numam-spdk/lib/nvme/nvme_pcie.c

1172 lines
31 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation. All rights reserved.
* Copyright (c) 2017, IBM Corporation. All rights reserved.
* Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* NVMe over PCIe transport
*/
#include "spdk/stdinc.h"
#include "spdk/env.h"
#include "spdk/likely.h"
#include "spdk/string.h"
#include "nvme_internal.h"
#include "nvme_pcie_internal.h"
struct nvme_pcie_enum_ctx {
struct spdk_nvme_probe_ctx *probe_ctx;
struct spdk_pci_addr pci_addr;
bool has_pci_addr;
};
static uint16_t g_signal_lock;
static bool g_sigset = false;
static spdk_nvme_pcie_hotplug_filter_cb g_hotplug_filter_cb;
static void
nvme_sigbus_fault_sighandler(const void *failure_addr, void *ctx)
{
void *map_address;
uint16_t flag = 0;
if (!__atomic_compare_exchange_n(&g_signal_lock, &flag, 1, false, __ATOMIC_ACQUIRE,
__ATOMIC_RELAXED)) {
SPDK_DEBUGLOG(nvme, "request g_signal_lock failed\n");
return;
}
if (g_thread_mmio_ctrlr == NULL) {
return;
}
if (!g_thread_mmio_ctrlr->is_remapped) {
map_address = mmap((void *)g_thread_mmio_ctrlr->regs, g_thread_mmio_ctrlr->regs_size,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
if (map_address == MAP_FAILED) {
SPDK_ERRLOG("mmap failed\n");
__atomic_store_n(&g_signal_lock, 0, __ATOMIC_RELEASE);
return;
}
memset(map_address, 0xFF, sizeof(struct spdk_nvme_registers));
g_thread_mmio_ctrlr->regs = (volatile struct spdk_nvme_registers *)map_address;
g_thread_mmio_ctrlr->is_remapped = true;
}
__atomic_store_n(&g_signal_lock, 0, __ATOMIC_RELEASE);
}
static void
_nvme_pcie_event_process(struct spdk_pci_event *event, void *cb_ctx)
{
struct spdk_nvme_transport_id trid;
struct spdk_nvme_ctrlr *ctrlr;
if (event->action == SPDK_UEVENT_ADD) {
if (spdk_process_is_primary()) {
if (g_hotplug_filter_cb == NULL || g_hotplug_filter_cb(&event->traddr)) {
/* The enumerate interface implement the add operation */
spdk_pci_device_allow(&event->traddr);
}
}
} else if (event->action == SPDK_UEVENT_REMOVE) {
memset(&trid, 0, sizeof(trid));
spdk_nvme_trid_populate_transport(&trid, SPDK_NVME_TRANSPORT_PCIE);
if (spdk_pci_addr_fmt(trid.traddr, sizeof(trid.traddr), &event->traddr) < 0) {
SPDK_ERRLOG("Failed to format pci address\n");
return;
}
ctrlr = nvme_get_ctrlr_by_trid_unsafe(&trid);
if (ctrlr == NULL) {
return;
}
SPDK_DEBUGLOG(nvme, "remove nvme address: %s\n", trid.traddr);
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
nvme_ctrlr_fail(ctrlr, true);
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
/* get the user app to clean up and stop I/O */
if (ctrlr->remove_cb) {
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
ctrlr->remove_cb(ctrlr->cb_ctx, ctrlr);
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
}
}
}
static int
_nvme_pcie_hotplug_monitor(struct spdk_nvme_probe_ctx *probe_ctx)
{
struct spdk_nvme_ctrlr *ctrlr, *tmp;
struct spdk_pci_event event;
if (g_spdk_nvme_driver->hotplug_fd < 0) {
return 0;
}
while (spdk_pci_get_event(g_spdk_nvme_driver->hotplug_fd, &event) > 0) {
_nvme_pcie_event_process(&event, probe_ctx->cb_ctx);
}
/* Initiate removal of physically hotremoved PCI controllers. Even after
* they're hotremoved from the system, SPDK might still report them via RPC.
