numam-dpdk/drivers/net/sfc/sfc_ef10_rx.c
Andrew Rybchenko c6845644cc net/sfc: support per-queue Rx prefix for EF100
Riverhead FW supports Rx prefix choice based on required fields in Rx
prefix. The feature is generalized in libefx to provide Rx prefixes
layout for other NICs and firmware variants. Now driver can get
the prefix layout after Rx queue start and use the layout details to
check its expectations or simply in run-time.

Rx prefix choice and query interface is defined in SF-119689-TC
EF100 host interface.

Signed-off-by: Andrew Rybchenko <arybchenko@solarflare.com>
Reviewed-by: Andy Moreton <amoreton@xilinx.com>
2020-10-16 19:48:18 +02:00

840 lines
22 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright(c) 2019-2020 Xilinx, Inc.
* Copyright(c) 2016-2019 Solarflare Communications Inc.
*
* This software was jointly developed between OKTET Labs (under contract
* for Solarflare) and Solarflare Communications, Inc.
*/
/* EF10 native datapath implementation */
#include <stdbool.h>
#include <rte_byteorder.h>
#include <rte_mbuf_ptype.h>
#include <rte_mbuf.h>
#include <rte_io.h>
#include "efx.h"
#include "efx_types.h"
#include "efx_regs.h"
#include "efx_regs_ef10.h"
#include "sfc_debug.h"
#include "sfc_tweak.h"
#include "sfc_dp_rx.h"
#include "sfc_kvargs.h"
#include "sfc_ef10.h"
#define SFC_EF10_RX_EV_ENCAP_SUPPORT 1
#include "sfc_ef10_rx_ev.h"
#define sfc_ef10_rx_err(dpq, ...) \
SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, ERR, dpq, __VA_ARGS__)
#define sfc_ef10_rx_info(dpq, ...) \
SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, INFO, dpq, __VA_ARGS__)
/**
* Maximum number of descriptors/buffers in the Rx ring.
* It should guarantee that corresponding event queue never overfill.
* EF10 native datapath uses event queue of the same size as Rx queue.
* Maximum number of events on datapath can be estimated as number of
* Rx queue entries (one event per Rx buffer in the worst case) plus
* Rx error and flush events.
*/
#define SFC_EF10_RXQ_LIMIT(_ndesc) \
((_ndesc) - 1 /* head must not step on tail */ - \
(SFC_EF10_EV_PER_CACHE_LINE - 1) /* max unused EvQ entries */ - \
1 /* Rx error */ - 1 /* flush */)
struct sfc_ef10_rx_sw_desc {
struct rte_mbuf *mbuf;
};
struct sfc_ef10_rxq {
/* Used on data path */
unsigned int flags;
#define SFC_EF10_RXQ_STARTED 0x1
#define SFC_EF10_RXQ_NOT_RUNNING 0x2
#define SFC_EF10_RXQ_EXCEPTION 0x4
#define SFC_EF10_RXQ_RSS_HASH 0x8
#define SFC_EF10_RXQ_FLAG_INTR_EN 0x10
unsigned int ptr_mask;
unsigned int pending;
unsigned int completed;
unsigned int evq_read_ptr;
unsigned int evq_read_ptr_primed;
efx_qword_t *evq_hw_ring;
struct sfc_ef10_rx_sw_desc *sw_ring;
uint64_t rearm_data;
struct rte_mbuf *scatter_pkt;
volatile void *evq_prime;
uint16_t prefix_size;
/* Used on refill */
uint16_t buf_size;
unsigned int added;
unsigned int max_fill_level;
unsigned int refill_threshold;
struct rte_mempool *refill_mb_pool;
efx_qword_t *rxq_hw_ring;
volatile void *doorbell;
/* Datapath receive queue anchor */
struct sfc_dp_rxq dp;
};
static inline struct sfc_ef10_rxq *
sfc_ef10_rxq_by_dp_rxq(struct sfc_dp_rxq *dp_rxq)
{
return container_of(dp_rxq, struct sfc_ef10_rxq, dp);
}
static void
sfc_ef10_rx_qprime(struct sfc_ef10_rxq *rxq)
{
sfc_ef10_ev_qprime(rxq->evq_prime, rxq->evq_read_ptr, rxq->ptr_mask);
rxq->evq_read_ptr_primed = rxq->evq_read_ptr;
}
static void
sfc_ef10_rx_qrefill(struct sfc_ef10_rxq *rxq)
{
const unsigned int ptr_mask = rxq->ptr_mask;
const uint32_t buf_size = rxq->buf_size;
unsigned int free_space;
unsigned int bulks;
void *objs[SFC_RX_REFILL_BULK];
unsigned int added = rxq->added;
RTE_BUILD_BUG_ON(SFC_RX_REFILL_BULK % SFC_EF10_RX_WPTR_ALIGN != 0);
free_space = rxq->max_fill_level - (added - rxq->completed);
if (free_space < rxq->refill_threshold)
return;
bulks = free_space / RTE_DIM(objs);
/* refill_threshold guarantees that bulks is positive */
SFC_ASSERT(bulks > 0);
do {
unsigned int id;
unsigned int i;
if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
RTE_DIM(objs)) < 0)) {
struct rte_eth_dev_data *dev_data =
rte_eth_devices[rxq->dp.dpq.port_id].data;
/*
* It is hardly a safe way to increment counter
* from different contexts, but all PMDs do it.
