
CONFIG_RTE_LIBRTE_E1000_DEBUG_TX=n
CONFIG_RTE_LIBRTE_E1000_DEBUG_TX_FREE=n
CONFIG_RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC=n
#
# Compile burst-oriented IXGBE PMD driver
#
CONFIG_RTE_LIBRTE_IXGBE_PMD=y
CONFIG_RTE_LIBRTE_IXGBE_DEBUG_RX=n
CONFIG_RTE_LIBRTE_IXGBE_DEBUG_TX=n
CONFIG_RTE_LIBRTE_IXGBE_DEBUG_TX_FREE=n
CONFIG_RTE_LIBRTE_IXGBE_PF_DISABLE_STRIP_CRC=n
CONFIG_RTE_IXGBE_INC_VECTOR=y
CONFIG_RTE_LIBRTE_IXGBE_BYPASS=n
#
# Compile burst-oriented I40E PMD driver
#
CONFIG_RTE_LIBRTE_I40E_PMD=y
CONFIG_RTE_LIBRTE_I40E_DEBUG_RX=n
CONFIG_RTE_LIBRTE_I40E_DEBUG_TX=n
CONFIG_RTE_LIBRTE_I40E_DEBUG_TX_FREE=n
CONFIG_RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC=y
CONFIG_RTE_LIBRTE_I40E_INC_VECTOR=y
CONFIG_RTE_LIBRTE_I40E_16BYTE_RX_DESC=n
CONFIG_RTE_LIBRTE_I40E_QUEUE_NUM_PER_PF=64
CONFIG_RTE_LIBRTE_I40E_QUEUE_NUM_PER_VM=4
#
# Compile burst-oriented FM10K PMD
#
CONFIG_RTE_LIBRTE_FM10K_PMD=y
CONFIG_RTE_LIBRTE_FM10K_DEBUG_RX=n
CONFIG_RTE_LIBRTE_FM10K_DEBUG_TX=n
CONFIG_RTE_LIBRTE_FM10K_DEBUG_TX_FREE=n
CONFIG_RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE=y
CONFIG_RTE_LIBRTE_FM10K_INC_VECTOR=y
#
# Compile burst-oriented ICE PMD driver
#
CONFIG_RTE_LIBRTE_ICE_PMD=y
CONFIG_RTE_LIBRTE_ICE_DEBUG_RX=n
CONFIG_RTE_LIBRTE_ICE_DEBUG_TX=n
CONFIG_RTE_LIBRTE_ICE_DEBUG_TX_FREE=n
CONFIG_RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC=y
CONFIG_RTE_LIBRTE_ICE_16BYTE_RX_DESC=n
# Compile burst-oriented AVF PMD driver
#
CONFIG_RTE_LIBRTE_AVF_PMD=y
CONFIG_RTE_LIBRTE_AVF_INC_VECTOR=y
CONFIG_RTE_LIBRTE_AVF_DEBUG_TX=n
CONFIG_RTE_LIBRTE_AVF_DEBUG_TX_FREE=n
CONFIG_RTE_LIBRTE_AVF_DEBUG_RX=n
CONFIG_RTE_LIBRTE_AVF_16BYTE_RX_DESC=n
#
# Compile burst-oriented Mellanox ConnectX-3 (MLX4) PMD
#
CONFIG_RTE_LIBRTE_MLX4_PMD=n
CONFIG_RTE_LIBRTE_MLX4_DEBUG=n
CONFIG_RTE_LIBRTE_MLX4_DLOPEN_DEPS=n
#
# Compile burst-oriented Mellanox ConnectX-4, ConnectX-5 & Bluefield
# (MLX5) PMD
#
CONFIG_RTE_LIBRTE_MLX5_PMD=n
CONFIG_RTE_LIBRTE_MLX5_DEBUG=n
CONFIG_RTE_LIBRTE_MLX5_DLOPEN_DEPS=n
#
# Compile burst-oriented Netronome NFP PMD driver
#
CONFIG_RTE_LIBRTE_NFP_PMD=n
CONFIG_RTE_LIBRTE_NFP_DEBUG_TX=n
CONFIG_RTE_LIBRTE_NFP_DEBUG_RX=n
# QLogic 10G/25G/40G/50G/100G PMD
#
CONFIG_RTE_LIBRTE_QEDE_PMD=y
CONFIG_RTE_LIBRTE_QEDE_DEBUG_TX=n
CONFIG_RTE_LIBRTE_QEDE_DEBUG_RX=n
#Provides abs path/name of the firmware file.