*/
TAILQ_FOREACH_SAFE(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq, tmp) {
bool do_remove = false;
struct nvme_pcie_ctrlr *pctrlr;
if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
continue;
}
pctrlr = nvme_pcie_ctrlr(ctrlr);
if (spdk_pci_device_is_removed(pctrlr->devhandle)) {
do_remove = true;
}
if (do_remove) {
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
nvme_ctrlr_fail(ctrlr, true);
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
if (ctrlr->remove_cb) {
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
ctrlr->remove_cb(ctrlr->cb_ctx, ctrlr);
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
}
}
}
return 0;
}
static volatile void *
nvme_pcie_reg_addr(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
return (volatile void *)((uintptr_t)pctrlr->regs + offset);
}
static int
nvme_pcie_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
assert(offset <= sizeof(struct spdk_nvme_registers) - 4);
g_thread_mmio_ctrlr = pctrlr;
spdk_mmio_write_4(nvme_pcie_reg_addr(ctrlr, offset), value);
g_thread_mmio_ctrlr = NULL;
return 0;
}
static int
nvme_pcie_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
assert(offset <= sizeof(struct spdk_nvme_registers) - 8);
g_thread_mmio_ctrlr = pctrlr;
spdk_mmio_write_8(nvme_pcie_reg_addr(ctrlr, offset), value);
g_thread_mmio_ctrlr = NULL;
return 0;
}
static int
nvme_pcie_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
assert(offset <= sizeof(struct spdk_nvme_registers) - 4);
assert(value != NULL);
g_thread_mmio_ctrlr = pctrlr;
*value = spdk_mmio_read_4(nvme_pcie_reg_addr(ctrlr, offset));
g_thread_mmio_ctrlr = NULL;
if (~(*value) == 0) {
return -1;
}
return 0;
}
static int
nvme_pcie_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
assert(offset <= sizeof(struct spdk_nvme_registers) - 8);
assert(value != NULL);
g_thread_mmio_ctrlr = pctrlr;
*value = spdk_mmio_read_8(nvme_pcie_reg_addr(ctrlr, offset));
g_thread_mmio_ctrlr = NULL;
if (~(*value) == 0) {
return -1;
}
return 0;
}
static int
nvme_pcie_ctrlr_set_asq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value)
{
return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, asq),
value);
}
static int
nvme_pcie_ctrlr_set_acq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value)
{
return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, acq),
value);
}
static int
nvme_pcie_ctrlr_set_aqa(struct nvme_pcie_ctrlr *pctrlr, const union spdk_nvme_aqa_register *aqa)
{
return nvme_pcie_ctrlr_set_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, aqa.raw),
aqa->raw);
}
static int
nvme_pcie_ctrlr_get_cmbloc(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbloc_register *cmbloc)
{
return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbloc.raw),
&cmbloc->raw);
}
static int
nvme_pcie_ctrlr_get_cmbsz(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbsz_register *cmbsz)
{
return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw),
&cmbsz->raw);
}
static int
nvme_pcie_ctrlr_get_pmrcap(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_pmrcap_register *pmrcap)
{
return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, pmrcap.raw),
&pmrcap->raw);
}
static int
nvme_pcie_ctrlr_set_pmrctl(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_pmrctl_register *pmrctl)
{
return nvme_pcie_ctrlr_set_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, pmrctl.raw),
pmrctl->raw);
}
static int
nvme_pcie_ctrlr_get_pmrctl(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_pmrctl_register *pmrctl)
{
return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, pmrctl.raw),
&pmrctl->raw);
}
static int
nvme_pcie_ctrlr_get_pmrsts(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_pmrsts_register *pmrsts)
{
return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, pmrsts.raw),
&pmrsts->raw);
}
static int
nvme_pcie_ctrlr_set_pmrmscl(struct nvme_pcie_ctrlr *pctrlr, uint32_t value)
{
return nvme_pcie_ctrlr_set_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, pmrmscl.raw),
value);
}
static int
nvme_pcie_ctrlr_set_pmrmscu(struct nvme_pcie_ctrlr *pctrlr, uint32_t value)
{
return nvme_pcie_ctrlr_set_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, pmrmscu),
value);
}
static uint32_t
nvme_pcie_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
{
/*
* For commands requiring more than 2 PRP entries, one PRP will be
* embedded in the command (prp1), and the rest of the PRP entries
* will be in a list pointed to by the command (prp2). The number
* of PRP entries in the list is defined by
* NVME_MAX_PRP_LIST_ENTRIES.
*
* Note that the max xfer size is not (MAX_ENTRIES + 1) * page_size
* because the first PRP entry may not be aligned on a 4KiB
* boundary.
