numam-dpdk/drivers/net/hns3/hns3_regs.c
Chengchang Tang fa29fe45a7 net/hns3: support queue start and stop
The new generation hns3 network engine supports independent enabling and
disabling of a single Tx/Rx queue. So, it can support the queue start
and stop feature. In addition, when different numbers of Tx and Rx
queues need to be enabled in some applications, hns3 pmd does not need
to create fake queues to enable these scenarios.

This patch Add queue start and stop feature for the new generation hns3
networking engine. Cancel the creation of fake queue on the new
generation network engine. And the previously improperly named queue
related function was renamed to improve readability.

Signed-off-by: Chengchang Tang <tangchengchang@huawei.com>
Signed-off-by: Wei Hu (Xavier) <xavier.huwei@huawei.com>
2020-10-08 19:58:10 +02:00

378 lines
9.7 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018-2019 Hisilicon Limited.
*/
#include <errno.h>
#include <stdarg.h>
#include <stdbool.h>
#include <string.h>
#include <stdint.h>
#include <stdio.h>
#include <inttypes.h>
#include <unistd.h>
#include <rte_bus_pci.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_dev.h>
#include <rte_eal.h>
#include <rte_ether.h>
#include <rte_ethdev_driver.h>
#include <rte_ethdev_pci.h>
#include <rte_io.h>
#include <rte_pci.h>
#include "hns3_ethdev.h"
#include "hns3_logs.h"
#include "hns3_rxtx.h"
#include "hns3_regs.h"
#define MAX_SEPARATE_NUM 4
#define SEPARATOR_VALUE 0xFFFFFFFF
#define REG_NUM_PER_LINE 4
#define REG_LEN_PER_LINE (REG_NUM_PER_LINE * sizeof(uint32_t))
static const uint32_t cmdq_reg_addrs[] = {HNS3_CMDQ_TX_ADDR_L_REG,
HNS3_CMDQ_TX_ADDR_H_REG,
HNS3_CMDQ_TX_DEPTH_REG,
HNS3_CMDQ_TX_TAIL_REG,
HNS3_CMDQ_TX_HEAD_REG,
HNS3_CMDQ_RX_ADDR_L_REG,
HNS3_CMDQ_RX_ADDR_H_REG,
HNS3_CMDQ_RX_DEPTH_REG,
HNS3_CMDQ_RX_TAIL_REG,
HNS3_CMDQ_RX_HEAD_REG,
HNS3_VECTOR0_CMDQ_SRC_REG,
HNS3_CMDQ_INTR_STS_REG,
HNS3_CMDQ_INTR_EN_REG,
HNS3_CMDQ_INTR_GEN_REG};
static const uint32_t common_reg_addrs[] = {HNS3_MISC_VECTOR_REG_BASE,
HNS3_VECTOR0_OTER_EN_REG,
HNS3_MISC_RESET_STS_REG,
HNS3_VECTOR0_OTHER_INT_STS_REG,
HNS3_GLOBAL_RESET_REG,
HNS3_FUN_RST_ING,
HNS3_GRO_EN_REG};
static const uint32_t common_vf_reg_addrs[] = {HNS3_MISC_VECTOR_REG_BASE,
HNS3_FUN_RST_ING,
HNS3_GRO_EN_REG};
static const uint32_t ring_reg_addrs[] = {HNS3_RING_RX_BASEADDR_L_REG,
HNS3_RING_RX_BASEADDR_H_REG,
HNS3_RING_RX_BD_NUM_REG,
HNS3_RING_RX_BD_LEN_REG,
HNS3_RING_RX_EN_REG,
HNS3_RING_RX_MERGE_EN_REG,
HNS3_RING_RX_TAIL_REG,
HNS3_RING_RX_HEAD_REG,
HNS3_RING_RX_FBDNUM_REG,
HNS3_RING_RX_OFFSET_REG,
HNS3_RING_RX_FBD_OFFSET_REG,
HNS3_RING_RX_STASH_REG,
HNS3_RING_RX_BD_ERR_REG,
HNS3_RING_TX_BASEADDR_L_REG,
HNS3_RING_TX_BASEADDR_H_REG,
HNS3_RING_TX_BD_NUM_REG,
HNS3_RING_TX_EN_REG,
HNS3_RING_TX_PRIORITY_REG,
HNS3_RING_TX_TC_REG,
HNS3_RING_TX_MERGE_EN_REG,
HNS3_RING_TX_TAIL_REG,
HNS3_RING_TX_HEAD_REG,
HNS3_RING_TX_FBDNUM_REG,
HNS3_RING_TX_OFFSET_REG,
HNS3_RING_TX_EBD_NUM_REG,
HNS3_RING_TX_EBD_OFFSET_REG,
HNS3_RING_TX_BD_ERR_REG,
HNS3_RING_EN_REG};
static const uint32_t tqp_intr_reg_addrs[] = {HNS3_TQP_INTR_CTRL_REG,
HNS3_TQP_INTR_GL0_REG,
HNS3_TQP_INTR_GL1_REG,
HNS3_TQP_INTR_GL2_REG,
HNS3_TQP_INTR_RL_REG};
static int
hns3_get_regs_num(struct hns3_hw *hw, uint32_t *regs_num_32_bit,
uint32_t *regs_num_64_bit)
{