#Empty string denotes driver will use default firmware
CONFIG_RTE_LIBRTE_QEDE_FW=""
#
# Compile burst-oriented Solarflare libefx-based PMD
#
CONFIG_RTE_LIBRTE_SFC_EFX_PMD=y
CONFIG_RTE_LIBRTE_SFC_EFX_DEBUG=n
#
# Compile software PMD backed by SZEDATA2 device
#
CONFIG_RTE_LIBRTE_PMD_SZEDATA2=n
#
# Compile burst-oriented Cavium Thunderx NICVF PMD driver
#
CONFIG_RTE_LIBRTE_THUNDERX_NICVF_PMD=y
CONFIG_RTE_LIBRTE_THUNDERX_NICVF_DEBUG_RX=n
CONFIG_RTE_LIBRTE_THUNDERX_NICVF_DEBUG_TX=n
#
# Compile burst-oriented Cavium LiquidIO PMD driver
#
CONFIG_RTE_LIBRTE_LIO_PMD=y
CONFIG_RTE_LIBRTE_LIO_DEBUG_RX=n
CONFIG_RTE_LIBRTE_LIO_DEBUG_TX=n
CONFIG_RTE_LIBRTE_LIO_DEBUG_MBOX=n
CONFIG_RTE_LIBRTE_LIO_DEBUG_REGS=n
#
# Compile burst-oriented Cavium OCTEONTX network PMD driver
#
CONFIG_RTE_LIBRTE_OCTEONTX_PMD=y
#
# Compile WRS accelerated virtual port (AVP) guest PMD driver
#
CONFIG_RTE_LIBRTE_AVP_PMD=n
CONFIG_RTE_LIBRTE_AVP_DEBUG_RX=n
CONFIG_RTE_LIBRTE_AVP_DEBUG_TX=n
CONFIG_RTE_LIBRTE_AVP_DEBUG_BUFFERS=n
#
# Compile burst-oriented VIRTIO PMD driver
#
CONFIG_RTE_LIBRTE_VIRTIO_PMD=y
CONFIG_RTE_LIBRTE_VIRTIO_DEBUG_RX=n
CONFIG_RTE_LIBRTE_VIRTIO_DEBUG_TX=n
CONFIG_RTE_LIBRTE_VIRTIO_DEBUG_DUMP=n
#
# Compile virtio device emulation inside virtio PMD driver
#
CONFIG_RTE_VIRTIO_USER=n
#
# Compile burst-oriented VMXNET3 PMD driver
#
CONFIG_RTE_LIBRTE_VMXNET3_PMD=y
CONFIG_RTE_LIBRTE_VMXNET3_DEBUG_RX=n
CONFIG_RTE_LIBRTE_VMXNET3_DEBUG_TX=n
CONFIG_RTE_LIBRTE_VMXNET3_DEBUG_TX_FREE=n
#
# Compile software PMD backed by AF_PACKET sockets (Linux only)
#
CONFIG_RTE_LIBRTE_PMD_AF_PACKET=n
#
# Compile link bonding PMD library
#
CONFIG_RTE_LIBRTE_PMD_BOND=y
CONFIG_RTE_LIBRTE_BOND_DEBUG_ALB=n
CONFIG_RTE_LIBRTE_BOND_DEBUG_ALB_L1=n
#
# Compile fail-safe PMD
#
CONFIG_RTE_LIBRTE_PMD_FAILSAFE=y
#
# Compile Marvell PMD driver
#
CONFIG_RTE_LIBRTE_MVPP2_PMD=n
#
# Compile Marvell MVNETA PMD driver
#
CONFIG_RTE_LIBRTE_MVNETA_PMD=n
#
# Compile support for VMBus library
#
CONFIG_RTE_LIBRTE_VMBUS=n
#
# Compile native PMD for Hyper-V/Azure
#
CONFIG_RTE_LIBRTE_NETVSC_PMD=n
CONFIG_RTE_LIBRTE_NETVSC_DEBUG_RX=n
CONFIG_RTE_LIBRTE_NETVSC_DEBUG_TX=n
CONFIG_RTE_LIBRTE_NETVSC_DEBUG_DUMP=n
#
# Compile virtual device driver for NetVSC on Hyper-V/Azure
#
CONFIG_RTE_LIBRTE_VDEV_NETVSC_PMD=n
#
# Compile null PMD
#
CONFIG_RTE_LIBRTE_PMD_NULL=y
#
# Compile software PMD backed by PCAP files
#
CONFIG_RTE_LIBRTE_PMD_PCAP=n
#
# Compile example software rings based PMD
#
CONFIG_RTE_LIBRTE_PMD_RING=y
CONFIG_RTE_PMD_RING_MAX_RX_RINGS=16
CONFIG_RTE_PMD_RING_MAX_TX_RINGS=16
#
# Compile SOFTNIC PMD
#
CONFIG_RTE_LIBRTE_PMD_SOFTNIC=n
#
# Compile the TAP PMD
# It is enabled by default for Linux only.
#
CONFIG_RTE_LIBRTE_PMD_TAP=n
#
# Do prefetch of packet data within PMD driver receive function
#
CONFIG_RTE_PMD_PACKET_PREFETCH=y
# Compile generic wireless base band device library
# EXPERIMENTAL: API may change without prior notice
#
CONFIG_RTE_LIBRTE_BBDEV=y
CONFIG_RTE_BBDEV_MAX_DEVS=128
CONFIG_RTE_BBDEV_OFFLOAD_COST=y
#
# Compile PMD for NULL bbdev device
#
CONFIG_RTE_LIBRTE_PMD_BBDEV_NULL=y