*/
return NVME_MAX_PRP_LIST_ENTRIES * ctrlr->page_size;
}
static uint16_t
nvme_pcie_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
{
return NVME_MAX_SGL_DESCRIPTORS;
}
static void
nvme_pcie_ctrlr_map_cmb(struct nvme_pcie_ctrlr *pctrlr)
{
int rc;
void *addr = NULL;
uint32_t bir;
union spdk_nvme_cmbsz_register cmbsz;
union spdk_nvme_cmbloc_register cmbloc;
uint64_t size, unit_size, offset, bar_size = 0, bar_phys_addr = 0;
if (nvme_pcie_ctrlr_get_cmbsz(pctrlr, &cmbsz) ||
nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
SPDK_ERRLOG("get registers failed\n");
goto exit;
}
if (!cmbsz.bits.sz) {
goto exit;
}
bir = cmbloc.bits.bir;
/* Values 0 2 3 4 5 are valid for BAR */
if (bir > 5 || bir == 1) {
goto exit;
}
/* unit size for 4KB/64KB/1MB/16MB/256MB/4GB/64GB */
unit_size = (uint64_t)1 << (12 + 4 * cmbsz.bits.szu);
/* controller memory buffer size in Bytes */
size = unit_size * cmbsz.bits.sz;
/* controller memory buffer offset from BAR in Bytes */
offset = unit_size * cmbloc.bits.ofst;
rc = spdk_pci_device_map_bar(pctrlr->devhandle, bir, &addr,
&bar_phys_addr, &bar_size);
if ((rc != 0) || addr == NULL) {
goto exit;
}
if (offset > bar_size) {
goto exit;
}
if (size > bar_size - offset) {
goto exit;
}
pctrlr->cmb.bar_va = addr;
pctrlr->cmb.bar_pa = bar_phys_addr;
pctrlr->cmb.size = size;
pctrlr->cmb.current_offset = offset;
if (!cmbsz.bits.sqs) {
pctrlr->ctrlr.opts.use_cmb_sqs = false;
}
return;
exit:
pctrlr->ctrlr.opts.use_cmb_sqs = false;
return;
}
static int
nvme_pcie_ctrlr_unmap_cmb(struct nvme_pcie_ctrlr *pctrlr)
{
int rc = 0;
union spdk_nvme_cmbloc_register cmbloc;
void *addr = pctrlr->cmb.bar_va;
if (addr) {
if (pctrlr->cmb.mem_register_addr) {
spdk_mem_unregister(pctrlr->cmb.mem_register_addr, pctrlr->cmb.mem_register_size);
}
if (nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
SPDK_ERRLOG("get_cmbloc() failed\n");
return -EIO;
}
rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, cmbloc.bits.bir, addr);
}
return rc;
}
static int
nvme_pcie_ctrlr_reserve_cmb(struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
if (pctrlr->cmb.bar_va == NULL) {
SPDK_DEBUGLOG(nvme, "CMB not available\n");
return -ENOTSUP;
}
if (ctrlr->opts.use_cmb_sqs) {
SPDK_ERRLOG("CMB is already in use for submission queues.\n");
return -ENOTSUP;
}
return 0;
}
static void *
nvme_pcie_ctrlr_map_io_cmb(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
union spdk_nvme_cmbsz_register cmbsz;
union spdk_nvme_cmbloc_register cmbloc;
uint64_t mem_register_start, mem_register_end;
int rc;
if (pctrlr->cmb.mem_register_addr != NULL) {
*size = pctrlr->cmb.mem_register_size;
return pctrlr->cmb.mem_register_addr;
}
*size = 0;
if (pctrlr->cmb.bar_va == NULL) {
SPDK_DEBUGLOG(nvme, "CMB not available\n");
return NULL;
}
if (ctrlr->opts.use_cmb_sqs) {
SPDK_ERRLOG("CMB is already in use for submission queues.\n");
return NULL;
}
if (nvme_pcie_ctrlr_get_cmbsz(pctrlr, &cmbsz) ||
nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
SPDK_ERRLOG("get registers failed\n");
return NULL;
}
/* If only SQS is supported */
if (!(cmbsz.bits.wds || cmbsz.bits.rds)) {
return NULL;
}
/* If CMB is less than 4MiB in size then abort CMB mapping */
if (pctrlr->cmb.size < (1ULL << 22)) {
return NULL;
}
mem_register_start = _2MB_PAGE((uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.current_offset +
VALUE_2MB - 1);
