numam-dpdk/lib/librte_mbuf/rte_mbuf.h

1903 lines
52 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation.
* Copyright 2014 6WIND S.A.
*/
#ifndef _RTE_MBUF_H_
#define _RTE_MBUF_H_
/**
* @file
* RTE Mbuf
*
* The mbuf library provides the ability to create and destroy buffers
* that may be used by the RTE application to store message
* buffers. The message buffers are stored in a mempool, using the
* RTE mempool library.
*
* The preferred way to create a mbuf pool is to use
* rte_pktmbuf_pool_create(). However, in some situations, an
* application may want to have more control (ex: populate the pool with
* specific memory), in this case it is possible to use functions from
* rte_mempool. See how rte_pktmbuf_pool_create() is implemented for
* details.
*
* This library provides an API to allocate/free packet mbufs, which are
* used to carry network packets.
*
* To understand the concepts of packet buffers or mbufs, you
* should read "TCP/IP Illustrated, Volume 2: The Implementation,
* Addison-Wesley, 1995, ISBN 0-201-63354-X from Richard Stevens"
* http://www.kohala.com/start/tcpipiv2.html
*/
#include <stdint.h>
#include <rte_compat.h>
#include <rte_common.h>
#include <rte_config.h>
#include <rte_mempool.h>
#include <rte_memory.h>
#include <rte_atomic.h>
#include <rte_prefetch.h>
#include <rte_branch_prediction.h>
#include <rte_mbuf_ptype.h>
#ifdef __cplusplus
extern "C" {
#endif
/*
* Packet Offload Features Flags. It also carry packet type information.
* Critical resources. Both rx/tx shared these bits. Be cautious on any change
*
* - RX flags start at bit position zero, and get added to the left of previous
* flags.
* - The most-significant 3 bits are reserved for generic mbuf flags
* - TX flags therefore start at bit position 60 (i.e. 63-3), and new flags get
* added to the right of the previously defined flags i.e. they should count
* downwards, not upwards.
*
* Keep these flags synchronized with rte_get_rx_ol_flag_name() and
* rte_get_tx_ol_flag_name().
*/
/**
* The RX packet is a 802.1q VLAN packet, and the tci has been
* saved in in mbuf->vlan_tci.
* If the flag PKT_RX_VLAN_STRIPPED is also present, the VLAN
* header has been stripped from mbuf data, else it is still
* present.
*/
#define PKT_RX_VLAN (1ULL << 0)
#define PKT_RX_RSS_HASH (1ULL << 1) /**< RX packet with RSS hash result. */
#define PKT_RX_FDIR (1ULL << 2) /**< RX packet with FDIR match indicate. */
mbuf: add new Rx checksum flags Following discussions in [1] and [2], introduce a new bit to describe the Rx checksum status in mbuf. Before this patch, only one flag was available: PKT_RX_L4_CKSUM_BAD: L4 cksum of RX pkt. is not OK. And same for L3: PKT_RX_IP_CKSUM_BAD: IP cksum of RX pkt. is not OK. This had 2 issues: - it was not possible to differentiate "checksum good" from "checksum unknown". - it was not possible for a virtual driver to say "the checksum in packet may be wrong, but data integrity is valid". This patch tries to solve this issue by having 4 states (2 bits) for the IP and L4 Rx checksums. New values are: - PKT_RX_L4_CKSUM_UNKNOWN: no information about the RX L4 checksum -> the application should verify the checksum by sw - PKT_RX_L4_CKSUM_BAD: the L4 checksum in the packet is wrong -> the application can drop the packet without additional check - PKT_RX_L4_CKSUM_GOOD: the L4 checksum in the packet is valid -> the application can accept the packet without verifying the checksum by sw - PKT_RX_L4_CKSUM_NONE: the L4 checksum is not correct in the packet data, but the integrity of the L4 data is verified. -> the application can process the packet but must not verify the checksum by sw. It has to take care to recalculate the cksum if the packet is transmitted (either by sw or using tx offload) And same for L3 (replace L4 by IP in description above). This commit tries to be compatible with existing applications that only check the existing flag (CKSUM_BAD). [1] http://dpdk.org/ml/archives/dev/2016-May/039920.html [2] http://dpdk.org/ml/archives/dev/2016-June/040007.html Signed-off-by: Olivier Matz <olivier.matz@6wind.com> Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com> Reviewed-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
2016-10-13 14:16:04 +00:00
/**
* Deprecated.
* Checking this flag alone is deprecated: check the 2 bits of
* PKT_RX_L4_CKSUM_MASK.
* This flag was set when the L4 checksum of a packet was detected as
* wrong by the hardware.
*/
#define PKT_RX_L4_CKSUM_BAD (1ULL << 3)
/**
* Deprecated.
* Checking this flag alone is deprecated: check the 2 bits of
* PKT_RX_IP_CKSUM_MASK.
* This flag was set when the IP checksum of a packet was detected as
* wrong by the hardware.
*/
#define PKT_RX_IP_CKSUM_BAD (1ULL << 4)
#define PKT_RX_EIP_CKSUM_BAD (1ULL << 5) /**< External IP header checksum error. */
/**
* A vlan has been stripped by the hardware and its tci is saved in
* mbuf->vlan_tci. This can only happen if vlan stripping is enabled
* in the RX configuration of the PMD.
* When PKT_RX_VLAN_STRIPPED is set, PKT_RX_VLAN must also be set.
*/
#define PKT_RX_VLAN_STRIPPED (1ULL << 6)
mbuf: add new Rx checksum flags Following discussions in [1] and [2], introduce a new bit to describe the Rx checksum status in mbuf. Before this patch, only one flag was available: PKT_RX_L4_CKSUM_BAD: L4 cksum of RX pkt. is not OK. And same for L3: PKT_RX_IP_CKSUM_BAD: IP cksum of RX pkt. is not OK. This had 2 issues: - it was not possible to differentiate "checksum good" from "checksum unknown". - it was not possible for a virtual driver to say "the checksum in packet may be wrong, but data integrity is valid". This patch tries to solve this issue by having 4 states (2 bits) for the IP and L4 Rx checksums. New values are: - PKT_RX_L4_CKSUM_UNKNOWN: no information about the RX L4 checksum -> the application should verify the checksum by sw - PKT_RX_L4_CKSUM_BAD: the L4 checksum in the packet is wrong -> the application can drop the packet without additional check - PKT_RX_L4_CKSUM_GOOD: the L4 checksum in the packet is valid -> the application can accept the packet without verifying the checksum by sw - PKT_RX_L4_CKSUM_NONE: the L4 checksum is not correct in the packet data, but the integrity of the L4 data is verified. -> the application can process the packet but must not verify the checksum by sw. It has to take care to recalculate the cksum if the packet is transmitted (either by sw or using tx offload) And same for L3 (replace L4 by IP in description above). This commit tries to be compatible with existing applications that only check the existing flag (CKSUM_BAD). [1] http://dpdk.org/ml/archives/dev/2016-May/039920.html [2] http://dpdk.org/ml/archives/dev/2016-June/040007.html Signed-off-by: Olivier Matz <olivier.matz@6wind.com> Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com> Reviewed-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
2016-10-13 14:16:04 +00:00
/**
* Mask of bits used to determine the status of RX IP checksum.
* - PKT_RX_IP_CKSUM_UNKNOWN: no information about the RX IP checksum
* - PKT_RX_IP_CKSUM_BAD: the IP checksum in the packet is wrong
* - PKT_RX_IP_CKSUM_GOOD: the IP checksum in the packet is valid
* - PKT_RX_IP_CKSUM_NONE: the IP checksum is not correct in the packet
* data, but the integrity of the IP header is verified.
*/
#define PKT_RX_IP_CKSUM_MASK ((1ULL << 4) | (1ULL << 7))
#define PKT_RX_IP_CKSUM_UNKNOWN 0
#define PKT_RX_IP_CKSUM_BAD (1ULL << 4)
#define PKT_RX_IP_CKSUM_GOOD (1ULL << 7)
#define PKT_RX_IP_CKSUM_NONE ((1ULL << 4) | (1ULL << 7))
/**
* Mask of bits used to determine the status of RX L4 checksum.
* - PKT_RX_L4_CKSUM_UNKNOWN: no information about the RX L4 checksum
* - PKT_RX_L4_CKSUM_BAD: the L4 checksum in the packet is wrong
* - PKT_RX_L4_CKSUM_GOOD: the L4 checksum in the packet is valid
* - PKT_RX_L4_CKSUM_NONE: the L4 checksum is not correct in the packet
* data, but the integrity of the L4 data is verified.
*/
#define PKT_RX_L4_CKSUM_MASK ((1ULL << 3) | (1ULL << 8))
#define PKT_RX_L4_CKSUM_UNKNOWN 0
#define PKT_RX_L4_CKSUM_BAD (1ULL << 3)
#define PKT_RX_L4_CKSUM_GOOD (1ULL << 8)
#define PKT_RX_L4_CKSUM_NONE ((1ULL << 3) | (1ULL << 8))
#define PKT_RX_IEEE1588_PTP (1ULL << 9) /**< RX IEEE1588 L2 Ethernet PT Packet. */
#define PKT_RX_IEEE1588_TMST (1ULL << 10) /**< RX IEEE1588 L2/L4 timestamped packet.*/
#define PKT_RX_FDIR_ID (1ULL << 13) /**< FD id reported if FDIR match. */
#define PKT_RX_FDIR_FLX (1ULL << 14) /**< Flexible bytes reported if FDIR match. */
/**
* The 2 vlans have been stripped by the hardware and their tci are
* saved in mbuf->vlan_tci (inner) and mbuf->vlan_tci_outer (outer).