struct hns3_cmd_desc desc;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_REG_NUM, true);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
hns3_err(hw, "Query register number cmd failed, ret = %d",
ret);
return ret;
}
*regs_num_32_bit = rte_le_to_cpu_32(desc.data[0]);
*regs_num_64_bit = rte_le_to_cpu_32(desc.data[1]);
return 0;
}
static int
hns3_get_regs_length(struct hns3_hw *hw, uint32_t *length)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
uint32_t cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
uint32_t regs_num_32_bit, regs_num_64_bit;
uint32_t len;
int ret;
cmdq_lines = sizeof(cmdq_reg_addrs) / REG_LEN_PER_LINE + 1;
if (hns->is_vf)
common_lines =
sizeof(common_vf_reg_addrs) / REG_LEN_PER_LINE + 1;
else
common_lines = sizeof(common_reg_addrs) / REG_LEN_PER_LINE + 1;
ring_lines = sizeof(ring_reg_addrs) / REG_LEN_PER_LINE + 1;
tqp_intr_lines = sizeof(tqp_intr_reg_addrs) / REG_LEN_PER_LINE + 1;
len = (cmdq_lines + common_lines + ring_lines * hw->tqps_num +
tqp_intr_lines * hw->num_msi) * REG_LEN_PER_LINE;
if (!hns->is_vf) {
ret = hns3_get_regs_num(hw, &regs_num_32_bit, &regs_num_64_bit);
if (ret) {
hns3_err(hw, "Get register number failed, ret = %d.",
ret);
return -ENOTSUP;
}
len += regs_num_32_bit * sizeof(uint32_t) +
regs_num_64_bit * sizeof(uint64_t);
}
*length = len;
return 0;
}
static int
hns3_get_32_bit_regs(struct hns3_hw *hw, uint32_t regs_num, void *data)
{
#define HNS3_32_BIT_REG_RTN_DATANUM 8
#define HNS3_32_BIT_DESC_NODATA_LEN 2
struct hns3_cmd_desc *desc;
uint32_t *reg_val = data;
uint32_t *desc_data;
int cmd_num;
int i, k, n;
int ret;
if (regs_num == 0)
return 0;
cmd_num = DIV_ROUND_UP(regs_num + HNS3_32_BIT_DESC_NODATA_LEN,
HNS3_32_BIT_REG_RTN_DATANUM);
desc = rte_zmalloc("hns3-32bit-regs",
sizeof(struct hns3_cmd_desc) * cmd_num, 0);
if (desc == NULL) {
hns3_err(hw, "Failed to allocate %zx bytes needed to "
"store 32bit regs",
sizeof(struct hns3_cmd_desc) * cmd_num);
return -ENOMEM;
}
hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_QUERY_32_BIT_REG, true);
ret = hns3_cmd_send(hw, desc, cmd_num);
if (ret) {
hns3_err(hw, "Query 32 bit register cmd failed, ret = %d",
ret);
rte_free(desc);
return ret;
}
for (i = 0; i < cmd_num; i++) {
if (i == 0) {
desc_data = &desc[i].data[0];
n = HNS3_32_BIT_REG_RTN_DATANUM -
HNS3_32_BIT_DESC_NODATA_LEN;
} else {
desc_data = (uint32_t *)(&desc[i]);
n = HNS3_32_BIT_REG_RTN_DATANUM;
}
for (k = 0; k < n; k++) {
*reg_val++ = rte_le_to_cpu_32(*desc_data++);
regs_num--;
if (regs_num == 0)
break;
}
}
rte_free(desc);
return 0;
}
static int
hns3_get_64_bit_regs(struct hns3_hw *hw, uint32_t regs_num, void *data)
{
#define HNS3_64_BIT_REG_RTN_DATANUM 4
#define HNS3_64_BIT_DESC_NODATA_LEN 1
struct hns3_cmd_desc *desc;
uint64_t *reg_val = data;
uint64_t *desc_data;
int cmd_num;
int i, k, n;
int ret;
if (regs_num == 0)
return 0;
cmd_num = DIV_ROUND_UP(regs_num + HNS3_64_BIT_DESC_NODATA_LEN,
HNS3_64_BIT_REG_RTN_DATANUM);
desc = rte_zmalloc("hns3-64bit-regs",
sizeof(struct hns3_cmd_desc) * cmd_num, 0);
if (desc == NULL) {
hns3_err(hw, "Failed to allocate %zx bytes needed to "
"store 64bit regs",
sizeof(struct hns3_cmd_desc) * cmd_num);
return -ENOMEM;
}
hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_QUERY_64_BIT_REG, true);
ret = hns3_cmd_send(hw, desc, cmd_num);
if (ret) {