mem_register_end = _2MB_PAGE((uintptr_t)pctrlr->cmb.bar_va + pctrlr->cmb.current_offset +
pctrlr->cmb.size);
rc = spdk_mem_register((void *)mem_register_start, mem_register_end - mem_register_start);
if (rc) {
SPDK_ERRLOG("spdk_mem_register() failed\n");
return NULL;
}
pctrlr->cmb.mem_register_addr = (void *)mem_register_start;
pctrlr->cmb.mem_register_size = mem_register_end - mem_register_start;
*size = pctrlr->cmb.mem_register_size;
return pctrlr->cmb.mem_register_addr;
}
static int
nvme_pcie_ctrlr_unmap_io_cmb(struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
int rc;
if (pctrlr->cmb.mem_register_addr == NULL) {
return 0;
}
rc = spdk_mem_unregister(pctrlr->cmb.mem_register_addr, pctrlr->cmb.mem_register_size);
if (rc == 0) {
pctrlr->cmb.mem_register_addr = NULL;
pctrlr->cmb.mem_register_size = 0;
}
return rc;
}
static void
nvme_pcie_ctrlr_map_pmr(struct nvme_pcie_ctrlr *pctrlr)
{
int rc;
void *addr = NULL;
uint32_t bir;
union spdk_nvme_pmrcap_register pmrcap;
uint64_t bar_size = 0, bar_phys_addr = 0;
if (!pctrlr->regs->cap.bits.pmrs) {
return;
}
if (nvme_pcie_ctrlr_get_pmrcap(pctrlr, &pmrcap)) {
SPDK_ERRLOG("get registers failed\n");
return;
}
bir = pmrcap.bits.bir;
/* Values 2 3 4 5 are valid for BAR */
if (bir > 5 || bir < 2) {
SPDK_ERRLOG("invalid base indicator register value\n");
return;
}
rc = spdk_pci_device_map_bar(pctrlr->devhandle, bir, &addr, &bar_phys_addr, &bar_size);
if ((rc != 0) || addr == NULL) {
SPDK_ERRLOG("could not map the bar %d\n", bir);
return;
}
if (pmrcap.bits.cmss) {
uint32_t pmrmscl, pmrmscu, cmse = 1;
union spdk_nvme_pmrsts_register pmrsts;
/* Enable Controller Memory Space */
pmrmscl = (uint32_t)((bar_phys_addr & 0xFFFFF000ULL) | (cmse << 1));
pmrmscu = (uint32_t)((bar_phys_addr >> 32ULL) & 0xFFFFFFFFULL);
if (nvme_pcie_ctrlr_set_pmrmscu(pctrlr, pmrmscu)) {
SPDK_ERRLOG("set_pmrmscu() failed\n");
spdk_pci_device_unmap_bar(pctrlr->devhandle, bir, addr);
return;
}
if (nvme_pcie_ctrlr_set_pmrmscl(pctrlr, pmrmscl)) {
SPDK_ERRLOG("set_pmrmscl() failed\n");
spdk_pci_device_unmap_bar(pctrlr->devhandle, bir, addr);
return;
}
if (nvme_pcie_ctrlr_get_pmrsts(pctrlr, &pmrsts)) {
SPDK_ERRLOG("get pmrsts failed\n");
spdk_pci_device_unmap_bar(pctrlr->devhandle, bir, addr);
return;
}
if (pmrsts.bits.cbai) {
SPDK_ERRLOG("Controller Memory Space Enable Failure\n");
SPDK_ERRLOG("CBA Invalid - Host Addresses cannot reference PMR\n");
} else {
SPDK_DEBUGLOG(nvme, "Controller Memory Space Enable Success\n");
SPDK_DEBUGLOG(nvme, "Host Addresses can reference PMR\n");
}
}
pctrlr->pmr.bar_va = addr;
pctrlr->pmr.bar_pa = bar_phys_addr;
pctrlr->pmr.size = pctrlr->ctrlr.pmr_size = bar_size;
}
static int
nvme_pcie_ctrlr_unmap_pmr(struct nvme_pcie_ctrlr *pctrlr)
{
int rc = 0;
union spdk_nvme_pmrcap_register pmrcap;
void *addr = pctrlr->pmr.bar_va;
if (addr == NULL) {
return rc;
}
if (pctrlr->pmr.mem_register_addr) {
spdk_mem_unregister(pctrlr->pmr.mem_register_addr, pctrlr->pmr.mem_register_size);
}
if (nvme_pcie_ctrlr_get_pmrcap(pctrlr, &pmrcap)) {
SPDK_ERRLOG("get_pmrcap() failed\n");
return -EIO;
}
if (pmrcap.bits.cmss) {
if (nvme_pcie_ctrlr_set_pmrmscu(pctrlr, 0)) {
SPDK_ERRLOG("set_pmrmscu() failed\n");
}
if (nvme_pcie_ctrlr_set_pmrmscl(pctrlr, 0)) {
SPDK_ERRLOG("set_pmrmscl() failed\n");
}
}
rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, pmrcap.bits.bir, addr);
return rc;
}
static int