*/
dev_data->rx_mbuf_alloc_failed += RTE_DIM(objs);
/* Return if we have posted nothing yet */
if (added == rxq->added)
return;
/* Push posted */
break;
}
for (i = 0, id = added & ptr_mask;
i < RTE_DIM(objs);
++i, ++id) {
struct rte_mbuf *m = objs[i];
struct sfc_ef10_rx_sw_desc *rxd;
rte_iova_t phys_addr;
MBUF_RAW_ALLOC_CHECK(m);
SFC_ASSERT((id & ~ptr_mask) == 0);
rxd = &rxq->sw_ring[id];
rxd->mbuf = m;
/*
* Avoid writing to mbuf. It is cheaper to do it
* when we receive packet and fill in nearby
* structure members.
*/
phys_addr = rte_mbuf_data_iova_default(m);
EFX_POPULATE_QWORD_2(rxq->rxq_hw_ring[id],
ESF_DZ_RX_KER_BYTE_CNT, buf_size,
ESF_DZ_RX_KER_BUF_ADDR, phys_addr);
}
added += RTE_DIM(objs);
} while (--bulks > 0);
SFC_ASSERT(rxq->added != added);
rxq->added = added;
sfc_ef10_rx_qpush(rxq->doorbell, added, ptr_mask);
}
static void
sfc_ef10_rx_prefetch_next(struct sfc_ef10_rxq *rxq, unsigned int next_id)
{
struct rte_mbuf *next_mbuf;
/* Prefetch next bunch of software descriptors */
if ((next_id % (RTE_CACHE_LINE_SIZE / sizeof(rxq->sw_ring[0]))) == 0)
rte_prefetch0(&rxq->sw_ring[next_id]);
/*
* It looks strange to prefetch depending on previous prefetch
* data, but measurements show that it is really efficient and
* increases packet rate.
*/
next_mbuf = rxq->sw_ring[next_id].mbuf;
if (likely(next_mbuf != NULL)) {
/* Prefetch the next mbuf structure */
rte_mbuf_prefetch_part1(next_mbuf);
/* Prefetch pseudo header of the next packet */
/* data_off is not filled in yet */
/* Yes, data could be not ready yet, but we hope */
rte_prefetch0((uint8_t *)next_mbuf->buf_addr +
RTE_PKTMBUF_HEADROOM);
}
}
static struct rte_mbuf **
sfc_ef10_rx_pending(struct sfc_ef10_rxq *rxq, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
uint16_t n_rx_pkts = RTE_MIN(nb_pkts, rxq->pending - rxq->completed);
SFC_ASSERT(rxq->pending == rxq->completed || rxq->scatter_pkt == NULL);
if (n_rx_pkts != 0) {
unsigned int completed = rxq->completed;
rxq->completed = completed + n_rx_pkts;
do {
*rx_pkts++ =
rxq->sw_ring[completed++ & rxq->ptr_mask].mbuf;
} while (completed != rxq->completed);
}
return rx_pkts;
}
/*
* Below Rx pseudo-header (aka Rx prefix) accessors rely on the
* following fields layout.