#
# Compile PMD for turbo software bbdev device
#
CONFIG_RTE_LIBRTE_PMD_BBDEV_TURBO_SW=n
#
# Compile generic crypto device library
#
CONFIG_RTE_LIBRTE_CRYPTODEV=y
CONFIG_RTE_CRYPTO_MAX_DEVS=64
#
# Compile PMD for ARMv8 Crypto device
#
CONFIG_RTE_LIBRTE_PMD_ARMV8_CRYPTO=n
CONFIG_RTE_LIBRTE_PMD_ARMV8_CRYPTO_DEBUG=n
#
# Compile NXP CAAM JR crypto Driver
#
CONFIG_RTE_LIBRTE_PMD_CAAM_JR=n
CONFIG_RTE_LIBRTE_PMD_CAAM_JR_BE=n
#
# Compile NXP DPAA2 crypto sec driver for CAAM HW
#
CONFIG_RTE_LIBRTE_PMD_DPAA2_SEC=n
#
# NXP DPAA caam - crypto driver
#
CONFIG_RTE_LIBRTE_PMD_DPAA_SEC=n
CONFIG_RTE_LIBRTE_DPAA_MAX_CRYPTODEV=4
#
# Compile PMD for Cavium OCTEON TX crypto device
#
CONFIG_RTE_LIBRTE_PMD_OCTEONTX_CRYPTO=y
#
# Compile PMD for QuickAssist based devices - see docs for details
#
CONFIG_RTE_LIBRTE_PMD_QAT=y
CONFIG_RTE_LIBRTE_PMD_QAT_SYM=n
#
# Max. number of QuickAssist devices, which can be detected and attached
#
CONFIG_RTE_PMD_QAT_MAX_PCI_DEVICES=48
CONFIG_RTE_PMD_QAT_COMP_SGL_MAX_SEGMENTS=16
CONFIG_RTE_PMD_QAT_COMP_IM_BUFFER_SIZE=65536
#
# Compile PMD for virtio crypto devices
#
CONFIG_RTE_LIBRTE_PMD_VIRTIO_CRYPTO=y
#
# Number of maximum virtio crypto devices
#
CONFIG_RTE_MAX_VIRTIO_CRYPTO=32
#
# Compile PMD for AESNI backed device
#
CONFIG_RTE_LIBRTE_PMD_AESNI_MB=n
#
# Compile PMD for Software backed device
#
CONFIG_RTE_LIBRTE_PMD_OPENSSL=n
#
# Compile PMD for AESNI GCM device
#
CONFIG_RTE_LIBRTE_PMD_AESNI_GCM=n
#
# Compile PMD for SNOW 3G device
#
CONFIG_RTE_LIBRTE_PMD_SNOW3G=n
CONFIG_RTE_LIBRTE_PMD_SNOW3G_DEBUG=n
#
# Compile PMD for KASUMI device
#
CONFIG_RTE_LIBRTE_PMD_KASUMI=n
#
# Compile PMD for ZUC device
#
CONFIG_RTE_LIBRTE_PMD_ZUC=n
# Compile PMD for Crypto Scheduler device
#
CONFIG_RTE_LIBRTE_PMD_CRYPTO_SCHEDULER=y
#
# Compile PMD for NULL Crypto device
#
CONFIG_RTE_LIBRTE_PMD_NULL_CRYPTO=y
#
# Compile PMD for AMD CCP crypto device
#
CONFIG_RTE_LIBRTE_PMD_CCP=n
#
# Compile PMD for Marvell Crypto device
#
CONFIG_RTE_LIBRTE_PMD_MVSAM_CRYPTO=n
#
# Compile generic security library
#
CONFIG_RTE_LIBRTE_SECURITY=y
#
# Compile generic compression device library
#
CONFIG_RTE_LIBRTE_COMPRESSDEV=y
CONFIG_RTE_COMPRESS_MAX_DEVS=64
#
# Compile compressdev unit test
#
CONFIG_RTE_COMPRESSDEV_TEST=n
#
# Compile PMD for Octeontx ZIPVF compression device
#
CONFIG_RTE_LIBRTE_PMD_OCTEONTX_ZIPVF=y
#
# Compile PMD for ISA-L compression device
#
CONFIG_RTE_LIBRTE_PMD_ISAL=n
#
# Compile PMD for ZLIB compression device
#
CONFIG_RTE_LIBRTE_PMD_ZLIB=n
#
# Compile generic event device library
#
CONFIG_RTE_LIBRTE_EVENTDEV=y
CONFIG_RTE_LIBRTE_EVENTDEV_DEBUG=n
CONFIG_RTE_EVENT_MAX_DEVS=16
CONFIG_RTE_EVENT_MAX_QUEUES_PER_DEV=64
CONFIG_RTE_EVENT_TIMER_ADAPTER_NUM_MAX=32
CONFIG_RTE_EVENT_ETH_INTR_RING_SIZE=1024
CONFIG_RTE_EVENT_CRYPTO_ADAPTER_MAX_INSTANCE=32
CONFIG_RTE_EVENT_ETH_TX_ADAPTER_MAX_INSTANCE=32
#
# Compile PMD for skeleton event device
#
CONFIG_RTE_LIBRTE_PMD_SKELETON_EVENTDEV=y
CONFIG_RTE_LIBRTE_PMD_SKELETON_EVENTDEV_DEBUG=n
#
# Compile PMD for software event device
#
CONFIG_RTE_LIBRTE_PMD_SW_EVENTDEV=y