nvme_pcie_ctrlr_config_pmr(struct spdk_nvme_ctrlr *ctrlr, bool enable)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
union spdk_nvme_pmrcap_register pmrcap;
union spdk_nvme_pmrctl_register pmrctl;
union spdk_nvme_pmrsts_register pmrsts;
uint8_t pmrto, pmrtu;
uint64_t timeout_in_ms, ticks_per_ms, timeout_in_ticks, now_ticks;
if (!pctrlr->regs->cap.bits.pmrs) {
SPDK_ERRLOG("PMR is not supported by the controller\n");
return -ENOTSUP;
}
if (nvme_pcie_ctrlr_get_pmrcap(pctrlr, &pmrcap)) {
SPDK_ERRLOG("get registers failed\n");
return -EIO;
}
pmrto = pmrcap.bits.pmrto;
pmrtu = pmrcap.bits.pmrtu;
if (pmrtu > 1) {
SPDK_ERRLOG("PMR Time Units Invalid\n");
return -EINVAL;
}
ticks_per_ms = spdk_get_ticks_hz() / 1000;
timeout_in_ms = pmrto * (pmrtu ? (60 * 1000) : 500);
timeout_in_ticks = timeout_in_ms * ticks_per_ms;
if (nvme_pcie_ctrlr_get_pmrctl(pctrlr, &pmrctl)) {
SPDK_ERRLOG("get pmrctl failed\n");
return -EIO;
}
if (enable && pmrctl.bits.en != 0) {
SPDK_ERRLOG("PMR is already enabled\n");
return -EINVAL;
} else if (!enable && pmrctl.bits.en != 1) {
SPDK_ERRLOG("PMR is already disabled\n");
return -EINVAL;
}
pmrctl.bits.en = enable;
if (nvme_pcie_ctrlr_set_pmrctl(pctrlr, &pmrctl)) {
SPDK_ERRLOG("set pmrctl failed\n");
return -EIO;
}
now_ticks = spdk_get_ticks();
do {
if (nvme_pcie_ctrlr_get_pmrsts(pctrlr, &pmrsts)) {
SPDK_ERRLOG("get pmrsts failed\n");
return -EIO;
}
if (pmrsts.bits.nrdy == enable &&
spdk_get_ticks() > now_ticks + timeout_in_ticks) {
SPDK_ERRLOG("PMR Enable - Timed Out\n");
return -ETIMEDOUT;
}
} while (pmrsts.bits.nrdy == enable);
SPDK_DEBUGLOG(nvme, "PMR %s\n", enable ? "Enabled" : "Disabled");
return 0;
}
static int
nvme_pcie_ctrlr_enable_pmr(struct spdk_nvme_ctrlr *ctrlr)
{
return nvme_pcie_ctrlr_config_pmr(ctrlr, true);
}
static int
nvme_pcie_ctrlr_disable_pmr(struct spdk_nvme_ctrlr *ctrlr)
{
return nvme_pcie_ctrlr_config_pmr(ctrlr, false);
}
static void *
nvme_pcie_ctrlr_map_io_pmr(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
union spdk_nvme_pmrcap_register pmrcap;
uint64_t mem_register_start, mem_register_end;
int rc;
if (!pctrlr->regs->cap.bits.pmrs) {
SPDK_ERRLOG("PMR is not supported by the controller\n");
return NULL;
}
if (pctrlr->pmr.mem_register_addr != NULL) {
*size = pctrlr->pmr.mem_register_size;
return pctrlr->pmr.mem_register_addr;
}
*size = 0;
if (pctrlr->pmr.bar_va == NULL) {
SPDK_DEBUGLOG(nvme, "PMR not available\n");
return NULL;
}
if (nvme_pcie_ctrlr_get_pmrcap(pctrlr, &pmrcap)) {
SPDK_ERRLOG("get registers failed\n");
return NULL;
}
/* Check if WDS / RDS is supported */
if (!(pmrcap.bits.wds || pmrcap.bits.rds)) {
return NULL;
}
/* If PMR is less than 4MiB in size then abort PMR mapping */
if (pctrlr->pmr.size < (1ULL << 22)) {
return NULL;
}
mem_register_start = _2MB_PAGE((uintptr_t)pctrlr->pmr.bar_va + VALUE_2MB - 1);
mem_register_end = _2MB_PAGE((uintptr_t)pctrlr->pmr.bar_va + pctrlr->pmr.size);
rc = spdk_mem_register((void *)mem_register_start, mem_register_end - mem_register_start);
if (rc) {
SPDK_ERRLOG("spdk_mem_register() failed\n");
return NULL;
}
pctrlr->pmr.mem_register_addr = (void *)mem_register_start;
pctrlr->pmr.mem_register_size = mem_register_end - mem_register_start;
*size = pctrlr->pmr.mem_register_size;
return pctrlr->pmr.mem_register_addr;
}
static int
nvme_pcie_ctrlr_unmap_io_pmr(struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