*/
static const efx_rx_prefix_layout_t sfc_ef10_rx_prefix_layout = {
.erpl_fields = {
[EFX_RX_PREFIX_FIELD_RSS_HASH] =
{ 0, sizeof(uint32_t) * CHAR_BIT, B_FALSE },
[EFX_RX_PREFIX_FIELD_LENGTH] =
{ 8 * CHAR_BIT, sizeof(uint16_t) * CHAR_BIT, B_FALSE },
}
};
static uint16_t
sfc_ef10_rx_pseudo_hdr_get_len(const uint8_t *pseudo_hdr)
{
return rte_le_to_cpu_16(*(const uint16_t *)&pseudo_hdr[8]);
}
static uint32_t
sfc_ef10_rx_pseudo_hdr_get_hash(const uint8_t *pseudo_hdr)
{
return rte_le_to_cpu_32(*(const uint32_t *)pseudo_hdr);
}
static struct rte_mbuf **
sfc_ef10_rx_process_event(struct sfc_ef10_rxq *rxq, efx_qword_t rx_ev,
struct rte_mbuf **rx_pkts,
struct rte_mbuf ** const rx_pkts_end)
{
const unsigned int ptr_mask = rxq->ptr_mask;
unsigned int pending = rxq->pending;
unsigned int ready;
struct sfc_ef10_rx_sw_desc *rxd;
struct rte_mbuf *m;
struct rte_mbuf *m0;
const uint8_t *pseudo_hdr;
uint16_t seg_len;
ready = (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_DSC_PTR_LBITS) - pending) &
EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
if (ready == 0) {
/* Rx abort - it was no enough descriptors for Rx packet */
rte_pktmbuf_free(rxq->scatter_pkt);
rxq->scatter_pkt = NULL;
return rx_pkts;
}
rxq->pending = pending + ready;
if (rx_ev.eq_u64[0] &
rte_cpu_to_le_64((1ull << ESF_DZ_RX_ECC_ERR_LBN) |
(1ull << ESF_DZ_RX_ECRC_ERR_LBN))) {
SFC_ASSERT(rxq->completed == pending);
do {
rxd = &rxq->sw_ring[pending++ & ptr_mask];
rte_mbuf_raw_free(rxd->mbuf);
} while (pending != rxq->pending);
rxq->completed = pending;
return rx_pkts;
}
/* If scattered packet is in progress */
if (rxq->scatter_pkt != NULL) {
/* Events for scattered packet frags are not merged */
SFC_ASSERT(ready == 1);
SFC_ASSERT(rxq->completed == pending);
/* There is no pseudo-header in scatter segments. */
seg_len = EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_BYTES);
rxd = &rxq->sw_ring[pending++ & ptr_mask];
m = rxd->mbuf;
MBUF_RAW_ALLOC_CHECK(m);
m->data_off = RTE_PKTMBUF_HEADROOM;
rte_pktmbuf_data_len(m) = seg_len;
rte_pktmbuf_pkt_len(m) = seg_len;
rxq->scatter_pkt->nb_segs++;
rte_pktmbuf_pkt_len(rxq->scatter_pkt) += seg_len;
rte_pktmbuf_lastseg(rxq->scatter_pkt)->next = m;
if (~rx_ev.eq_u64[0] &
rte_cpu_to_le_64(1ull << ESF_DZ_RX_CONT_LBN)) {
*rx_pkts++ = rxq->scatter_pkt;
rxq->scatter_pkt = NULL;
}
rxq->completed = pending;
return rx_pkts;
}
rxd = &rxq->sw_ring[pending++ & ptr_mask];
sfc_ef10_rx_prefetch_next(rxq, pending & ptr_mask);
m = rxd->mbuf;
RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) != sizeof(rxq->rearm_data));
m->rearm_data[0] = rxq->rearm_data;
/* Classify packet based on Rx event */
/* Mask RSS hash offload flag if RSS is not enabled */
sfc_ef10_rx_ev_to_offloads(rx_ev, m,
(rxq->flags & SFC_EF10_RXQ_RSS_HASH) ?
~0ull : ~PKT_RX_RSS_HASH);
/* data_off already moved past pseudo header */
pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
/*
* Always get RSS hash from pseudo header to avoid
* condition/branching. If it is valid or not depends on
* PKT_RX_RSS_HASH in m->ol_flags.