* This can only happen if vlan stripping is enabled in the RX
* configuration of the PMD. If this flag is set,
* When PKT_RX_QINQ_STRIPPED is set, the flags (PKT_RX_VLAN |
* PKT_RX_VLAN_STRIPPED | PKT_RX_QINQ) must also be set.
*/
#define PKT_RX_QINQ_STRIPPED (1ULL << 15)
/**
* When packets are coalesced by a hardware or virtual driver, this flag
* can be set in the RX mbuf, meaning that the m->tso_segsz field is
* valid and is set to the segment size of original packets.
*/
#define PKT_RX_LRO (1ULL << 16)
/**
* Indicate that the timestamp field in the mbuf is valid.
*/
#define PKT_RX_TIMESTAMP (1ULL << 17)
/**
* Indicate that security offload processing was applied on the RX packet.
*/
#define PKT_RX_SEC_OFFLOAD (1ULL << 18)
/**
* Indicate that security offload processing failed on the RX packet.
*/
#define PKT_RX_SEC_OFFLOAD_FAILED (1ULL << 19)
/**
* The RX packet is a double VLAN, and the outer tci has been
* saved in in mbuf->vlan_tci_outer.
* If the flag PKT_RX_QINQ_STRIPPED is also present, both VLANs
* headers have been stripped from mbuf data, else they are still
* present.
*/
#define PKT_RX_QINQ (1ULL << 20)
/* add new RX flags here */
/* add new TX flags here */
/**
* UDP Fragmentation Offload flag. This flag is used for enabling UDP
* fragmentation in SW or in HW. When use UFO, mbuf->tso_segsz is used
* to store the MSS of UDP fragments.
*/
#define PKT_TX_UDP_SEG (1ULL << 42)
/**
* Request security offload processing on the TX packet.
*/
#define PKT_TX_SEC_OFFLOAD (1ULL << 43)
/**
* Offload the MACsec. This flag must be set by the application to enable
* this offload feature for a packet to be transmitted.
*/
#define PKT_TX_MACSEC (1ULL << 44)
/**
* Bits 45:48 used for the tunnel type.
* When doing Tx offload like TSO or checksum, the HW needs to configure the
* tunnel type into the HW descriptors.
*/
#define PKT_TX_TUNNEL_VXLAN (0x1ULL << 45)
#define PKT_TX_TUNNEL_GRE (0x2ULL << 45)
#define PKT_TX_TUNNEL_IPIP (0x3ULL << 45)
#define PKT_TX_TUNNEL_GENEVE (0x4ULL << 45)
/**< TX packet with MPLS-in-UDP RFC 7510 header. */
#define PKT_TX_TUNNEL_MPLSINUDP (0x5ULL << 45)
/* add new TX TUNNEL type here */
#define PKT_TX_TUNNEL_MASK (0xFULL << 45)
/**
* Second VLAN insertion (QinQ) flag.
*/
#define PKT_TX_QINQ (1ULL << 49) /**< TX packet with double VLAN inserted. */
/* this old name is deprecated */
#define PKT_TX_QINQ_PKT PKT_TX_QINQ
/**
* TCP segmentation offload. To enable this offload feature for a
* packet to be transmitted on hardware supporting TSO:
* - set the PKT_TX_TCP_SEG flag in mbuf->ol_flags (this flag implies
* PKT_TX_TCP_CKSUM)
* - set the flag PKT_TX_IPV4 or PKT_TX_IPV6
* - if it's IPv4, set the PKT_TX_IP_CKSUM flag
* - fill the mbuf offload information: l2_len, l3_len, l4_len, tso_segsz
*/
#define PKT_TX_TCP_SEG (1ULL << 50)
#define PKT_TX_IEEE1588_TMST (1ULL << 51) /**< TX IEEE1588 packet to timestamp. */
/**
* Bits 52+53 used for L4 packet type with checksum enabled: 00: Reserved,
* 01: TCP checksum, 10: SCTP checksum, 11: UDP checksum. To use hardware
* L4 checksum offload, the user needs to:
* - fill l2_len and l3_len in mbuf
* - set the flags PKT_TX_TCP_CKSUM, PKT_TX_SCTP_CKSUM or PKT_TX_UDP_CKSUM
* - set the flag PKT_TX_IPV4 or PKT_TX_IPV6
*/
#define PKT_TX_L4_NO_CKSUM (0ULL << 52) /**< Disable L4 cksum of TX pkt. */
#define PKT_TX_TCP_CKSUM (1ULL << 52) /**< TCP cksum of TX pkt. computed by NIC. */
#define PKT_TX_SCTP_CKSUM (2ULL << 52) /**< SCTP cksum of TX pkt. computed by NIC. */
#define PKT_TX_UDP_CKSUM (3ULL << 52) /**< UDP cksum of TX pkt. computed by NIC. */
#define PKT_TX_L4_MASK (3ULL << 52) /**< Mask for L4 cksum offload request. */
/**
* Offload the IP checksum in the hardware. The flag PKT_TX_IPV4 should
* also be set by the application, although a PMD will only check
* PKT_TX_IP_CKSUM.
* - fill the mbuf offload information: l2_len, l3_len
*/
#define PKT_TX_IP_CKSUM (1ULL << 54)
/**
* Packet is IPv4. This flag must be set when using any offload feature
* (TSO, L3 or L4 checksum) to tell the NIC that the packet is an IPv4
* packet. If the packet is a tunneled packet, this flag is related to
* the inner headers.
*/
#define PKT_TX_IPV4 (1ULL << 55)
/**
* Packet is IPv6. This flag must be set when using an offload feature
* (TSO or L4 checksum) to tell the NIC that the packet is an IPv6
* packet. If the packet is a tunneled packet, this flag is related to
* the inner headers.
*/
#define PKT_TX_IPV6 (1ULL << 56)
/**
* TX packet is a 802.1q VLAN packet.
*/
#define PKT_TX_VLAN (1ULL << 57)
/* this old name is deprecated */
#define PKT_TX_VLAN_PKT PKT_TX_VLAN
/**
* Offload the IP checksum of an external header in the hardware. The
* flag PKT_TX_OUTER_IPV4 should also be set by the application, although
* a PMD will only check PKT_TX_OUTER_IP_CKSUM.
* - fill the mbuf offload information: outer_l2_len, outer_l3_len
*/
#define PKT_TX_OUTER_IP_CKSUM (1ULL << 58)
/**
* Packet outer header is IPv4. This flag must be set when using any
* outer offload feature (L3 or L4 checksum) to tell the NIC that the
* outer header of the tunneled packet is an IPv4 packet.
*/
#define PKT_TX_OUTER_IPV4 (1ULL << 59)
/**
* Packet outer header is IPv6. This flag must be set when using any
* outer offload feature (L4 checksum) to tell the NIC that the outer
* header of the tunneled packet is an IPv6 packet.
*/
#define PKT_TX_OUTER_IPV6 (1ULL << 60)
ethdev: add Tx preparation Added API for `rte_eth_tx_prepare` uint16_t rte_eth_tx_prepare(uint8_t port_id, uint16_t queue_id, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) Added fields to the `struct rte_eth_desc_lim`: uint16_t nb_seg_max; /**< Max number of segments per whole packet. */ uint16_t nb_mtu_seg_max; /**< Max number of segments per one MTU */ These fields can be used to create valid packets according to the following rules: * For non-TSO packet, a single transmit packet may span up to "nb_mtu_seg_max" buffers. * For TSO packet the total number of data descriptors is "nb_seg_max", and each segment within the TSO may span up to "nb_mtu_seg_max". Added functions: int rte_validate_tx_offload(struct rte_mbuf *m) to validate general requirements for tx offload set in mbuf of packet such a flag completness. In current implementation this function is called optionaly when RTE_LIBRTE_ETHDEV_DEBUG is enabled. int rte_net_intel_cksum_prepare(struct rte_mbuf *m) to prepare pseudo header checksum for TSO and non-TSO tcp/udp packets before hardware tx checksum offload. - for non-TSO tcp/udp packets full pseudo-header checksum is counted and set. - for TSO the IP payload length is not included. int rte_net_intel_cksum_flags_prepare(struct rte_mbuf *m, uint64_t ol_flags) this function uses same logic as rte_net_intel_cksum_prepare, but allows application to choose which offloads should be taken into account, if full preparation is not required. PERFORMANCE TESTS ----------------- This feature was tested with modified csum engine from test-pmd. The packet checksum preparation was moved from application to Tx preparation step placed before burst. We may expect some overhead costs caused by: 1) using additional callback before burst, 2) rescanning burst, 3) additional condition checking (packet validation), 4) worse optimization (e.g. packet data access, etc.) We tested it using ixgbe Tx preparation implementation with some parts disabled to have comparable information about the impact of different parts of implementation. IMPACT: 1) For unimplemented Tx preparation callback the performance impact is negligible, 2) For packet condition check without checksum modifications (nb_segs, available offloads, etc.) is 14626628/14252168 (~2.62% drop), 3) Full support in ixgbe driver (point 2 + packet checksum initialization) is 14060924/13588094 (~3.48% drop) Signed-off-by: Tomasz Kulasek <tomaszx.kulasek@intel.com> Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com> Acked-by: Olivier Matz <olivier.matz@6wind.com> Acked-by: Thomas Monjalon <thomas.monjalon@6wind.com>
2016-12-23 18:40:47 +00:00
/**
* Bitmask of all supported packet Tx offload features flags,
* which can be set for packet.