int rc;
if (pctrlr->pmr.mem_register_addr == NULL) {
return -ENXIO;
}
rc = spdk_mem_unregister(pctrlr->pmr.mem_register_addr, pctrlr->pmr.mem_register_size);
if (rc == 0) {
pctrlr->pmr.mem_register_addr = NULL;
pctrlr->pmr.mem_register_size = 0;
}
return rc;
}
static int
nvme_pcie_ctrlr_allocate_bars(struct nvme_pcie_ctrlr *pctrlr)
{
int rc;
void *addr = NULL;
uint64_t phys_addr = 0, size = 0;
rc = spdk_pci_device_map_bar(pctrlr->devhandle, 0, &addr,
&phys_addr, &size);
if ((addr == NULL) || (rc != 0)) {
SPDK_ERRLOG("nvme_pcicfg_map_bar failed with rc %d or bar %p\n",
rc, addr);
return -1;
}
pctrlr->regs = (volatile struct spdk_nvme_registers *)addr;
pctrlr->regs_size = size;
pctrlr->doorbell_base = (volatile uint32_t *)&pctrlr->regs->doorbell[0].sq_tdbl;
nvme_pcie_ctrlr_map_cmb(pctrlr);
nvme_pcie_ctrlr_map_pmr(pctrlr);
return 0;
}
static int
nvme_pcie_ctrlr_free_bars(struct nvme_pcie_ctrlr *pctrlr)
{
int rc = 0;
void *addr = (void *)pctrlr->regs;
if (pctrlr->ctrlr.is_removed) {
return rc;
}
rc = nvme_pcie_ctrlr_unmap_pmr(pctrlr);
if (rc != 0) {
SPDK_ERRLOG("nvme_ctrlr_unmap_pmr failed with error code %d\n", rc);
return -1;
}
rc = nvme_pcie_ctrlr_unmap_cmb(pctrlr);
if (rc != 0) {
SPDK_ERRLOG("nvme_ctrlr_unmap_cmb failed with error code %d\n", rc);
return -1;
}
if (addr) {
/* NOTE: addr may have been remapped here. We're relying on DPDK to call
* munmap internally.
*/
rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, 0, addr);
}
return rc;
}
/* This function must only be called while holding g_spdk_nvme_driver->lock */
static int
pcie_nvme_enum_cb(void *ctx, struct spdk_pci_device *pci_dev)
{
struct spdk_nvme_transport_id trid = {};
struct nvme_pcie_enum_ctx *enum_ctx = ctx;
struct spdk_nvme_ctrlr *ctrlr;
struct spdk_pci_addr pci_addr;
pci_addr = spdk_pci_device_get_addr(pci_dev);
spdk_nvme_trid_populate_transport(&trid, SPDK_NVME_TRANSPORT_PCIE);
spdk_pci_addr_fmt(trid.traddr, sizeof(trid.traddr), &pci_addr);
ctrlr = nvme_get_ctrlr_by_trid_unsafe(&trid);
if (!spdk_process_is_primary()) {
if (!ctrlr) {
SPDK_ERRLOG("Controller must be constructed in the primary process first.\n");
return -1;
}
return nvme_ctrlr_add_process(ctrlr, pci_dev);
}
/* check whether user passes the pci_addr */
if (enum_ctx->has_pci_addr &&
(spdk_pci_addr_compare(&pci_addr, &enum_ctx->pci_addr) != 0)) {
return 1;
}
return nvme_ctrlr_probe(&trid, enum_ctx->probe_ctx, pci_dev);
}
static int
nvme_pcie_ctrlr_scan(struct spdk_nvme_probe_ctx *probe_ctx,
bool direct_connect)
{
struct nvme_pcie_enum_ctx enum_ctx = {};
enum_ctx.probe_ctx = probe_ctx;
if (strlen(probe_ctx->trid.traddr) != 0) {
if (spdk_pci_addr_parse(&enum_ctx.pci_addr, probe_ctx->trid.traddr)) {
return -1;
}
enum_ctx.has_pci_addr = true;
}
/* Only the primary process can monitor hotplug. */
if (spdk_process_is_primary()) {
_nvme_pcie_hotplug_monitor(probe_ctx);
}
if (enum_ctx.has_pci_addr == false) {
return spdk_pci_enumerate(spdk_pci_nvme_get_driver(),
pcie_nvme_enum_cb, &enum_ctx);
} else {
return spdk_pci_device_attach(spdk_pci_nvme_get_driver(),
pcie_nvme_enum_cb, &enum_ctx, &enum_ctx.pci_addr);
}
}
static struct spdk_nvme_ctrlr *nvme_pcie_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
const struct spdk_nvme_ctrlr_opts *opts,
void *devhandle)
{
struct spdk_pci_device *pci_dev = devhandle;
struct nvme_pcie_ctrlr *pctrlr;
union spdk_nvme_cap_register cap;