#
# Compile PMD for distributed software event device
#
CONFIG_RTE_LIBRTE_PMD_DSW_EVENTDEV=y
#
# Compile PMD for octeontx sso event device
#
CONFIG_RTE_LIBRTE_PMD_OCTEONTX_SSOVF=y
#
# Compile PMD for OPDL event device
#
CONFIG_RTE_LIBRTE_PMD_OPDL_EVENTDEV=y
#
# Compile PMD for NXP DPAA event device
#
CONFIG_RTE_LIBRTE_PMD_DPAA_EVENTDEV=n
#
# Compile PMD for NXP DPAA2 event device
#
CONFIG_RTE_LIBRTE_PMD_DPAA2_EVENTDEV=n
#
# Compile raw device support
# EXPERIMENTAL: API may change without prior notice
#
CONFIG_RTE_LIBRTE_RAWDEV=y
CONFIG_RTE_RAWDEV_MAX_DEVS=10
CONFIG_RTE_LIBRTE_PMD_SKELETON_RAWDEV=y
#
# Compile PMD for NXP DPAA2 CMDIF raw device
#
CONFIG_RTE_LIBRTE_PMD_DPAA2_CMDIF_RAWDEV=n
#
# Compile PMD for NXP DPAA2 QDMA raw device
#
CONFIG_RTE_LIBRTE_PMD_DPAA2_QDMA_RAWDEV=n
#
# Compile PMD for Intel FPGA raw device
#
CONFIG_RTE_LIBRTE_PMD_IFPGA_RAWDEV=y
#
# Compile librte_ring
#
CONFIG_RTE_LIBRTE_RING=y
#
# Compile librte_mempool
#
CONFIG_RTE_LIBRTE_MEMPOOL=y
CONFIG_RTE_MEMPOOL_CACHE_MAX_SIZE=512
CONFIG_RTE_LIBRTE_MEMPOOL_DEBUG=n
#
# Compile Mempool drivers
#
CONFIG_RTE_DRIVER_MEMPOOL_BUCKET=y
CONFIG_RTE_DRIVER_MEMPOOL_BUCKET_SIZE_KB=64
CONFIG_RTE_DRIVER_MEMPOOL_RING=y
CONFIG_RTE_DRIVER_MEMPOOL_STACK=y
#
# Compile PMD for octeontx fpa mempool device
#
CONFIG_RTE_LIBRTE_OCTEONTX_MEMPOOL=y
#
# Compile librte_mbuf
#
CONFIG_RTE_LIBRTE_MBUF=y
CONFIG_RTE_LIBRTE_MBUF_DEBUG=n
CONFIG_RTE_MBUF_DEFAULT_MEMPOOL_OPS="ring_mp_mc"
CONFIG_RTE_MBUF_REFCNT_ATOMIC=y
CONFIG_RTE_PKTMBUF_HEADROOM=128
#
# Compile librte_timer
#
CONFIG_RTE_LIBRTE_TIMER=y
CONFIG_RTE_LIBRTE_TIMER_DEBUG=n
#
# Compile librte_cfgfile
#
CONFIG_RTE_LIBRTE_CFGFILE=y
#
# Compile librte_cmdline
#
CONFIG_RTE_LIBRTE_CMDLINE=y
CONFIG_RTE_LIBRTE_CMDLINE_DEBUG=n
#
# Compile librte_hash
#
CONFIG_RTE_LIBRTE_HASH=y
CONFIG_RTE_LIBRTE_HASH_DEBUG=n
#
# Compile librte_efd
#
CONFIG_RTE_LIBRTE_EFD=y
#
# Compile librte_member
#
CONFIG_RTE_LIBRTE_MEMBER=y
#
# Compile librte_jobstats
#
CONFIG_RTE_LIBRTE_JOBSTATS=y
#
# Compile the device metrics library
#
CONFIG_RTE_LIBRTE_METRICS=y
#
# Compile the bitrate statistics library
#
CONFIG_RTE_LIBRTE_BITRATE=y
#
# Compile the latency statistics library
#
CONFIG_RTE_LIBRTE_LATENCY_STATS=y
#
# Compile librte_telemetry
#
CONFIG_RTE_LIBRTE_TELEMETRY=n
#
# Compile librte_lpm
#
CONFIG_RTE_LIBRTE_LPM=y
CONFIG_RTE_LIBRTE_LPM_DEBUG=n
#
# Compile librte_acl
#
CONFIG_RTE_LIBRTE_ACL=y
CONFIG_RTE_LIBRTE_ACL_DEBUG=n
#
# Compile librte_power
#
CONFIG_RTE_LIBRTE_POWER=n
CONFIG_RTE_LIBRTE_POWER_DEBUG=n
CONFIG_RTE_MAX_LCORE_FREQS=64
#
# Compile librte_net
#
CONFIG_RTE_LIBRTE_NET=y
#
# Compile librte_ip_frag
#
CONFIG_RTE_LIBRTE_IP_FRAG=y
CONFIG_RTE_LIBRTE_IP_FRAG_DEBUG=n
CONFIG_RTE_LIBRTE_IP_FRAG_MAX_FRAG=4
CONFIG_RTE_LIBRTE_IP_FRAG_TBL_STAT=n