*/
#define PKT_TX_OFFLOAD_MASK ( \
PKT_TX_IP_CKSUM | \
PKT_TX_L4_MASK | \
PKT_TX_OUTER_IP_CKSUM | \
PKT_TX_TCP_SEG | \
PKT_TX_IEEE1588_TMST | \
ethdev: add Tx preparation Added API for `rte_eth_tx_prepare` uint16_t rte_eth_tx_prepare(uint8_t port_id, uint16_t queue_id, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) Added fields to the `struct rte_eth_desc_lim`: uint16_t nb_seg_max; /**< Max number of segments per whole packet. */ uint16_t nb_mtu_seg_max; /**< Max number of segments per one MTU */ These fields can be used to create valid packets according to the following rules: * For non-TSO packet, a single transmit packet may span up to "nb_mtu_seg_max" buffers. * For TSO packet the total number of data descriptors is "nb_seg_max", and each segment within the TSO may span up to "nb_mtu_seg_max". Added functions: int rte_validate_tx_offload(struct rte_mbuf *m) to validate general requirements for tx offload set in mbuf of packet such a flag completness. In current implementation this function is called optionaly when RTE_LIBRTE_ETHDEV_DEBUG is enabled. int rte_net_intel_cksum_prepare(struct rte_mbuf *m) to prepare pseudo header checksum for TSO and non-TSO tcp/udp packets before hardware tx checksum offload. - for non-TSO tcp/udp packets full pseudo-header checksum is counted and set. - for TSO the IP payload length is not included. int rte_net_intel_cksum_flags_prepare(struct rte_mbuf *m, uint64_t ol_flags) this function uses same logic as rte_net_intel_cksum_prepare, but allows application to choose which offloads should be taken into account, if full preparation is not required. PERFORMANCE TESTS ----------------- This feature was tested with modified csum engine from test-pmd. The packet checksum preparation was moved from application to Tx preparation step placed before burst. We may expect some overhead costs caused by: 1) using additional callback before burst, 2) rescanning burst, 3) additional condition checking (packet validation), 4) worse optimization (e.g. packet data access, etc.) We tested it using ixgbe Tx preparation implementation with some parts disabled to have comparable information about the impact of different parts of implementation. IMPACT: 1) For unimplemented Tx preparation callback the performance impact is negligible, 2) For packet condition check without checksum modifications (nb_segs, available offloads, etc.) is 14626628/14252168 (~2.62% drop), 3) Full support in ixgbe driver (point 2 + packet checksum initialization) is 14060924/13588094 (~3.48% drop) Signed-off-by: Tomasz Kulasek <tomaszx.kulasek@intel.com> Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com> Acked-by: Olivier Matz <olivier.matz@6wind.com> Acked-by: Thomas Monjalon <thomas.monjalon@6wind.com>
2016-12-23 18:40:47 +00:00
PKT_TX_QINQ_PKT | \
PKT_TX_VLAN_PKT | \
PKT_TX_TUNNEL_MASK | \
PKT_TX_MACSEC | \
PKT_TX_SEC_OFFLOAD)
ethdev: add Tx preparation Added API for `rte_eth_tx_prepare` uint16_t rte_eth_tx_prepare(uint8_t port_id, uint16_t queue_id, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) Added fields to the `struct rte_eth_desc_lim`: uint16_t nb_seg_max; /**< Max number of segments per whole packet. */ uint16_t nb_mtu_seg_max; /**< Max number of segments per one MTU */ These fields can be used to create valid packets according to the following rules: * For non-TSO packet, a single transmit packet may span up to "nb_mtu_seg_max" buffers. * For TSO packet the total number of data descriptors is "nb_seg_max", and each segment within the TSO may span up to "nb_mtu_seg_max". Added functions: int rte_validate_tx_offload(struct rte_mbuf *m) to validate general requirements for tx offload set in mbuf of packet such a flag completness. In current implementation this function is called optionaly when RTE_LIBRTE_ETHDEV_DEBUG is enabled. int rte_net_intel_cksum_prepare(struct rte_mbuf *m) to prepare pseudo header checksum for TSO and non-TSO tcp/udp packets before hardware tx checksum offload. - for non-TSO tcp/udp packets full pseudo-header checksum is counted and set. - for TSO the IP payload length is not included. int rte_net_intel_cksum_flags_prepare(struct rte_mbuf *m, uint64_t ol_flags) this function uses same logic as rte_net_intel_cksum_prepare, but allows application to choose which offloads should be taken into account, if full preparation is not required. PERFORMANCE TESTS ----------------- This feature was tested with modified csum engine from test-pmd. The packet checksum preparation was moved from application to Tx preparation step placed before burst. We may expect some overhead costs caused by: 1) using additional callback before burst, 2) rescanning burst, 3) additional condition checking (packet validation), 4) worse optimization (e.g. packet data access, etc.) We tested it using ixgbe Tx preparation implementation with some parts disabled to have comparable information about the impact of different parts of implementation. IMPACT: 1) For unimplemented Tx preparation callback the performance impact is negligible, 2) For packet condition check without checksum modifications (nb_segs, available offloads, etc.) is 14626628/14252168 (~2.62% drop), 3) Full support in ixgbe driver (point 2 + packet checksum initialization) is 14060924/13588094 (~3.48% drop) Signed-off-by: Tomasz Kulasek <tomaszx.kulasek@intel.com> Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com> Acked-by: Olivier Matz <olivier.matz@6wind.com> Acked-by: Thomas Monjalon <thomas.monjalon@6wind.com>
2016-12-23 18:40:47 +00:00
#define __RESERVED (1ULL << 61) /**< reserved for future mbuf use */
#define IND_ATTACHED_MBUF (1ULL << 62) /**< Indirect attached mbuf */
/** Alignment constraint of mbuf private area. */
#define RTE_MBUF_PRIV_ALIGN 8
/**
* Get the name of a RX offload flag
*
* @param mask
* The mask describing the flag.
* @return
* The name of this flag, or NULL if it's not a valid RX flag.
*/
const char *rte_get_rx_ol_flag_name(uint64_t mask);
/**
* Dump the list of RX offload flags in a buffer
*
* @param mask
* The mask describing the RX flags.
* @param buf
* The output buffer.
* @param buflen
* The length of the buffer.
* @return
* 0 on success, (-1) on error.
*/
int rte_get_rx_ol_flag_list(uint64_t mask, char *buf, size_t buflen);
/**
* Get the name of a TX offload flag
*
* @param mask
* The mask describing the flag. Usually only one bit must be set.
* Several bits can be given if they belong to the same mask.
* Ex: PKT_TX_L4_MASK.
* @return
* The name of this flag, or NULL if it's not a valid TX flag.
*/
const char *rte_get_tx_ol_flag_name(uint64_t mask);
/**
* Dump the list of TX offload flags in a buffer
*
* @param mask
* The mask describing the TX flags.
* @param buf
* The output buffer.
* @param buflen
* The length of the buffer.
* @return
* 0 on success, (-1) on error.
*/
int rte_get_tx_ol_flag_list(uint64_t mask, char *buf, size_t buflen);
/**
* Some NICs need at least 2KB buffer to RX standard Ethernet frame without
* splitting it into multiple segments.
* So, for mbufs that planned to be involved into RX/TX, the recommended
* minimal buffer length is 2KB + RTE_PKTMBUF_HEADROOM.
*/
#define RTE_MBUF_DEFAULT_DATAROOM 2048
#define RTE_MBUF_DEFAULT_BUF_SIZE \
(RTE_MBUF_DEFAULT_DATAROOM + RTE_PKTMBUF_HEADROOM)
/* define a set of marker types that can be used to refer to set points in the
* mbuf */
__extension__
typedef void *MARKER[0]; /**< generic marker for a point in a structure */
__extension__
typedef uint8_t MARKER8[0]; /**< generic marker with 1B alignment */
__extension__
typedef uint64_t MARKER64[0]; /**< marker that allows us to overwrite 8 bytes
* with a single assignment */
/**
* The generic rte_mbuf, containing a packet mbuf.
*/
struct rte_mbuf {
MARKER cacheline0;
void *buf_addr; /**< Virtual address of segment buffer. */
/**
* Physical address of segment buffer.
* Force alignment to 8-bytes, so as to ensure we have the exact
* same mbuf cacheline0 layout for 32-bit and 64-bit. This makes
* working on vector drivers easier.
*/
RTE_STD_C11
union {
rte_iova_t buf_iova;
rte_iova_t buf_physaddr; /**< deprecated */
} __rte_aligned(sizeof(rte_iova_t));
/* next 8 bytes are initialised on RX descriptor rearm */
MARKER64 rearm_data;
uint16_t data_off;
/**
* Reference counter. Its size should at least equal to the size
* of port field (16 bits), to support zero-copy broadcast.
* It should only be accessed using the following functions:
* rte_mbuf_refcnt_update(), rte_mbuf_refcnt_read(), and
* rte_mbuf_refcnt_set(). The functionality of these functions (atomic,
* or non-atomic) is controlled by the CONFIG_RTE_MBUF_REFCNT_ATOMIC
* config option.
*/
RTE_STD_C11
union {
rte_atomic16_t refcnt_atomic; /**< Atomically accessed refcnt */
uint16_t refcnt; /**< Non-atomically accessed refcnt */
};
uint16_t nb_segs; /**< Number of segments. */
/** Input port (16 bits to support more than 256 virtual ports). */
uint16_t port;
uint64_t ol_flags; /**< Offload features. */
/* remaining bytes are set on RX when pulling packet from descriptor */
MARKER rx_descriptor_fields1;
/*
* The packet type, which is the combination of outer/inner L2, L3, L4
* and tunnel types. The packet_type is about data really present in the
* mbuf. Example: if vlan stripping is enabled, a received vlan packet
* would have RTE_PTYPE_L2_ETHER and not RTE_PTYPE_L2_VLAN because the
* vlan is stripped from the data.