uint16_t cmd_reg;
int rc;
struct spdk_pci_id pci_id;
rc = spdk_pci_device_claim(pci_dev);
if (rc < 0) {
SPDK_ERRLOG("could not claim device %s (%s)\n",
trid->traddr, spdk_strerror(-rc));
return NULL;
}
pctrlr = spdk_zmalloc(sizeof(struct nvme_pcie_ctrlr), 64, NULL,
SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
if (pctrlr == NULL) {
spdk_pci_device_unclaim(pci_dev);
SPDK_ERRLOG("could not allocate ctrlr\n");
return NULL;
}
pctrlr->is_remapped = false;
pctrlr->ctrlr.is_removed = false;
pctrlr->devhandle = devhandle;
pctrlr->ctrlr.opts = *opts;
pctrlr->ctrlr.trid = *trid;
rc = nvme_ctrlr_construct(&pctrlr->ctrlr);
if (rc != 0) {
spdk_pci_device_unclaim(pci_dev);
spdk_free(pctrlr);
return NULL;
}
rc = nvme_pcie_ctrlr_allocate_bars(pctrlr);
if (rc != 0) {
spdk_pci_device_unclaim(pci_dev);
spdk_free(pctrlr);
return NULL;
}
/* Enable PCI busmaster and disable INTx */
spdk_pci_device_cfg_read16(pci_dev, &cmd_reg, 4);
cmd_reg |= 0x404;
spdk_pci_device_cfg_write16(pci_dev, cmd_reg, 4);
if (nvme_ctrlr_get_cap(&pctrlr->ctrlr, &cap)) {
SPDK_ERRLOG("get_cap() failed\n");
spdk_pci_device_unclaim(pci_dev);
spdk_free(pctrlr);
return NULL;
}
/* Doorbell stride is 2 ^ (dstrd + 2),
* but we want multiples of 4, so drop the + 2 */
pctrlr->doorbell_stride_u32 = 1 << cap.bits.dstrd;
pci_id = spdk_pci_device_get_id(pci_dev);
pctrlr->ctrlr.quirks = nvme_get_quirks(&pci_id);
rc = nvme_pcie_ctrlr_construct_admin_qpair(&pctrlr->ctrlr, pctrlr->ctrlr.opts.admin_queue_size);
if (rc != 0) {
nvme_ctrlr_destruct(&pctrlr->ctrlr);
return NULL;
}
/* Construct the primary process properties */
rc = nvme_ctrlr_add_process(&pctrlr->ctrlr, pci_dev);
if (rc != 0) {
nvme_ctrlr_destruct(&pctrlr->ctrlr);
return NULL;
}
if (g_sigset != true) {
spdk_pci_register_error_handler(nvme_sigbus_fault_sighandler,
NULL);
g_sigset = true;
}
return &pctrlr->ctrlr;
}
static int
nvme_pcie_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
struct nvme_pcie_qpair *padminq = nvme_pcie_qpair(ctrlr->adminq);
union spdk_nvme_aqa_register aqa;
if (nvme_pcie_ctrlr_set_asq(pctrlr, padminq->cmd_bus_addr)) {
SPDK_ERRLOG("set_asq() failed\n");
return -EIO;
}
if (nvme_pcie_ctrlr_set_acq(pctrlr, padminq->cpl_bus_addr)) {
SPDK_ERRLOG("set_acq() failed\n");
return -EIO;
}
aqa.raw = 0;
/* acqs and asqs are 0-based. */
aqa.bits.acqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1;
aqa.bits.asqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1;
if (nvme_pcie_ctrlr_set_aqa(pctrlr, &aqa)) {
SPDK_ERRLOG("set_aqa() failed\n");
return -EIO;
}
return 0;
}
static int
nvme_pcie_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
struct spdk_pci_device *devhandle = nvme_ctrlr_proc_get_devhandle(ctrlr);
if (ctrlr->adminq) {
nvme_pcie_qpair_destroy(ctrlr->adminq);
}
nvme_ctrlr_destruct_finish(ctrlr);
nvme_ctrlr_free_processes(ctrlr);
nvme_pcie_ctrlr_free_bars(pctrlr);
if (devhandle) {
spdk_pci_device_unclaim(devhandle);
spdk_pci_device_detach(devhandle);
}
spdk_free(pctrlr);
return 0;
}
static int
nvme_pcie_qpair_iterate_requests(struct spdk_nvme_qpair *qpair,
int (*iter_fn)(struct nvme_request *req, void *arg),
void *arg)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
struct nvme_tracker *tr, *tmp;
int rc;
assert(iter_fn != NULL);
TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, tmp) {
assert(tr->req != NULL);
rc = iter_fn(tr->req, arg);
if (rc != 0) {