lib/gro: add Generic Receive Offload API framework Generic Receive Offload (GRO) is a widely used SW-based offloading technique to reduce per-packet processing overhead. It gains performance by reassembling small packets into large ones. This patchset is to support GRO in DPDK. To support GRO, this patch implements a GRO API framework. To enable more flexibility to applications, DPDK GRO is implemented as a user library. Applications explicitly use the GRO library to merge small packets into large ones. DPDK GRO provides two reassembly modes. One is called lightweight mode, the other is called heavyweight mode. If applications want to merge packets in a simple way and the number of packets is relatively small, they can use the lightweight mode. If applications need more fine-grained controls, they can choose the heavyweight mode. rte_gro_reassemble_burst is the main reassembly API which is used in lightweight mode and processes N packets at a time. For applications, performing GRO in lightweight mode is simple. They just need to invoke rte_gro_reassemble_burst. Applications can get GROed packets as soon as rte_gro_reassemble_burst returns. rte_gro_reassemble is the main reassembly API which is used in heavyweight mode and tries to merge N inputted packets with the packets in GRO reassembly tables. For applications, performing GRO in heavyweight mode is relatively complicated. Before performing GRO, applications need to create a GRO context object, which keeps reassembly tables of desired GRO types, by rte_gro_ctx_create. Then applications can use rte_gro_reassemble to merge packets. The GROed packets are in the reassembly tables of the GRO context object. If applications want to get them, applications need to manually flush them by flush API. Signed-off-by: Jiayu Hu <jiayu.hu@intel.com> Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:44 +00:00
#
# Compile GRO library
#
CONFIG_RTE_LIBRTE_GRO=y
gso: add Generic Segmentation Offload API framework Generic Segmentation Offload (GSO) is a SW technique to split large packets into small ones. Akin to TSO, GSO enables applications to operate on large packets, thus reducing per-packet processing overhead. To enable more flexibility to applications, DPDK GSO is implemented as a standalone library. Applications explicitly use the GSO library to segment packets. To segment a packet requires two steps. The first is to set proper flags to mbuf->ol_flags, where the flags are the same as that of TSO. The second is to call the segmentation API, rte_gso_segment(). This patch introduces the GSO API framework to DPDK. rte_gso_segment() splits an input packet into small ones in each invocation. The GSO library refers to these small packets generated by rte_gso_segment() as GSO segments. Each of the newly-created GSO segments is organized as a two-segment MBUF, where the first segment is a standard MBUF, which stores a copy of packet header, and the second is an indirect MBUF which points to a section of data in the input packet. rte_gso_segment() reduces the refcnt of the input packet by 1. Therefore, when all GSO segments are freed, the input packet is freed automatically. Additionally, since each GSO segment has multiple MBUFs (i.e. 2 MBUFs), the driver of the interface which the GSO segments are sent to should support to transmit multi-segment packets. The GSO framework clears the PKT_TX_TCP_SEG flag for both the input packet, and all produced GSO segments in the event of success, since segmentation in hardware is no longer required at that point. Signed-off-by: Jiayu Hu <jiayu.hu@intel.com> Signed-off-by: Mark Kavanagh <mark.b.kavanagh@intel.com> Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