*/
RTE_STD_C11
union {
uint32_t packet_type; /**< L2/L3/L4 and tunnel information. */
struct {
uint32_t l2_type:4; /**< (Outer) L2 type. */
uint32_t l3_type:4; /**< (Outer) L3 type. */
uint32_t l4_type:4; /**< (Outer) L4 type. */
uint32_t tun_type:4; /**< Tunnel type. */
RTE_STD_C11
union {
uint8_t inner_esp_next_proto;
/**< ESP next protocol type, valid if
* RTE_PTYPE_TUNNEL_ESP tunnel type is set
* on both Tx and Rx.
*/
__extension__
struct {
uint8_t inner_l2_type:4;
/**< Inner L2 type. */
uint8_t inner_l3_type:4;
/**< Inner L3 type. */
};
};
uint32_t inner_l4_type:4; /**< Inner L4 type. */
};
};
uint32_t pkt_len; /**< Total pkt len: sum of all segments. */
uint16_t data_len; /**< Amount of data in segment buffer. */
/** VLAN TCI (CPU order), valid if PKT_RX_VLAN is set. */
uint16_t vlan_tci;
union {
uint32_t rss; /**< RSS hash result if RSS enabled */
struct {
RTE_STD_C11
union {
struct {
uint16_t hash;
uint16_t id;
};
uint32_t lo;
/**< Second 4 flexible bytes */
};
uint32_t hi;
/**< First 4 flexible bytes or FD ID, dependent on
PKT_RX_FDIR_* flag in ol_flags. */
} fdir; /**< Filter identifier if FDIR enabled */
struct {
uint32_t lo;
uint32_t hi;
} sched; /**< Hierarchical scheduler */
uint32_t usr; /**< User defined tags. See rte_distributor_process() */
} hash; /**< hash information */
/** Outer VLAN TCI (CPU order), valid if PKT_RX_QINQ is set. */
uint16_t vlan_tci_outer;
uint16_t buf_len; /**< Length of segment buffer. */
/** Valid if PKT_RX_TIMESTAMP is set. The unit and time reference
* are not normalized but are always the same for a given port.
*/
uint64_t timestamp;
mbuf: split mbuf across two cache lines. This change splits the mbuf in two to move the pool and next pointers to the second cache line. This frees up 16 bytes in first cache line. The reason for this change is that we believe that there is no possible way that we can ever fit all the fields we need to fit into a 64-byte mbuf, and so we need to start looking at a 128-byte mbuf instead. Examples of new fields that need to fit in, include - * 32-bits more for filter information for support for the new filters in the i40e driver (and possibly other future drivers) * an additional 2-4 bytes for storing info on a second vlan tag to allow drivers to support double Vlan/QinQ * 4-bytes for storing a sequence number to enable out of order packet processing and subsequent packet reordering as well as potentially a number of other fields or splitting out fields that are superimposed over each other right now, e.g. for the qos scheduler. We also want to allow space for use by other non-Intel NIC drivers that may be open-sourced to dpdk.org in the future too, where they support fields and offloads that currently supported hardware doesn't. If we accept the fact of a 2-cache-line mbuf, then the issue becomes how to rework things so that we spread our fields over the two cache lines while causing the lowest slow-down possible. The general approach that we are looking to take is to focus the first cache line on fields that are updated on RX , so that receive only deals with one cache line. The second cache line can be used for application data and information that will only be used on the TX leg. This would allow us to work on the first cache line in RX as now, and have the second cache line being prefetched in the background so that it is available when necessary. Hardware prefetches should help us out here. We also may move rarely used, or slow-path RX fields e.g. such as those for chained mbufs with jumbo frames, to the second cache line, depending upon the performance impact and bytes savings achieved. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com> Acked-by: Thomas Monjalon <thomas.monjalon@6wind.com>
2014-09-11 13:15:44 +00:00
/* second cache line - fields only used in slow path or on TX */
MARKER cacheline1 __rte_cache_min_aligned;
RTE_STD_C11
union {
void *userdata; /**< Can be used for external metadata */
uint64_t udata64; /**< Allow 8-byte userdata on 32-bit */
};
struct rte_mempool *pool; /**< Pool from which mbuf was allocated. */
struct rte_mbuf *next; /**< Next segment of scattered packet. */
/* fields to support TX offloads */
RTE_STD_C11
union {
uint64_t tx_offload; /**< combined for easy fetch */
__extension__
struct {
uint64_t l2_len:7;
/**< L2 (MAC) Header Length for non-tunneling pkt.
* Outer_L4_len + ... + Inner_L2_len for tunneling pkt.
*/
uint64_t l3_len:9; /**< L3 (IP) Header Length. */
uint64_t l4_len:8; /**< L4 (TCP/UDP) Header Length. */
uint64_t tso_segsz:16; /**< TCP TSO segment size */
/* fields for TX offloading of tunnels */
uint64_t outer_l3_len:9; /**< Outer L3 (IP) Hdr Length. */
uint64_t outer_l2_len:7; /**< Outer L2 (MAC) Hdr Length. */
/* uint64_t unused:8; */
};
};
/** Size of the application private data. In case of an indirect
* mbuf, it stores the direct mbuf private data size. */
uint16_t priv_size;
/** Timesync flags for use with IEEE1588. */
uint16_t timesync;
/** Sequence number. See also rte_reorder_insert(). */
uint32_t seqn;
} __rte_cache_aligned;
/**< Maximum number of nb_segs allowed. */
#define RTE_MBUF_MAX_NB_SEGS UINT16_MAX
/**
* Prefetch the first part of the mbuf
*
* The first 64 bytes of the mbuf corresponds to fields that are used early
* in the receive path. If the cache line of the architecture is higher than
* 64B, the second part will also be prefetched.
*
* @param m
* The pointer to the mbuf.
*/
static inline void
rte_mbuf_prefetch_part1(struct rte_mbuf *m)
{
rte_prefetch0(&m->cacheline0);
}
/**
* Prefetch the second part of the mbuf
*
* The next 64 bytes of the mbuf corresponds to fields that are used in the
* transmit path. If the cache line of the architecture is higher than 64B,
* this function does nothing as it is expected that the full mbuf is
* already in cache.
*
* @param m
* The pointer to the mbuf.
*/
static inline void
rte_mbuf_prefetch_part2(struct rte_mbuf *m)
{
#if RTE_CACHE_LINE_SIZE == 64
rte_prefetch0(&m->cacheline1);
#else
RTE_SET_USED(m);
#endif
}
static inline uint16_t rte_pktmbuf_priv_size(struct rte_mempool *mp);
/**
* Return the IO address of the beginning of the mbuf data
*
* @param mb
* The pointer to the mbuf.
* @return
* The IO address of the beginning of the mbuf data
*/
static inline rte_iova_t
rte_mbuf_data_iova(const struct rte_mbuf *mb)
{
return mb->buf_iova + mb->data_off;
}
__rte_deprecated
static inline phys_addr_t
rte_mbuf_data_dma_addr(const struct rte_mbuf *mb)
{
return rte_mbuf_data_iova(mb);
}
/**
* Return the default IO address of the beginning of the mbuf data
*
* This function is used by drivers in their receive function, as it
* returns the location where data should be written by the NIC, taking
* the default headroom in account.
*
* @param mb
* The pointer to the mbuf.
* @return
* The IO address of the beginning of the mbuf data
*/
static inline rte_iova_t
rte_mbuf_data_iova_default(const struct rte_mbuf *mb)
{
return mb->buf_iova + RTE_PKTMBUF_HEADROOM;
}
__rte_deprecated
static inline phys_addr_t
rte_mbuf_data_dma_addr_default(const struct rte_mbuf *mb)
{
return rte_mbuf_data_iova_default(mb);
}
/**
* Return the mbuf owning the data buffer address of an indirect mbuf.
*
* @param mi
* The pointer to the indirect mbuf.
* @return
* The address of the direct mbuf corresponding to buffer_addr.
*/
static inline struct rte_mbuf *
rte_mbuf_from_indirect(struct rte_mbuf *mi)
{
return (struct rte_mbuf *)RTE_PTR_SUB(mi->buf_addr, sizeof(*mi) + mi->priv_size);
}
/**
* Return the buffer address embedded in the given mbuf.
*
* @param md
* The pointer to the mbuf.
* @return
* The address of the data buffer owned by the mbuf.
*/
static inline char *
rte_mbuf_to_baddr(struct rte_mbuf *md)
{
char *buffer_addr;
buffer_addr = (char *)md + sizeof(*md) + rte_pktmbuf_priv_size(md->pool);
return buffer_addr;
}
/**
* Returns TRUE if given mbuf is indirect, or FALSE otherwise.
*/
#define RTE_MBUF_INDIRECT(mb) ((mb)->ol_flags & IND_ATTACHED_MBUF)
/**
* Returns TRUE if given mbuf is direct, or FALSE otherwise.
*/
#define RTE_MBUF_DIRECT(mb) (!RTE_MBUF_INDIRECT(mb))
/**
* Private data in case of pktmbuf pool.
*
* A structure that contains some pktmbuf_pool-specific data that are
* appended after the mempool structure (in private data).