return rc;
}
}
return 0;
}
void
spdk_nvme_pcie_set_hotplug_filter(spdk_nvme_pcie_hotplug_filter_cb filter_cb)
{
g_hotplug_filter_cb = filter_cb;
}
static int
nvme_pcie_poll_group_get_stats(struct spdk_nvme_transport_poll_group *tgroup,
struct spdk_nvme_transport_poll_group_stat **_stats)
{
struct nvme_pcie_poll_group *group;
struct spdk_nvme_transport_poll_group_stat *stats;
if (tgroup == NULL || _stats == NULL) {
SPDK_ERRLOG("Invalid stats or group pointer\n");
return -EINVAL;
}
group = SPDK_CONTAINEROF(tgroup, struct nvme_pcie_poll_group, group);
stats = calloc(1, sizeof(*stats));
if (!stats) {
SPDK_ERRLOG("Can't allocate memory for RDMA stats\n");
return -ENOMEM;
}
stats->trtype = SPDK_NVME_TRANSPORT_PCIE;
memcpy(&stats->pcie, &group->stats, sizeof(group->stats));
*_stats = stats;
return 0;
}
static void
nvme_pcie_poll_group_free_stats(struct spdk_nvme_transport_poll_group *tgroup,
struct spdk_nvme_transport_poll_group_stat *stats)
{
free(stats);
}
static struct spdk_pci_id nvme_pci_driver_id[] = {
{
.class_id = SPDK_PCI_CLASS_NVME,
.vendor_id = SPDK_PCI_ANY_ID,
.device_id = SPDK_PCI_ANY_ID,
.subvendor_id = SPDK_PCI_ANY_ID,
.subdevice_id = SPDK_PCI_ANY_ID,
},
{ .vendor_id = 0, /* sentinel */ },
};
SPDK_PCI_DRIVER_REGISTER(nvme, nvme_pci_driver_id,
SPDK_PCI_DRIVER_NEED_MAPPING | SPDK_PCI_DRIVER_WC_ACTIVATE);
const struct spdk_nvme_transport_ops pcie_ops = {
.name = "PCIE",
.type = SPDK_NVME_TRANSPORT_PCIE,
.ctrlr_construct = nvme_pcie_ctrlr_construct,
.ctrlr_scan = nvme_pcie_ctrlr_scan,
.ctrlr_destruct = nvme_pcie_ctrlr_destruct,
.ctrlr_enable = nvme_pcie_ctrlr_enable,
.ctrlr_set_reg_4 = nvme_pcie_ctrlr_set_reg_4,
.ctrlr_set_reg_8 = nvme_pcie_ctrlr_set_reg_8,
.ctrlr_get_reg_4 = nvme_pcie_ctrlr_get_reg_4,
.ctrlr_get_reg_8 = nvme_pcie_ctrlr_get_reg_8,
.ctrlr_get_max_xfer_size = nvme_pcie_ctrlr_get_max_xfer_size,
.ctrlr_get_max_sges = nvme_pcie_ctrlr_get_max_sges,
.ctrlr_reserve_cmb = nvme_pcie_ctrlr_reserve_cmb,
.ctrlr_map_cmb = nvme_pcie_ctrlr_map_io_cmb,
.ctrlr_unmap_cmb = nvme_pcie_ctrlr_unmap_io_cmb,
.ctrlr_enable_pmr = nvme_pcie_ctrlr_enable_pmr,
.ctrlr_disable_pmr = nvme_pcie_ctrlr_disable_pmr,
.ctrlr_map_pmr = nvme_pcie_ctrlr_map_io_pmr,
.ctrlr_unmap_pmr = nvme_pcie_ctrlr_unmap_io_pmr,
.ctrlr_create_io_qpair = nvme_pcie_ctrlr_create_io_qpair,
.ctrlr_delete_io_qpair = nvme_pcie_ctrlr_delete_io_qpair,
.ctrlr_connect_qpair = nvme_pcie_ctrlr_connect_qpair,
.ctrlr_disconnect_qpair = nvme_pcie_ctrlr_disconnect_qpair,
.qpair_abort_reqs = nvme_pcie_qpair_abort_reqs,
.qpair_reset = nvme_pcie_qpair_reset,
.qpair_submit_request = nvme_pcie_qpair_submit_request,
.qpair_process_completions = nvme_pcie_qpair_process_completions,
.qpair_iterate_requests = nvme_pcie_qpair_iterate_requests,
.admin_qpair_abort_aers = nvme_pcie_admin_qpair_abort_aers,
.poll_group_create = nvme_pcie_poll_group_create,
.poll_group_connect_qpair = nvme_pcie_poll_group_connect_qpair,
.poll_group_disconnect_qpair = nvme_pcie_poll_group_disconnect_qpair,
.poll_group_add = nvme_pcie_poll_group_add,
.poll_group_remove = nvme_pcie_poll_group_remove,
.poll_group_process_completions = nvme_pcie_poll_group_process_completions,
.poll_group_destroy = nvme_pcie_poll_group_destroy,
.poll_group_get_stats = nvme_pcie_poll_group_get_stats,
.poll_group_free_stats = nvme_pcie_poll_group_free_stats
};
SPDK_NVME_TRANSPORT_REGISTER(pcie, &pcie_ops);