*/
m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);
if (ready == 1)
seg_len = EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_BYTES) -
rxq->prefix_size;
else
seg_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
SFC_ASSERT(seg_len > 0);
rte_pktmbuf_data_len(m) = seg_len;
rte_pktmbuf_pkt_len(m) = seg_len;
SFC_ASSERT(m->next == NULL);
if (~rx_ev.eq_u64[0] & rte_cpu_to_le_64(1ull << ESF_DZ_RX_CONT_LBN)) {
*rx_pkts++ = m;
rxq->completed = pending;
} else {
/* Events with CONT bit are not merged */
SFC_ASSERT(ready == 1);
rxq->scatter_pkt = m;
rxq->completed = pending;
return rx_pkts;
}
/* Remember mbuf to copy offload flags and packet type from */
m0 = m;
while (pending != rxq->pending) {
rxd = &rxq->sw_ring[pending++ & ptr_mask];
sfc_ef10_rx_prefetch_next(rxq, pending & ptr_mask);
m = rxd->mbuf;
if (rx_pkts != rx_pkts_end) {
*rx_pkts++ = m;
rxq->completed = pending;
}
RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) !=
sizeof(rxq->rearm_data));
m->rearm_data[0] = rxq->rearm_data;
/* Event-dependent information is the same */
m->ol_flags = m0->ol_flags;
m->packet_type = m0->packet_type;
/* data_off already moved past pseudo header */
pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
/*
* Always get RSS hash from pseudo header to avoid
* condition/branching. If it is valid or not depends on
* PKT_RX_RSS_HASH in m->ol_flags.
*/
m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);
seg_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
SFC_ASSERT(seg_len > 0);
rte_pktmbuf_data_len(m) = seg_len;
rte_pktmbuf_pkt_len(m) = seg_len;
SFC_ASSERT(m->next == NULL);
}
return rx_pkts;
}
static bool
sfc_ef10_rx_get_event(struct sfc_ef10_rxq *rxq, efx_qword_t *rx_ev)
{
*rx_ev = rxq->evq_hw_ring[rxq->evq_read_ptr & rxq->ptr_mask];
if (!sfc_ef10_ev_present(*rx_ev))
return false;
if (unlikely(EFX_QWORD_FIELD(*rx_ev, FSF_AZ_EV_CODE) !=
FSE_AZ_EV_CODE_RX_EV)) {
/*
* Do not move read_ptr to keep the event for exception
* handling by the control path.
*/
rxq->flags |= SFC_EF10_RXQ_EXCEPTION;
sfc_ef10_rx_err(&rxq->dp.dpq,
"RxQ exception at EvQ read ptr %#x",
rxq->evq_read_ptr);
return false;
}
rxq->evq_read_ptr++;
return true;
}
static uint16_t
sfc_ef10_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(rx_queue);
struct rte_mbuf ** const rx_pkts_end = &rx_pkts[nb_pkts];
unsigned int evq_old_read_ptr;
efx_qword_t rx_ev;
rx_pkts = sfc_ef10_rx_pending(rxq, rx_pkts, nb_pkts);
if (unlikely(rxq->flags &
(SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION)))
goto done;
evq_old_read_ptr = rxq->evq_read_ptr;
while (rx_pkts != rx_pkts_end && sfc_ef10_rx_get_event(rxq, &rx_ev)) {
/*
* DROP_EVENT is an internal to the NIC, software should
* never see it and, therefore, may ignore it.