*/
struct rte_pktmbuf_pool_private {
uint16_t mbuf_data_room_size; /**< Size of data space in each mbuf. */
uint16_t mbuf_priv_size; /**< Size of private area in each mbuf. */
};
#ifdef RTE_LIBRTE_MBUF_DEBUG
/** check mbuf type in debug mode */
#define __rte_mbuf_sanity_check(m, is_h) rte_mbuf_sanity_check(m, is_h)
#else /* RTE_LIBRTE_MBUF_DEBUG */
/** check mbuf type in debug mode */
#define __rte_mbuf_sanity_check(m, is_h) do { } while (0)
#endif /* RTE_LIBRTE_MBUF_DEBUG */
#ifdef RTE_MBUF_REFCNT_ATOMIC
/**
* Reads the value of an mbuf's refcnt.
* @param m
* Mbuf to read
* @return
* Reference count number.
*/
static inline uint16_t
rte_mbuf_refcnt_read(const struct rte_mbuf *m)
{
return (uint16_t)(rte_atomic16_read(&m->refcnt_atomic));
}
/**
* Sets an mbuf's refcnt to a defined value.
* @param m
* Mbuf to update
* @param new_value
* Value set
*/
static inline void
rte_mbuf_refcnt_set(struct rte_mbuf *m, uint16_t new_value)
{
rte_atomic16_set(&m->refcnt_atomic, new_value);
}
/* internal */
static inline uint16_t
__rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
{
return (uint16_t)(rte_atomic16_add_return(&m->refcnt_atomic, value));
}
/**
* Adds given value to an mbuf's refcnt and returns its new value.
* @param m
* Mbuf to update
* @param value
* Value to add/subtract
* @return
* Updated value
*/
static inline uint16_t
rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
{
/*
* The atomic_add is an expensive operation, so we don't want to
* call it in the case where we know we are the uniq holder of
* this mbuf (i.e. ref_cnt == 1). Otherwise, an atomic
* operation has to be used because concurrent accesses on the
* reference counter can occur.
*/
if (likely(rte_mbuf_refcnt_read(m) == 1)) {
rte_mbuf_refcnt_set(m, 1 + value);
return 1 + value;
}
return __rte_mbuf_refcnt_update(m, value);
}
#else /* ! RTE_MBUF_REFCNT_ATOMIC */
/* internal */
static inline uint16_t
__rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
{
m->refcnt = (uint16_t)(m->refcnt + value);
return m->refcnt;
}
/**
* Adds given value to an mbuf's refcnt and returns its new value.
*/
static inline uint16_t
rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
{
return __rte_mbuf_refcnt_update(m, value);
}
/**
* Reads the value of an mbuf's refcnt.
*/
static inline uint16_t
rte_mbuf_refcnt_read(const struct rte_mbuf *m)
{
return m->refcnt;
}
/**
* Sets an mbuf's refcnt to the defined value.
*/
static inline void
rte_mbuf_refcnt_set(struct rte_mbuf *m, uint16_t new_value)
{
m->refcnt = new_value;
}
#endif /* RTE_MBUF_REFCNT_ATOMIC */
/** Mbuf prefetch */
#define RTE_MBUF_PREFETCH_TO_FREE(m) do { \
if ((m) != NULL) \
rte_prefetch0(m); \
} while (0)
/**
* Sanity checks on an mbuf.
*
* Check the consistency of the given mbuf. The function will cause a
* panic if corruption is detected.
*
* @param m
* The mbuf to be checked.
* @param is_header
* True if the mbuf is a packet header, false if it is a sub-segment
* of a packet (in this case, some fields like nb_segs are not checked)
*/
void
rte_mbuf_sanity_check(const struct rte_mbuf *m, int is_header);
#define MBUF_RAW_ALLOC_CHECK(m) do { \
RTE_ASSERT(rte_mbuf_refcnt_read(m) == 1); \
RTE_ASSERT((m)->next == NULL); \
RTE_ASSERT((m)->nb_segs == 1); \
__rte_mbuf_sanity_check(m, 0); \
} while (0)
/**
* Allocate an uninitialized mbuf from mempool *mp*.
*
* This function can be used by PMDs (especially in RX functions) to
* allocate an uninitialized mbuf. The driver is responsible of
* initializing all the required fields. See rte_pktmbuf_reset().
* For standard needs, prefer rte_pktmbuf_alloc().
*
* The caller can expect that the following fields of the mbuf structure
* are initialized: buf_addr, buf_iova, buf_len, refcnt=1, nb_segs=1,
* next=NULL, pool, priv_size. The other fields must be initialized
* by the caller.
*
* @param mp
* The mempool from which mbuf is allocated.
* @return
* - The pointer to the new mbuf on success.
* - NULL if allocation failed.
*/
static inline struct rte_mbuf *rte_mbuf_raw_alloc(struct rte_mempool *mp)
{
struct rte_mbuf *m;
if (rte_mempool_get(mp, (void **)&m) < 0)
return NULL;
MBUF_RAW_ALLOC_CHECK(m);
return m;
}
/**
* Put mbuf back into its original mempool.
*
* The caller must ensure that the mbuf is direct and properly
* reinitialized (refcnt=1, next=NULL, nb_segs=1), as done by
* rte_pktmbuf_prefree_seg().
*
* This function should be used with care, when optimization is
* required. For standard needs, prefer rte_pktmbuf_free() or
* rte_pktmbuf_free_seg().
*
* @param m
* The mbuf to be freed.
*/
static __rte_always_inline void
rte_mbuf_raw_free(struct rte_mbuf *m)
{
RTE_ASSERT(RTE_MBUF_DIRECT(m));
RTE_ASSERT(rte_mbuf_refcnt_read(m) == 1);
RTE_ASSERT(m->next == NULL);
RTE_ASSERT(m->nb_segs == 1);
__rte_mbuf_sanity_check(m, 0);
rte_mempool_put(m->pool, m);
}
/* compat with older versions */
__rte_deprecated
static inline void
__rte_mbuf_raw_free(struct rte_mbuf *m)
{
rte_mbuf_raw_free(m);
}
/**
* The packet mbuf constructor.
*
* This function initializes some fields in the mbuf structure that are
* not modified by the user once created (origin pool, buffer start
* address, and so on). This function is given as a callback function to
* rte_mempool_obj_iter() or rte_mempool_create() at pool creation time.
*
* @param mp
* The mempool from which mbufs originate.
* @param opaque_arg
* A pointer that can be used by the user to retrieve useful information
* for mbuf initialization. This pointer is the opaque argument passed to
* rte_mempool_obj_iter() or rte_mempool_create().
* @param m
* The mbuf to initialize.
* @param i
* The index of the mbuf in the pool table.
*/
void rte_pktmbuf_init(struct rte_mempool *mp, void *opaque_arg,
void *m, unsigned i);
/**
* A packet mbuf pool constructor.
*
* This function initializes the mempool private data in the case of a
* pktmbuf pool. This private data is needed by the driver. The
* function must be called on the mempool before it is used, or it
* can be given as a callback function to rte_mempool_create() at
* pool creation. It can be extended by the user, for example, to
* provide another packet size.
*
* @param mp
* The mempool from which mbufs originate.
* @param opaque_arg
* A pointer that can be used by the user to retrieve useful information
* for mbuf initialization. This pointer is the opaque argument passed to
* rte_mempool_create().
*/
void rte_pktmbuf_pool_init(struct rte_mempool *mp, void *opaque_arg);
/**
* Create a mbuf pool.
*
* This function creates and initializes a packet mbuf pool. It is
* a wrapper to rte_mempool functions.
*
* @param name
* The name of the mbuf pool.
* @param n
* The number of elements in the mbuf pool. The optimum size (in terms
* of memory usage) for a mempool is when n is a power of two minus one:
* n = (2^q - 1).
* @param cache_size
* Size of the per-core object cache. See rte_mempool_create() for
* details.
* @param priv_size
* Size of application private are between the rte_mbuf structure
* and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN.
* @param data_room_size
* Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM.
* @param socket_id
* The socket identifier where the memory should be allocated. The
* value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the
* reserved zone.
* @return
* The pointer to the new allocated mempool, on success. NULL on error
* with rte_errno set appropriately. Possible rte_errno values include:
* - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
* - E_RTE_SECONDARY - function was called from a secondary process instance
* - EINVAL - cache size provided is too large, or priv_size is not aligned.
* - ENOSPC - the maximum number of memzones has already been allocated
* - EEXIST - a memzone with the same name already exists
* - ENOMEM - no appropriate memory area found in which to create memzone
*/
struct rte_mempool *
rte_pktmbuf_pool_create(const char *name, unsigned n,
unsigned cache_size, uint16_t priv_size, uint16_t data_room_size,
int socket_id);
/**
* Create a mbuf pool with a given mempool ops name
*
* This function creates and initializes a packet mbuf pool. It is
* a wrapper to rte_mempool functions.
*
* @param name
* The name of the mbuf pool.
* @param n
* The number of elements in the mbuf pool. The optimum size (in terms
* of memory usage) for a mempool is when n is a power of two minus one:
* n = (2^q - 1).
* @param cache_size
* Size of the per-core object cache. See rte_mempool_create() for
* details.
* @param priv_size
* Size of application private are between the rte_mbuf structure
* and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN.
* @param data_room_size
* Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM.
* @param socket_id
* The socket identifier where the memory should be allocated. The
* value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the
* reserved zone.
* @param ops_name
* The mempool ops name to be used for this mempool instead of
* default mempool. The value can be *NULL* to use default mempool.
* @return
* The pointer to the new allocated mempool, on success. NULL on error
* with rte_errno set appropriately. Possible rte_errno values include:
* - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
* - E_RTE_SECONDARY - function was called from a secondary process instance
* - EINVAL - cache size provided is too large, or priv_size is not aligned.