2017-10-07 14:56:39 +00:00
#
# Compile GSO library
#
CONFIG_RTE_LIBRTE_GSO=y
#
# Compile librte_meter
#
CONFIG_RTE_LIBRTE_METER=y
#
# Compile librte_classify
#
CONFIG_RTE_LIBRTE_FLOW_CLASSIFY=y
#
# Compile librte_sched
#
CONFIG_RTE_LIBRTE_SCHED=y
CONFIG_RTE_SCHED_DEBUG=n
CONFIG_RTE_SCHED_RED=n
CONFIG_RTE_SCHED_COLLECT_STATS=n
CONFIG_RTE_SCHED_SUBPORT_TC_OV=n
CONFIG_RTE_SCHED_PORT_N_GRINDERS=8
CONFIG_RTE_SCHED_VECTOR=n
#
# Compile the distributor library
#
CONFIG_RTE_LIBRTE_DISTRIBUTOR=y
#
# Compile the reorder library
#
CONFIG_RTE_LIBRTE_REORDER=y
#
# Compile librte_port
#
CONFIG_RTE_LIBRTE_PORT=y
CONFIG_RTE_PORT_STATS_COLLECT=n
CONFIG_RTE_PORT_PCAP=n
#
# Compile librte_table
#
CONFIG_RTE_LIBRTE_TABLE=y
CONFIG_RTE_TABLE_STATS_COLLECT=n
#
# Compile librte_pipeline
#
CONFIG_RTE_LIBRTE_PIPELINE=y
CONFIG_RTE_PIPELINE_STATS_COLLECT=n
#
# Compile librte_kni
#
CONFIG_RTE_LIBRTE_KNI=n
CONFIG_RTE_LIBRTE_PMD_KNI=n
CONFIG_RTE_KNI_KMOD=n
CONFIG_RTE_KNI_KMOD_ETHTOOL=n
CONFIG_RTE_KNI_PREEMPT_DEFAULT=y
pdump: add new library for packet capture The librte_pdump library provides a framework for packet capturing in dpdk. The library provides set of APIs to initialize the packet capture framework, to enable or disable the packet capture, and to uninitialize it. The librte_pdump library works on a client/server model. The server is responsible for enabling or disabling the packet capture and the clients are responsible for requesting the enabling or disabling of the packet capture. Enabling APIs are supported with port, queue, ring and mempool parameters. Applications should pass on this information to get the packets from the dpdk ports. For enabling requests from applications, library creates the client request containing the mempool, ring, port and queue information and sends the request to the server. After receiving the request, server registers the Rx and Tx callbacks for all the port and queues. After the callbacks registration, registered callbacks will get the Rx and Tx packets. Packets then will be copied to the new mbufs that are allocated from the user passed mempool. These new mbufs then will be enqueued to the application passed ring. Applications need to dequeue the mbufs from the rings and direct them to the devices like pcap vdev for viewing the packets outside of the dpdk using the packet capture tools. For disabling requests, library creates the client request containing the port and queue information and sends the request to the server. After receiving the request, server removes the Rx and Tx callback for all the port and queues. Signed-off-by: Reshma Pattan <reshma.pattan@intel.com> Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