*/
rx_pkts = sfc_ef10_rx_process_event(rxq, rx_ev,
rx_pkts, rx_pkts_end);
}
sfc_ef10_ev_qclear(rxq->evq_hw_ring, rxq->ptr_mask, evq_old_read_ptr,
rxq->evq_read_ptr);
/* It is not a problem if we refill in the case of exception */
sfc_ef10_rx_qrefill(rxq);
if ((rxq->flags & SFC_EF10_RXQ_FLAG_INTR_EN) &&
rxq->evq_read_ptr_primed != rxq->evq_read_ptr)
sfc_ef10_rx_qprime(rxq);
done:
return nb_pkts - (rx_pkts_end - rx_pkts);
}
const uint32_t *
sfc_ef10_supported_ptypes_get(uint32_t tunnel_encaps)
{
static const uint32_t ef10_native_ptypes[] = {
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L2_ETHER_ARP,
RTE_PTYPE_L2_ETHER_VLAN,
RTE_PTYPE_L2_ETHER_QINQ,
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
RTE_PTYPE_L4_FRAG,
RTE_PTYPE_L4_TCP,
RTE_PTYPE_L4_UDP,
RTE_PTYPE_UNKNOWN
};
static const uint32_t ef10_overlay_ptypes[] = {
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L2_ETHER_ARP,
RTE_PTYPE_L2_ETHER_VLAN,
RTE_PTYPE_L2_ETHER_QINQ,
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
RTE_PTYPE_L4_FRAG,
RTE_PTYPE_L4_TCP,
RTE_PTYPE_L4_UDP,
RTE_PTYPE_TUNNEL_VXLAN,
RTE_PTYPE_TUNNEL_NVGRE,
RTE_PTYPE_INNER_L2_ETHER,
RTE_PTYPE_INNER_L2_ETHER_VLAN,
RTE_PTYPE_INNER_L2_ETHER_QINQ,
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
RTE_PTYPE_INNER_L4_FRAG,
RTE_PTYPE_INNER_L4_TCP,
RTE_PTYPE_INNER_L4_UDP,
RTE_PTYPE_UNKNOWN
};
/*
* The function returns static set of supported packet types,
* so we can't build it dynamically based on supported tunnel
* encapsulations and should limit to known sets.
*/
switch (tunnel_encaps) {
case (1u << EFX_TUNNEL_PROTOCOL_VXLAN |
1u << EFX_TUNNEL_PROTOCOL_GENEVE |
1u << EFX_TUNNEL_PROTOCOL_NVGRE):
return ef10_overlay_ptypes;
default:
SFC_GENERIC_LOG(ERR,
"Unexpected set of supported tunnel encapsulations: %#x",
tunnel_encaps);
/* FALLTHROUGH */
case 0:
return ef10_native_ptypes;
}
}
static sfc_dp_rx_qdesc_npending_t sfc_ef10_rx_qdesc_npending;
static unsigned int
sfc_ef10_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
{
struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
efx_qword_t rx_ev;
const unsigned int evq_old_read_ptr = rxq->evq_read_ptr;
unsigned int pending = rxq->pending;
unsigned int ready;
if (unlikely(rxq->flags &
(SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION)))
goto done;
while (sfc_ef10_rx_get_event(rxq, &rx_ev)) {
ready = (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_DSC_PTR_LBITS) -
pending) &
EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
pending += ready;
}
/*
* The function does not process events, so return event queue read
* pointer to the original position to allow the events that were
* read to be processed later
*/
rxq->evq_read_ptr = evq_old_read_ptr;
done:
return pending - rxq->completed;
}
static sfc_dp_rx_qdesc_status_t sfc_ef10_rx_qdesc_status;
static int
sfc_ef10_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
{
struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
unsigned int npending = sfc_ef10_rx_qdesc_npending(dp_rxq);
if (unlikely(offset > rxq->ptr_mask))
return -EINVAL;
if (offset < npending)
return RTE_ETH_RX_DESC_DONE;
if (offset < (rxq->added - rxq->completed))
return RTE_ETH_RX_DESC_AVAIL;
return RTE_ETH_RX_DESC_UNAVAIL;
}
static sfc_dp_rx_get_dev_info_t sfc_ef10_rx_get_dev_info;
static void
sfc_ef10_rx_get_dev_info(struct rte_eth_dev_info *dev_info)
{
/*
* Number of descriptors just defines maximum number of pushed
* descriptors (fill level).
*/
dev_info->rx_desc_lim.nb_min = SFC_RX_REFILL_BULK;
dev_info->rx_desc_lim.nb_align = SFC_RX_REFILL_BULK;
}
static sfc_dp_rx_qsize_up_rings_t sfc_ef10_rx_qsize_up_rings;
static int
sfc_ef10_rx_qsize_up_rings(uint16_t nb_rx_desc,
struct sfc_dp_rx_hw_limits *limits,
__rte_unused struct rte_mempool *mb_pool,
unsigned int *rxq_entries,
unsigned int *evq_entries,
unsigned int *rxq_max_fill_level)
{
/*
* rte_ethdev API guarantees that the number meets min, max and
* alignment requirements.