* - ENOSPC - the maximum number of memzones has already been allocated
* - EEXIST - a memzone with the same name already exists
* - ENOMEM - no appropriate memory area found in which to create memzone
*/
struct rte_mempool * __rte_experimental
rte_pktmbuf_pool_create_by_ops(const char *name, unsigned int n,
unsigned int cache_size, uint16_t priv_size, uint16_t data_room_size,
int socket_id, const char *ops_name);
/**
* Get the data room size of mbufs stored in a pktmbuf_pool
*
* The data room size is the amount of data that can be stored in a
* mbuf including the headroom (RTE_PKTMBUF_HEADROOM).
*
* @param mp
* The packet mbuf pool.
* @return
* The data room size of mbufs stored in this mempool.
*/
static inline uint16_t
rte_pktmbuf_data_room_size(struct rte_mempool *mp)
{
struct rte_pktmbuf_pool_private *mbp_priv;
mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
return mbp_priv->mbuf_data_room_size;
}
/**
* Get the application private size of mbufs stored in a pktmbuf_pool
*
* The private size of mbuf is a zone located between the rte_mbuf
* structure and the data buffer where an application can store data
* associated to a packet.
*
* @param mp
* The packet mbuf pool.
* @return
* The private size of mbufs stored in this mempool.
*/
static inline uint16_t
rte_pktmbuf_priv_size(struct rte_mempool *mp)
{
struct rte_pktmbuf_pool_private *mbp_priv;
mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
return mbp_priv->mbuf_priv_size;
}
/**
* Reset the data_off field of a packet mbuf to its default value.
*
* The given mbuf must have only one segment, which should be empty.
*
* @param m
* The packet mbuf's data_off field has to be reset.
*/
static inline void rte_pktmbuf_reset_headroom(struct rte_mbuf *m)
{
m->data_off = RTE_MIN(RTE_PKTMBUF_HEADROOM, (uint16_t)m->buf_len);
}
/**
* Reset the fields of a packet mbuf to their default values.
*
* The given mbuf must have only one segment.
*
* @param m
* The packet mbuf to be resetted.
*/
#define MBUF_INVALID_PORT UINT16_MAX
static inline void rte_pktmbuf_reset(struct rte_mbuf *m)
{
m->next = NULL;
m->pkt_len = 0;
m->tx_offload = 0;
mbuf: flatten struct vlan_macip The vlan_macip structure combined a vlan tag id with l2 and l3 headers lengths for tracking offloads. However, this structure was only used as a unit by the e1000 and ixgbe drivers, not generally. This patch removes the structure from the mbuf header and places the fields into the mbuf structure directly at the required point, without any net effect on the structure layout. This allows us to treat the vlan tags and header length fields as separate for future mbuf changes. The drivers which were written to use the combined structure still do so, using a driver-local definition of it. Reduce perf regression caused by splitting vlan_macip field. This is done by providing a single uint16_t value to allow writing/clearing the l2 and l3 lengths together. There is still a small perf hit to the slow path TX due to the reads from vlan_tci and l2/l3 lengths being separated. (<5% in my tests with testpmd with no extra params). Unfortunately, this cannot be eliminated, without restoring the vlan tags and l2/l3 lengths as a combined 32-bit field. This would prevent us from ever looking to move those fields about and is an artificial tie that applies only for performance in igb and ixgbe drivers. Therefore, this patch keeps the vlan_tci field separate from the lengths as the best solution going forward. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com> Acked-by: Olivier Matz <olivier.matz@6wind.com> Acked-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
2014-09-09 14:40:56 +00:00
m->vlan_tci = 0;
m->vlan_tci_outer = 0;
m->nb_segs = 1;
m->port = MBUF_INVALID_PORT;
m->ol_flags = 0;
m->packet_type = 0;
rte_pktmbuf_reset_headroom(m);
m->data_len = 0;
__rte_mbuf_sanity_check(m, 1);
}
/**
* Allocate a new mbuf from a mempool.
*
* This new mbuf contains one segment, which has a length of 0. The pointer
* to data is initialized to have some bytes of headroom in the buffer
* (if buffer size allows).
*
* @param mp
* The mempool from which the mbuf is allocated.
* @return
* - The pointer to the new mbuf on success.
* - NULL if allocation failed.
*/
static inline struct rte_mbuf *rte_pktmbuf_alloc(struct rte_mempool *mp)
{
struct rte_mbuf *m;
if ((m = rte_mbuf_raw_alloc(mp)) != NULL)
rte_pktmbuf_reset(m);
return m;
}
/**
* Allocate a bulk of mbufs, initialize refcnt and reset the fields to default
* values.
*
* @param pool
* The mempool from which mbufs are allocated.
* @param mbufs
* Array of pointers to mbufs
* @param count
* Array size
* @return
* - 0: Success
* - -ENOENT: Not enough entries in the mempool; no mbufs are retrieved.
*/
static inline int rte_pktmbuf_alloc_bulk(struct rte_mempool *pool,
struct rte_mbuf **mbufs, unsigned count)
{
unsigned idx = 0;
int rc;
rc = rte_mempool_get_bulk(pool, (void **)mbufs, count);
if (unlikely(rc))
return rc;
/* To understand duff's device on loop unwinding optimization, see
* https://en.wikipedia.org/wiki/Duff's_device.
* Here while() loop is used rather than do() while{} to avoid extra
* check if count is zero.
*/
switch (count % 4) {
case 0:
while (idx != count) {
MBUF_RAW_ALLOC_CHECK(mbufs[idx]);
rte_pktmbuf_reset(mbufs[idx]);
idx++;
/* fall-through */
case 3:
MBUF_RAW_ALLOC_CHECK(mbufs[idx]);
rte_pktmbuf_reset(mbufs[idx]);
idx++;
/* fall-through */
case 2:
MBUF_RAW_ALLOC_CHECK(mbufs[idx]);
rte_pktmbuf_reset(mbufs[idx]);
idx++;
/* fall-through */
case 1:
MBUF_RAW_ALLOC_CHECK(mbufs[idx]);
rte_pktmbuf_reset(mbufs[idx]);
idx++;
/* fall-through */
}
}
return 0;
}
/**
* Attach packet mbuf to another packet mbuf.
*
* After attachment we refer the mbuf we attached as 'indirect',
* while mbuf we attached to as 'direct'.
* The direct mbuf's reference counter is incremented.
*
* Right now, not supported:
* - attachment for already indirect mbuf (e.g. - mi has to be direct).
* - mbuf we trying to attach (mi) is used by someone else
* e.g. it's reference counter is greater then 1.
*
* @param mi
* The indirect packet mbuf.
* @param m
* The packet mbuf we're attaching to.
*/
static inline void rte_pktmbuf_attach(struct rte_mbuf *mi, struct rte_mbuf *m)
{
struct rte_mbuf *md;
RTE_ASSERT(RTE_MBUF_DIRECT(mi) &&
rte_mbuf_refcnt_read(mi) == 1);
/* if m is not direct, get the mbuf that embeds the data */
if (RTE_MBUF_DIRECT(m))
md = m;
else
md = rte_mbuf_from_indirect(m);
rte_mbuf_refcnt_update(md, 1);
mi->priv_size = m->priv_size;
mi->buf_iova = m->buf_iova;
mi->buf_addr = m->buf_addr;
mi->buf_len = m->buf_len;
mi->data_off = m->data_off;
mi->data_len = m->data_len;
mi->port = m->port;
mi->vlan_tci = m->vlan_tci;
mi->vlan_tci_outer = m->vlan_tci_outer;
mi->tx_offload = m->tx_offload;
mi->hash = m->hash;
mi->next = NULL;
mi->pkt_len = mi->data_len;
mi->nb_segs = 1;
mi->ol_flags = m->ol_flags | IND_ATTACHED_MBUF;
mi->packet_type = m->packet_type;
mi->timestamp = m->timestamp;
__rte_mbuf_sanity_check(mi, 1);
__rte_mbuf_sanity_check(m, 0);
}
/**
* Detach an indirect packet mbuf.
*
* - restore original mbuf address and length values.
* - reset pktmbuf data and data_len to their default values.
* - decrement the direct mbuf's reference counter. When the
* reference counter becomes 0, the direct mbuf is freed.
*
* All other fields of the given packet mbuf will be left intact.
*
* @param m
* The indirect attached packet mbuf.
*/
static inline void rte_pktmbuf_detach(struct rte_mbuf *m)
{
struct rte_mbuf *md = rte_mbuf_from_indirect(m);
struct rte_mempool *mp = m->pool;
uint32_t mbuf_size, buf_len, priv_size;
priv_size = rte_pktmbuf_priv_size(mp);
mbuf_size = sizeof(struct rte_mbuf) + priv_size;
buf_len = rte_pktmbuf_data_room_size(mp);
m->priv_size = priv_size;
m->buf_addr = (char *)m + mbuf_size;
m->buf_iova = rte_mempool_virt2iova(m) + mbuf_size;
m->buf_len = (uint16_t)buf_len;
rte_pktmbuf_reset_headroom(m);
m->data_len = 0;
m->ol_flags = 0;
if (rte_mbuf_refcnt_update(md, -1) == 0) {
md->next = NULL;
md->nb_segs = 1;
rte_mbuf_refcnt_set(md, 1);
rte_mbuf_raw_free(md);
}
}
/**
* Decrease reference counter and unlink a mbuf segment
*
* This function does the same than a free, except that it does not
* return the segment to its pool.
* It decreases the reference counter, and if it reaches 0, it is
* detached from its parent for an indirect mbuf.
*
* @param m
* The mbuf to be unlinked
* @return
* - (m) if it is the last reference. It can be recycled or freed.