2016-06-15 14:06:22 +00:00
#
# Compile the pdump library
#
CONFIG_RTE_LIBRTE_PDUMP=y
#
# Compile vhost user library
#
CONFIG_RTE_LIBRTE_VHOST=n
CONFIG_RTE_LIBRTE_VHOST_NUMA=n
CONFIG_RTE_LIBRTE_VHOST_DEBUG=n
#
# Compile vhost PMD
# To compile, CONFIG_RTE_LIBRTE_VHOST should be enabled.
#
CONFIG_RTE_LIBRTE_PMD_VHOST=n
net/ifcvf: add ifcvf vDPA driver The IFCVF vDPA (vhost data path acceleration) driver provides support for the Intel FPGA 100G VF (IFCVF). IFCVF's datapath is virtio ring compatible, it works as a HW vhost backend which can send/receive packets to/from virtio directly by DMA. Different VF devices serve different virtio frontends which are in different VMs, so each VF needs to have its own DMA address translation service. During the driver probe a new container is created, with this container vDPA driver can program DMA remapping table with the VM's memory region information. Key vDPA driver ops implemented: - ifcvf_dev_config: Enable VF data path with virtio information provided by vhost lib, including IOMMU programming to enable VF DMA to VM's memory, VFIO interrupt setup to route HW interrupt to virtio driver, create notify relay thread to translate virtio driver's kick to a MMIO write onto HW, HW queues configuration. - ifcvf_dev_close: Revoke all the setup in ifcvf_dev_config. Live migration feature is supported by IFCVF and this driver enables it. For the dirty page logging, VF helps to log for packet buffer write, driver helps to make the used ring as dirty when device stops. Because vDPA driver needs to set up MSI-X vector to interrupt the guest, only vfio-pci is supported currently. Signed-off-by: Xiao Wang <xiao.w.wang@intel.com> Signed-off-by: Rosen Xu <rosen.xu@intel.com> Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com> Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2018-04-17 07:06:23 +00:00
#
# Compile IFC driver
net/ifcvf: add ifcvf vDPA driver The IFCVF vDPA (vhost data path acceleration) driver provides support for the Intel FPGA 100G VF (IFCVF). IFCVF's datapath is virtio ring compatible, it works as a HW vhost backend which can send/receive packets to/from virtio directly by DMA. Different VF devices serve different virtio frontends which are in different VMs, so each VF needs to have its own DMA address translation service. During the driver probe a new container is created, with this container vDPA driver can program DMA remapping table with the VM's memory region information. Key vDPA driver ops implemented: - ifcvf_dev_config: Enable VF data path with virtio information provided by vhost lib, including IOMMU programming to enable VF DMA to VM's memory, VFIO interrupt setup to route HW interrupt to virtio driver, create notify relay thread to translate virtio driver's kick to a MMIO write onto HW, HW queues configuration. - ifcvf_dev_close: Revoke all the setup in ifcvf_dev_config. Live migration feature is supported by IFCVF and this driver enables it. For the dirty page logging, VF helps to log for packet buffer write, driver helps to make the used ring as dirty when device stops. Because vDPA driver needs to set up MSI-X vector to interrupt the guest, only vfio-pci is supported currently. Signed-off-by: Xiao Wang <xiao.w.wang@intel.com> Signed-off-by: Rosen Xu <rosen.xu@intel.com> Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com> Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2018-04-17 07:06:23 +00:00