*/
if (nb_rx_desc <= limits->rxq_min_entries)
*rxq_entries = limits->rxq_min_entries;
else
*rxq_entries = rte_align32pow2(nb_rx_desc);
*evq_entries = *rxq_entries;
*rxq_max_fill_level = RTE_MIN(nb_rx_desc,
SFC_EF10_RXQ_LIMIT(*evq_entries));
return 0;
}
static uint64_t
sfc_ef10_mk_mbuf_rearm_data(uint16_t port_id, uint16_t prefix_size)
{
struct rte_mbuf m;
memset(&m, 0, sizeof(m));
rte_mbuf_refcnt_set(&m, 1);
m.data_off = RTE_PKTMBUF_HEADROOM + prefix_size;
m.nb_segs = 1;
m.port = port_id;
/* rearm_data covers structure members filled in above */
rte_compiler_barrier();
RTE_BUILD_BUG_ON(sizeof(m.rearm_data[0]) != sizeof(uint64_t));
return m.rearm_data[0];
}
static sfc_dp_rx_qcreate_t sfc_ef10_rx_qcreate;
static int
sfc_ef10_rx_qcreate(uint16_t port_id, uint16_t queue_id,
const struct rte_pci_addr *pci_addr, int socket_id,
const struct sfc_dp_rx_qcreate_info *info,
struct sfc_dp_rxq **dp_rxqp)
{
struct sfc_ef10_rxq *rxq;
int rc;
rc = EINVAL;
if (info->rxq_entries != info->evq_entries)
goto fail_rxq_args;
rc = ENOMEM;
rxq = rte_zmalloc_socket("sfc-ef10-rxq", sizeof(*rxq),
RTE_CACHE_LINE_SIZE, socket_id);
if (rxq == NULL)
goto fail_rxq_alloc;
sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
rc = ENOMEM;
rxq->sw_ring = rte_calloc_socket("sfc-ef10-rxq-sw_ring",
info->rxq_entries,
sizeof(*rxq->sw_ring),
RTE_CACHE_LINE_SIZE, socket_id);
if (rxq->sw_ring == NULL)
goto fail_desc_alloc;
rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
rxq->flags |= SFC_EF10_RXQ_RSS_HASH;
rxq->ptr_mask = info->rxq_entries - 1;
rxq->evq_hw_ring = info->evq_hw_ring;
rxq->max_fill_level = info->max_fill_level;
rxq->refill_threshold = info->refill_threshold;
rxq->rearm_data =
sfc_ef10_mk_mbuf_rearm_data(port_id, info->prefix_size);
rxq->prefix_size = info->prefix_size;
rxq->buf_size = info->buf_size;
rxq->refill_mb_pool = info->refill_mb_pool;
rxq->rxq_hw_ring = info->rxq_hw_ring;
rxq->doorbell = (volatile uint8_t *)info->mem_bar +
ER_DZ_RX_DESC_UPD_REG_OFST +
(info->hw_index << info->vi_window_shift);
rxq->evq_prime = (volatile uint8_t *)info->mem_bar +
ER_DZ_EVQ_RPTR_REG_OFST +
(info->evq_hw_index << info->vi_window_shift);
sfc_ef10_rx_info(&rxq->dp.dpq, "RxQ doorbell is %p", rxq->doorbell);
*dp_rxqp = &rxq->dp;
return 0;
fail_desc_alloc:
rte_free(rxq);
fail_rxq_alloc:
fail_rxq_args:
return rc;
}
static sfc_dp_rx_qdestroy_t sfc_ef10_rx_qdestroy;
static void
sfc_ef10_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
{
struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
rte_free(rxq->sw_ring);
rte_free(rxq);
}
static sfc_dp_rx_qstart_t sfc_ef10_rx_qstart;
static int
sfc_ef10_rx_qstart(struct sfc_dp_rxq *dp_rxq, unsigned int evq_read_ptr,
const efx_rx_prefix_layout_t *pinfo)
{
struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
SFC_ASSERT(rxq->completed == 0);
SFC_ASSERT(rxq->pending == 0);
SFC_ASSERT(rxq->added == 0);
if (pinfo->erpl_length != rxq->prefix_size ||
efx_rx_prefix_layout_check(pinfo, &sfc_ef10_rx_prefix_layout) != 0)
return ENOTSUP;
sfc_ef10_rx_qrefill(rxq);
rxq->evq_read_ptr = evq_read_ptr;
rxq->flags |= SFC_EF10_RXQ_STARTED;
rxq->flags &= ~(SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION);
if (rxq->flags & SFC_EF10_RXQ_FLAG_INTR_EN)
sfc_ef10_rx_qprime(rxq);
return 0;
}
static sfc_dp_rx_qstop_t sfc_ef10_rx_qstop;
static void
sfc_ef10_rx_qstop(struct sfc_dp_rxq *dp_rxq, unsigned int *evq_read_ptr)
{
struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
*evq_read_ptr = rxq->evq_read_ptr;
}
static sfc_dp_rx_qrx_ev_t sfc_ef10_rx_qrx_ev;
static bool
sfc_ef10_rx_qrx_ev(struct sfc_dp_rxq *dp_rxq, __rte_unused unsigned int id)
{
__rte_unused struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
SFC_ASSERT(rxq->flags & SFC_EF10_RXQ_NOT_RUNNING);
/*
* It is safe to ignore Rx event since we free all mbufs on
* queue purge anyway.