* - (NULL) if the mbuf still has remaining references on it.
*/
static __rte_always_inline struct rte_mbuf *
rte_pktmbuf_prefree_seg(struct rte_mbuf *m)
{
__rte_mbuf_sanity_check(m, 0);
if (likely(rte_mbuf_refcnt_read(m) == 1)) {
if (RTE_MBUF_INDIRECT(m))
rte_pktmbuf_detach(m);
if (m->next != NULL) {
m->next = NULL;
m->nb_segs = 1;
}
return m;
} else if (__rte_mbuf_refcnt_update(m, -1) == 0) {
if (RTE_MBUF_INDIRECT(m))
rte_pktmbuf_detach(m);
if (m->next != NULL) {
m->next = NULL;
m->nb_segs = 1;
}
rte_mbuf_refcnt_set(m, 1);
return m;
}
return NULL;
}
/* deprecated, replaced by rte_pktmbuf_prefree_seg() */
__rte_deprecated
static inline struct rte_mbuf *
__rte_pktmbuf_prefree_seg(struct rte_mbuf *m)
{
return rte_pktmbuf_prefree_seg(m);
}
/**
* Free a segment of a packet mbuf into its original mempool.
*
* Free an mbuf, without parsing other segments in case of chained
* buffers.
*
* @param m
* The packet mbuf segment to be freed.
*/
static __rte_always_inline void
rte_pktmbuf_free_seg(struct rte_mbuf *m)
{
m = rte_pktmbuf_prefree_seg(m);
if (likely(m != NULL))
rte_mbuf_raw_free(m);
}
/**
* Free a packet mbuf back into its original mempool.
*
* Free an mbuf, and all its segments in case of chained buffers. Each
* segment is added back into its original mempool.
*
* @param m
* The packet mbuf to be freed. If NULL, the function does nothing.
*/
static inline void rte_pktmbuf_free(struct rte_mbuf *m)
{
struct rte_mbuf *m_next;
if (m != NULL)
__rte_mbuf_sanity_check(m, 1);
while (m != NULL) {
m_next = m->next;
rte_pktmbuf_free_seg(m);
m = m_next;
}
}
/**
* Creates a "clone" of the given packet mbuf.
*
* Walks through all segments of the given packet mbuf, and for each of them:
* - Creates a new packet mbuf from the given pool.
* - Attaches newly created mbuf to the segment.
* Then updates pkt_len and nb_segs of the "clone" packet mbuf to match values
* from the original packet mbuf.
*
* @param md
* The packet mbuf to be cloned.
* @param mp
* The mempool from which the "clone" mbufs are allocated.
* @return
* - The pointer to the new "clone" mbuf on success.
* - NULL if allocation fails.
*/
static inline struct rte_mbuf *rte_pktmbuf_clone(struct rte_mbuf *md,
struct rte_mempool *mp)
{
struct rte_mbuf *mc, *mi, **prev;
uint32_t pktlen;
uint16_t nseg;
if (unlikely ((mc = rte_pktmbuf_alloc(mp)) == NULL))
return NULL;
mi = mc;
prev = &mi->next;
pktlen = md->pkt_len;
nseg = 0;
do {
nseg++;
rte_pktmbuf_attach(mi, md);
*prev = mi;
prev = &mi->next;
} while ((md = md->next) != NULL &&
(mi = rte_pktmbuf_alloc(mp)) != NULL);
*prev = NULL;
mc->nb_segs = nseg;
mc->pkt_len = pktlen;
/* Allocation of new indirect segment failed */
if (unlikely (mi == NULL)) {
rte_pktmbuf_free(mc);
return NULL;
}
__rte_mbuf_sanity_check(mc, 1);
return mc;
}
/**
* Adds given value to the refcnt of all packet mbuf segments.
*
* Walks through all segments of given packet mbuf and for each of them
* invokes rte_mbuf_refcnt_update().
*
* @param m
* The packet mbuf whose refcnt to be updated.
* @param v
* The value to add to the mbuf's segments refcnt.
*/
static inline void rte_pktmbuf_refcnt_update(struct rte_mbuf *m, int16_t v)
{
__rte_mbuf_sanity_check(m, 1);
do {
rte_mbuf_refcnt_update(m, v);
} while ((m = m->next) != NULL);
}
/**
* Get the headroom in a packet mbuf.
*
* @param m
* The packet mbuf.
* @return
* The length of the headroom.
*/
static inline uint16_t rte_pktmbuf_headroom(const struct rte_mbuf *m)
{
__rte_mbuf_sanity_check(m, 0);
return m->data_off;
}
/**
* Get the tailroom of a packet mbuf.
*
* @param m
* The packet mbuf.
* @return
* The length of the tailroom.
*/
static inline uint16_t rte_pktmbuf_tailroom(const struct rte_mbuf *m)
{
__rte_mbuf_sanity_check(m, 0);
return (uint16_t)(m->buf_len - rte_pktmbuf_headroom(m) -
m->data_len);
}
/**
* Get the last segment of the packet.
*
* @param m
* The packet mbuf.
* @return
* The last segment of the given mbuf.
*/
static inline struct rte_mbuf *rte_pktmbuf_lastseg(struct rte_mbuf *m)
{
__rte_mbuf_sanity_check(m, 1);
while (m->next != NULL)
m = m->next;
return m;
}
/**
* A macro that points to an offset into the data in the mbuf.
*
* The returned pointer is cast to type t. Before using this
* function, the user must ensure that the first segment is large
* enough to accommodate its data.
*
* @param m
* The packet mbuf.
* @param o
* The offset into the mbuf data.
* @param t
* The type to cast the result into.
*/
#define rte_pktmbuf_mtod_offset(m, t, o) \
((t)((char *)(m)->buf_addr + (m)->data_off + (o)))
/**
* A macro that points to the start of the data in the mbuf.
*
* The returned pointer is cast to type t. Before using this
* function, the user must ensure that the first segment is large
* enough to accommodate its data.
*
* @param m
* The packet mbuf.
* @param t
* The type to cast the result into.
*/
#define rte_pktmbuf_mtod(m, t) rte_pktmbuf_mtod_offset(m, t, 0)
/**
* A macro that returns the IO address that points to an offset of the
* start of the data in the mbuf
*
* @param m
* The packet mbuf.
* @param o
* The offset into the data to calculate address from.
*/
#define rte_pktmbuf_iova_offset(m, o) \
(rte_iova_t)((m)->buf_iova + (m)->data_off + (o))
/* deprecated */
#define rte_pktmbuf_mtophys_offset(m, o) \
rte_pktmbuf_iova_offset(m, o)
/**
* A macro that returns the IO address that points to the start of the
* data in the mbuf
*
* @param m
* The packet mbuf.
*/
#define rte_pktmbuf_iova(m) rte_pktmbuf_iova_offset(m, 0)
/* deprecated */
#define rte_pktmbuf_mtophys(m) rte_pktmbuf_iova(m)
/**
* A macro that returns the length of the packet.
*
* The value can be read or assigned.
*
* @param m
* The packet mbuf.
*/
#define rte_pktmbuf_pkt_len(m) ((m)->pkt_len)
/**
* A macro that returns the length of the segment.
*
* The value can be read or assigned.
*
* @param m
* The packet mbuf.
*/
#define rte_pktmbuf_data_len(m) ((m)->data_len)
/**
* Prepend len bytes to an mbuf data area.
*
* Returns a pointer to the new
* data start address. If there is not enough headroom in the first
* segment, the function will return NULL, without modifying the mbuf.
*
* @param m
* The pkt mbuf.
* @param len
* The amount of data to prepend (in bytes).
* @return
* A pointer to the start of the newly prepended data, or
* NULL if there is not enough headroom space in the first segment
*/
static inline char *rte_pktmbuf_prepend(struct rte_mbuf *m,
uint16_t len)
{
__rte_mbuf_sanity_check(m, 1);
if (unlikely(len > rte_pktmbuf_headroom(m)))
return NULL;
m->data_off -= len;
m->data_len = (uint16_t)(m->data_len + len);
m->pkt_len = (m->pkt_len + len);
return (char *)m->buf_addr + m->data_off;
}
/**
* Append len bytes to an mbuf.
*
* Append len bytes to an mbuf and return a pointer to the start address
* of the added data. If there is not enough tailroom in the last
* segment, the function will return NULL, without modifying the mbuf.
*
* @param m
* The packet mbuf.
* @param len
* The amount of data to append (in bytes).
* @return
* A pointer to the start of the newly appended data, or
* NULL if there is not enough tailroom space in the last segment
*/
static inline char *rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len)
{
void *tail;
struct rte_mbuf *m_last;
__rte_mbuf_sanity_check(m, 1);
m_last = rte_pktmbuf_lastseg(m);
if (unlikely(len > rte_pktmbuf_tailroom(m_last)))
return NULL;
tail = (char *)m_last->buf_addr + m_last->data_off + m_last->data_len;
m_last->data_len = (uint16_t)(m_last->data_len + len);
m->pkt_len = (m->pkt_len + len);
return (char*) tail;
}
/**
* Remove len bytes at the beginning of an mbuf.
*
* Returns a pointer to the start address of the new data area. If the
* length is greater than the length of the first segment, then the
* function will fail and return NULL, without modifying the mbuf.
*
* @param m
* The packet mbuf.
* @param len
* The amount of data to remove (in bytes).
* @return
* A pointer to the new start of the data.