hns3_err(hw, "Query 64 bit register cmd failed, ret = %d",
ret);
rte_free(desc);
return ret;
}
for (i = 0; i < cmd_num; i++) {
if (i == 0) {
desc_data = (uint64_t *)(&desc[i].data[0]);
n = HNS3_64_BIT_REG_RTN_DATANUM -
HNS3_64_BIT_DESC_NODATA_LEN;
} else {
desc_data = (uint64_t *)(&desc[i]);
n = HNS3_64_BIT_REG_RTN_DATANUM;
}
for (k = 0; k < n; k++) {
*reg_val++ = rte_le_to_cpu_64(*desc_data++);
regs_num--;
if (!regs_num)
break;
}
}
rte_free(desc);
return 0;
}
static void
hns3_direct_access_regs(struct hns3_hw *hw, uint32_t *data)
{
struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
uint32_t reg_offset;
int separator_num;
int reg_um;
int i, j;
/* fetching per-PF registers values from PF PCIe register space */
reg_um = sizeof(cmdq_reg_addrs) / sizeof(uint32_t);
separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
for (i = 0; i < reg_um; i++)
*data++ = hns3_read_dev(hw, cmdq_reg_addrs[i]);
for (i = 0; i < separator_num; i++)
*data++ = SEPARATOR_VALUE;
if (hns->is_vf)
reg_um = sizeof(common_vf_reg_addrs) / sizeof(uint32_t);
else
reg_um = sizeof(common_reg_addrs) / sizeof(uint32_t);
separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
for (i = 0; i < reg_um; i++)
if (hns->is_vf)
*data++ = hns3_read_dev(hw, common_vf_reg_addrs[i]);
else
*data++ = hns3_read_dev(hw, common_reg_addrs[i]);
for (i = 0; i < separator_num; i++)
*data++ = SEPARATOR_VALUE;
reg_um = sizeof(ring_reg_addrs) / sizeof(uint32_t);
separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
for (j = 0; j < hw->tqps_num; j++) {
reg_offset = hns3_get_tqp_reg_offset(j);
for (i = 0; i < reg_um; i++)
*data++ = hns3_read_dev(hw,
ring_reg_addrs[i] + reg_offset);
for (i = 0; i < separator_num; i++)
*data++ = SEPARATOR_VALUE;
}
reg_um = sizeof(tqp_intr_reg_addrs) / sizeof(uint32_t);
separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
for (j = 0; j < hw->num_msi; j++) {
reg_offset = HNS3_TQP_INTR_REG_SIZE * j;
for (i = 0; i < reg_um; i++)
*data++ = hns3_read_dev(hw,
tqp_intr_reg_addrs[i] +
reg_offset);
for (i = 0; i < separator_num; i++)
*data++ = SEPARATOR_VALUE;
}
}
int
hns3_get_regs(struct rte_eth_dev *eth_dev, struct rte_dev_reg_info *regs)
{
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
uint32_t regs_num_32_bit;
uint32_t regs_num_64_bit;
uint32_t length;
uint32_t *data;
int ret;
if (regs == NULL) {
hns3_err(hw, "the input parameter regs is NULL!");
return -EINVAL;
}
ret = hns3_get_regs_length(hw, &length);
if (ret)
return ret;
data = regs->data;
if (data == NULL) {
regs->length = length;
regs->width = sizeof(uint32_t);
return 0;
}
/* Only full register dump is supported */
if (regs->length && regs->length != length)
return -ENOTSUP;
/* fetching per-PF registers values from PF PCIe register space */
hns3_direct_access_regs(hw, data);
if (hns->is_vf)
return 0;
ret = hns3_get_regs_num(hw, &regs_num_32_bit, &regs_num_64_bit);
if (ret) {
hns3_err(hw, "Get register number failed, ret = %d", ret);
return ret;
}
/* fetching PF common registers values from firmware */
ret = hns3_get_32_bit_regs(hw, regs_num_32_bit, data);
if (ret) {
hns3_err(hw, "Get 32 bit register failed, ret = %d", ret);
return ret;
}
data += regs_num_32_bit;
ret = hns3_get_64_bit_regs(hw, regs_num_64_bit, data);
if (ret)
hns3_err(hw, "Get 64 bit register failed, ret = %d", ret);
return ret;
}