# To compile, CONFIG_RTE_LIBRTE_VHOST and CONFIG_RTE_EAL_VFIO
# should be enabled.
#
CONFIG_RTE_LIBRTE_IFC_PMD=n
net/ifcvf: add ifcvf vDPA driver The IFCVF vDPA (vhost data path acceleration) driver provides support for the Intel FPGA 100G VF (IFCVF). IFCVF's datapath is virtio ring compatible, it works as a HW vhost backend which can send/receive packets to/from virtio directly by DMA. Different VF devices serve different virtio frontends which are in different VMs, so each VF needs to have its own DMA address translation service. During the driver probe a new container is created, with this container vDPA driver can program DMA remapping table with the VM's memory region information. Key vDPA driver ops implemented: - ifcvf_dev_config: Enable VF data path with virtio information provided by vhost lib, including IOMMU programming to enable VF DMA to VM's memory, VFIO interrupt setup to route HW interrupt to virtio driver, create notify relay thread to translate virtio driver's kick to a MMIO write onto HW, HW queues configuration. - ifcvf_dev_close: Revoke all the setup in ifcvf_dev_config. Live migration feature is supported by IFCVF and this driver enables it. For the dirty page logging, VF helps to log for packet buffer write, driver helps to make the used ring as dirty when device stops. Because vDPA driver needs to set up MSI-X vector to interrupt the guest, only vfio-pci is supported currently. Signed-off-by: Xiao Wang <xiao.w.wang@intel.com> Signed-off-by: Rosen Xu <rosen.xu@intel.com> Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com> Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2018-04-17 07:06:23 +00:00
#
# Compile librte_bpf
#
CONFIG_RTE_LIBRTE_BPF=y
# allow load BPF from ELF files (requires libelf)
CONFIG_RTE_LIBRTE_BPF_ELF=n
#
# Compile the test application
#
CONFIG_RTE_APP_TEST=y
CONFIG_RTE_APP_TEST_RESOURCE_TAR=n
#
# Compile the procinfo application
#
CONFIG_RTE_PROC_INFO=n
#
# Compile the PMD test application
#
CONFIG_RTE_TEST_PMD=y
CONFIG_RTE_TEST_PMD_RECORD_CORE_CYCLES=n
CONFIG_RTE_TEST_PMD_RECORD_BURST_STATS=n
app/crypto-perf: introduce performance test application This patchset introduce new application which allows measuring performance parameters of PMDs available in crypto tree. The goal of this application is to replace existing performance tests in app/test. Parameters available are: throughput (--ptest throughput) and latency (--ptest latency). User can use multiply cores to run tests on but only one type of crypto PMD can be measured during single application execution. Cipher parameters, type of device, type of operation and chain mode have to be specified in the command line as application parameters. These parameters are checked using device capabilities structure. Couple of new library functions in librte_cryptodev are introduced for application use. To build the application a CONFIG_RTE_APP_CRYPTO_PERF flag has to be set (it is set by default). Example of usage: -c 0xc0 --vdev crypto_aesni_mb_pmd -w 0000:00:00.0 -- --ptest throughput --devtype crypto_aesni_mb --optype cipher-then-auth --cipher-algo aes-cbc --cipher-op encrypt --cipher-key-sz 16 --auth-algo sha1-hmac --auth-op generate --auth-key-sz 64 --auth-digest-sz 12 --total-ops 10000000 --burst-sz 32 --buffer-sz 64 Signed-off-by: Declan Doherty <declan.doherty@intel.com> Signed-off-by: Slawomir Mrozowicz <slawomirx.mrozowicz@intel.com> Signed-off-by: Piotr Azarewicz <piotrx.t.azarewicz@intel.com> Signed-off-by: Marcin Kerlin <marcinx.kerlin@intel.com> Signed-off-by: Michal Kobylinski <michalx.kobylinski@intel.com>
2017-01-25 16:27:33 +00:00
#
# Compile the bbdev test application
#
CONFIG_RTE_TEST_BBDEV=y
#
# Compile the compression performance application
#
CONFIG_RTE_APP_COMPRESS_PERF=y
app/crypto-perf: introduce performance test application This patchset introduce new application which allows measuring performance parameters of PMDs available in crypto tree. The goal of this application is to replace existing performance tests in app/test. Parameters available are: throughput (--ptest throughput) and latency (--ptest latency). User can use multiply cores to run tests on but only one type of crypto PMD can be measured during single application execution. Cipher parameters, type of device, type of operation and chain mode have to be specified in the command line as application parameters. These parameters are checked using device capabilities structure. Couple of new library functions in librte_cryptodev are introduced for application use. To build the application a CONFIG_RTE_APP_CRYPTO_PERF flag has to be set (it is set by default). Example of usage: -c 0xc0 --vdev crypto_aesni_mb_pmd -w 0000:00:00.0 -- --ptest throughput --devtype crypto_aesni_mb --optype cipher-then-auth --cipher-algo aes-cbc --cipher-op encrypt --cipher-key-sz 16 --auth-algo sha1-hmac --auth-op generate --auth-key-sz 64 --auth-digest-sz 12 --total-ops 10000000 --burst-sz 32 --buffer-sz 64 Signed-off-by: Declan Doherty <declan.doherty@intel.com> Signed-off-by: Slawomir Mrozowicz <slawomirx.mrozowicz@intel.com> Signed-off-by: Piotr Azarewicz <piotrx.t.azarewicz@intel.com> Signed-off-by: Marcin Kerlin <marcinx.kerlin@intel.com> Signed-off-by: Michal Kobylinski <michalx.kobylinski@intel.com>
2017-01-25 16:27:33 +00:00
#
# Compile the crypto performance application
#
CONFIG_RTE_APP_CRYPTO_PERF=y
#
# Compile the eventdev application
#
CONFIG_RTE_APP_EVENTDEV=y