*/
static inline char *rte_pktmbuf_adj(struct rte_mbuf *m, uint16_t len)
{
__rte_mbuf_sanity_check(m, 1);
if (unlikely(len > m->data_len))
return NULL;
m->data_len = (uint16_t)(m->data_len - len);
m->data_off += len;
m->pkt_len = (m->pkt_len - len);
return (char *)m->buf_addr + m->data_off;
}
/**
* Remove len bytes of data at the end of the mbuf.
*
* If the length is greater than the length of the last segment, the
* function will fail and return -1 without modifying the mbuf.
*
* @param m
* The packet mbuf.
* @param len
* The amount of data to remove (in bytes).
* @return
* - 0: On success.
* - -1: On error.
*/
static inline int rte_pktmbuf_trim(struct rte_mbuf *m, uint16_t len)
{
struct rte_mbuf *m_last;
__rte_mbuf_sanity_check(m, 1);
m_last = rte_pktmbuf_lastseg(m);
if (unlikely(len > m_last->data_len))
return -1;
m_last->data_len = (uint16_t)(m_last->data_len - len);
m->pkt_len = (m->pkt_len - len);
return 0;
}
/**
* Test if mbuf data is contiguous.
*
* @param m
* The packet mbuf.
* @return
* - 1, if all data is contiguous (one segment).
* - 0, if there is several segments.
*/
static inline int rte_pktmbuf_is_contiguous(const struct rte_mbuf *m)
{
__rte_mbuf_sanity_check(m, 1);
return !!(m->nb_segs == 1);
}
/**
* @internal used by rte_pktmbuf_read().
*/
const void *__rte_pktmbuf_read(const struct rte_mbuf *m, uint32_t off,
uint32_t len, void *buf);
/**
* Read len data bytes in a mbuf at specified offset.
*
* If the data is contiguous, return the pointer in the mbuf data, else
* copy the data in the buffer provided by the user and return its
* pointer.
*
* @param m
* The pointer to the mbuf.
* @param off
* The offset of the data in the mbuf.
* @param len
* The amount of bytes to read.
* @param buf
* The buffer where data is copied if it is not contiguous in mbuf
* data. Its length should be at least equal to the len parameter.
* @return
* The pointer to the data, either in the mbuf if it is contiguous,
* or in the user buffer. If mbuf is too small, NULL is returned.
*/
static inline const void *rte_pktmbuf_read(const struct rte_mbuf *m,
uint32_t off, uint32_t len, void *buf)
{
if (likely(off + len <= rte_pktmbuf_data_len(m)))
return rte_pktmbuf_mtod_offset(m, char *, off);
else
return __rte_pktmbuf_read(m, off, len, buf);
}
/**
* Chain an mbuf to another, thereby creating a segmented packet.
*
* Note: The implementation will do a linear walk over the segments to find
* the tail entry. For cases when there are many segments, it's better to
* chain the entries manually.
*
* @param head
* The head of the mbuf chain (the first packet)
* @param tail
* The mbuf to put last in the chain
*
* @return
* - 0, on success.
* - -EOVERFLOW, if the chain segment limit exceeded
*/
static inline int rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail)
{
struct rte_mbuf *cur_tail;
/* Check for number-of-segments-overflow */
if (head->nb_segs + tail->nb_segs > RTE_MBUF_MAX_NB_SEGS)
return -EOVERFLOW;
/* Chain 'tail' onto the old tail */
cur_tail = rte_pktmbuf_lastseg(head);
cur_tail->next = tail;
/* accumulate number of segments and total length. */
head->nb_segs += tail->nb_segs;
head->pkt_len += tail->pkt_len;
/* pkt_len is only set in the head */
tail->pkt_len = tail->data_len;
return 0;
}
ethdev: add Tx preparation Added API for `rte_eth_tx_prepare` uint16_t rte_eth_tx_prepare(uint8_t port_id, uint16_t queue_id, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) Added fields to the `struct rte_eth_desc_lim`: uint16_t nb_seg_max; /**< Max number of segments per whole packet. */ uint16_t nb_mtu_seg_max; /**< Max number of segments per one MTU */ These fields can be used to create valid packets according to the following rules: * For non-TSO packet, a single transmit packet may span up to "nb_mtu_seg_max" buffers. * For TSO packet the total number of data descriptors is "nb_seg_max", and each segment within the TSO may span up to "nb_mtu_seg_max". Added functions: int rte_validate_tx_offload(struct rte_mbuf *m) to validate general requirements for tx offload set in mbuf of packet such a flag completness. In current implementation this function is called optionaly when RTE_LIBRTE_ETHDEV_DEBUG is enabled. int rte_net_intel_cksum_prepare(struct rte_mbuf *m) to prepare pseudo header checksum for TSO and non-TSO tcp/udp packets before hardware tx checksum offload. - for non-TSO tcp/udp packets full pseudo-header checksum is counted and set. - for TSO the IP payload length is not included. int rte_net_intel_cksum_flags_prepare(struct rte_mbuf *m, uint64_t ol_flags) this function uses same logic as rte_net_intel_cksum_prepare, but allows application to choose which offloads should be taken into account, if full preparation is not required. PERFORMANCE TESTS ----------------- This feature was tested with modified csum engine from test-pmd. The packet checksum preparation was moved from application to Tx preparation step placed before burst. We may expect some overhead costs caused by: 1) using additional callback before burst, 2) rescanning burst, 3) additional condition checking (packet validation), 4) worse optimization (e.g. packet data access, etc.) We tested it using ixgbe Tx preparation implementation with some parts disabled to have comparable information about the impact of different parts of implementation. IMPACT: 1) For unimplemented Tx preparation callback the performance impact is negligible, 2) For packet condition check without checksum modifications (nb_segs, available offloads, etc.) is 14626628/14252168 (~2.62% drop), 3) Full support in ixgbe driver (point 2 + packet checksum initialization) is 14060924/13588094 (~3.48% drop) Signed-off-by: Tomasz Kulasek <tomaszx.kulasek@intel.com> Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com> Acked-by: Olivier Matz <olivier.matz@6wind.com> Acked-by: Thomas Monjalon <thomas.monjalon@6wind.com>
2016-12-23 18:40:47 +00:00
/**
* Validate general requirements for Tx offload in mbuf.
*
* This function checks correctness and completeness of Tx offload settings.
*
* @param m
* The packet mbuf to be validated.
* @return
* 0 if packet is valid
*/
static inline int
rte_validate_tx_offload(const struct rte_mbuf *m)
{
uint64_t ol_flags = m->ol_flags;
uint64_t inner_l3_offset = m->l2_len;
/* Does packet set any of available offloads? */
if (!(ol_flags & PKT_TX_OFFLOAD_MASK))
return 0;
if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
inner_l3_offset += m->outer_l2_len + m->outer_l3_len;
/* Headers are fragmented */
if (rte_pktmbuf_data_len(m) < inner_l3_offset + m->l3_len + m->l4_len)
return -ENOTSUP;
/* IP checksum can be counted only for IPv4 packet */
if ((ol_flags & PKT_TX_IP_CKSUM) && (ol_flags & PKT_TX_IPV6))
return -EINVAL;
/* IP type not set when required */
if (ol_flags & (PKT_TX_L4_MASK | PKT_TX_TCP_SEG))
if (!(ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)))
return -EINVAL;
/* Check requirements for TSO packet */
if (ol_flags & PKT_TX_TCP_SEG)
if ((m->tso_segsz == 0) ||
((ol_flags & PKT_TX_IPV4) &&
!(ol_flags & PKT_TX_IP_CKSUM)))
return -EINVAL;
/* PKT_TX_OUTER_IP_CKSUM set for non outer IPv4 packet. */
if ((ol_flags & PKT_TX_OUTER_IP_CKSUM) &&
!(ol_flags & PKT_TX_OUTER_IPV4))
return -EINVAL;
return 0;
}
/**
* Linearize data in mbuf.
*
* This function moves the mbuf data in the first segment if there is enough
* tailroom. The subsequent segments are unchained and freed.
*
* @param mbuf
* mbuf to linearize
* @return
* - 0, on success
* - -1, on error
*/
static inline int
rte_pktmbuf_linearize(struct rte_mbuf *mbuf)
{
int seg_len, copy_len;
struct rte_mbuf *m;
struct rte_mbuf *m_next;
char *buffer;
if (rte_pktmbuf_is_contiguous(mbuf))
return 0;
/* Extend first segment to the total packet length */
copy_len = rte_pktmbuf_pkt_len(mbuf) - rte_pktmbuf_data_len(mbuf);
if (unlikely(copy_len > rte_pktmbuf_tailroom(mbuf)))
return -1;
buffer = rte_pktmbuf_mtod_offset(mbuf, char *, mbuf->data_len);
mbuf->data_len = (uint16_t)(mbuf->pkt_len);
/* Append data from next segments to the first one */
m = mbuf->next;
while (m != NULL) {
m_next = m->next;
seg_len = rte_pktmbuf_data_len(m);
rte_memcpy(buffer, rte_pktmbuf_mtod(m, char *), seg_len);
buffer += seg_len;
rte_pktmbuf_free_seg(m);
m = m_next;
}
mbuf->next = NULL;
mbuf->nb_segs = 1;
return 0;
}
/**
* Dump an mbuf structure to a file.
*
* Dump all fields for the given packet mbuf and all its associated
* segments (in the case of a chained buffer).
*
* @param f
* A pointer to a file for output
* @param m
* The packet mbuf.
* @param dump_len
* If dump_len != 0, also dump the "dump_len" first data bytes of
* the packet.
*/
void rte_pktmbuf_dump(FILE *f, const struct rte_mbuf *m, unsigned dump_len);
#ifdef __cplusplus
}
#endif
#endif /* _RTE_MBUF_H_ */