*/
return false;
}
static sfc_dp_rx_qpurge_t sfc_ef10_rx_qpurge;
static void
sfc_ef10_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
{
struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
unsigned int i;
struct sfc_ef10_rx_sw_desc *rxd;
rte_pktmbuf_free(rxq->scatter_pkt);
rxq->scatter_pkt = NULL;
for (i = rxq->completed; i != rxq->added; ++i) {
rxd = &rxq->sw_ring[i & rxq->ptr_mask];
rte_mbuf_raw_free(rxd->mbuf);
rxd->mbuf = NULL;
}
rxq->completed = rxq->pending = rxq->added = 0;
rxq->flags &= ~SFC_EF10_RXQ_STARTED;
}
static sfc_dp_rx_intr_enable_t sfc_ef10_rx_intr_enable;
static int
sfc_ef10_rx_intr_enable(struct sfc_dp_rxq *dp_rxq)
{
struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
rxq->flags |= SFC_EF10_RXQ_FLAG_INTR_EN;
if (rxq->flags & SFC_EF10_RXQ_STARTED)
sfc_ef10_rx_qprime(rxq);
return 0;
}
static sfc_dp_rx_intr_disable_t sfc_ef10_rx_intr_disable;
static int
sfc_ef10_rx_intr_disable(struct sfc_dp_rxq *dp_rxq)
{
struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
/* Cannot disarm, just disable rearm */
rxq->flags &= ~SFC_EF10_RXQ_FLAG_INTR_EN;
return 0;
}
struct sfc_dp_rx sfc_ef10_rx = {
.dp = {
.name = SFC_KVARG_DATAPATH_EF10,
.type = SFC_DP_RX,
.hw_fw_caps = SFC_DP_HW_FW_CAP_EF10,
},
.features = SFC_DP_RX_FEAT_MULTI_PROCESS |
SFC_DP_RX_FEAT_INTR,
.dev_offload_capa = DEV_RX_OFFLOAD_CHECKSUM |
DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_RX_OFFLOAD_RSS_HASH,
.queue_offload_capa = DEV_RX_OFFLOAD_SCATTER,
.get_dev_info = sfc_ef10_rx_get_dev_info,
.qsize_up_rings = sfc_ef10_rx_qsize_up_rings,
.qcreate = sfc_ef10_rx_qcreate,
.qdestroy = sfc_ef10_rx_qdestroy,
.qstart = sfc_ef10_rx_qstart,
.qstop = sfc_ef10_rx_qstop,
.qrx_ev = sfc_ef10_rx_qrx_ev,
.qpurge = sfc_ef10_rx_qpurge,
.supported_ptypes_get = sfc_ef10_supported_ptypes_get,
.qdesc_npending = sfc_ef10_rx_qdesc_npending,
.qdesc_status = sfc_ef10_rx_qdesc_status,
.intr_enable = sfc_ef10_rx_intr_enable,
.intr_disable = sfc_ef10_rx_intr_disable,
.pkt_burst = sfc_ef10_recv_pkts,
};