freebsd-dev/sys/ofed/drivers/net/mlx4/en_tx.c

1103 lines
30 KiB
C
Raw Normal View History

/*
* Copyright (c) 2007, 2014 Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <linux/page.h>
#include <linux/mlx4/cq.h>
#include <linux/slab.h>
#include <linux/mlx4/qp.h>
#include <linux/if_vlan.h>
#include <linux/vmalloc.h>
#include <linux/moduleparam.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/tcp.h>
#include <netinet/tcp_lro.h>
#include <netinet/udp.h>
#include "mlx4_en.h"
enum {
MAX_INLINE = 104, /* 128 - 16 - 4 - 4 */
MAX_BF = 256,
MIN_PKT_LEN = 17,
};
static int inline_thold __read_mostly = MAX_INLINE;
module_param_named(inline_thold, inline_thold, uint, 0444);
MODULE_PARM_DESC(inline_thold, "threshold for using inline data");
int mlx4_en_create_tx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring **pring, u32 size,
u16 stride, int node, int queue_idx)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_tx_ring *ring;
uint32_t x;
int tmp;
int err;
ring = kzalloc_node(sizeof(struct mlx4_en_tx_ring), GFP_KERNEL, node);
if (!ring) {
ring = kzalloc(sizeof(struct mlx4_en_tx_ring), GFP_KERNEL);
if (!ring) {
en_err(priv, "Failed allocating TX ring\n");
return -ENOMEM;
}
}
/* Create DMA descriptor TAG */
if ((err = -bus_dma_tag_create(
bus_get_dma_tag(mdev->pdev->dev.bsddev),
1, /* any alignment */
0, /* no boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MLX4_EN_TX_MAX_PAYLOAD_SIZE, /* maxsize */
MLX4_EN_TX_MAX_MBUF_FRAGS, /* nsegments */
MLX4_EN_TX_MAX_MBUF_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockfuncarg */
&ring->dma_tag)))
goto done;
ring->size = size;
ring->size_mask = size - 1;
ring->stride = stride;
ring->inline_thold = MAX(MIN_PKT_LEN, MIN(inline_thold, MAX_INLINE));
mtx_init(&ring->tx_lock.m, "mlx4 tx", NULL, MTX_DEF);
mtx_init(&ring->comp_lock.m, "mlx4 comp", NULL, MTX_DEF);
/* Allocate the buf ring */
ring->br = buf_ring_alloc(MLX4_EN_DEF_TX_QUEUE_SIZE, M_DEVBUF,
M_WAITOK, &ring->tx_lock.m);
if (ring->br == NULL) {
en_err(priv, "Failed allocating tx_info ring\n");
err = -ENOMEM;
goto err_free_dma_tag;
}
tmp = size * sizeof(struct mlx4_en_tx_info);
ring->tx_info = kzalloc_node(tmp, GFP_KERNEL, node);
if (!ring->tx_info) {
ring->tx_info = kzalloc(tmp, GFP_KERNEL);
if (!ring->tx_info) {
err = -ENOMEM;
goto err_ring;
}
}
/* Create DMA descriptor MAPs */
for (x = 0; x != size; x++) {
err = -bus_dmamap_create(ring->dma_tag, 0,
&ring->tx_info[x].dma_map);
if (err != 0) {
while (x--) {
bus_dmamap_destroy(ring->dma_tag,
ring->tx_info[x].dma_map);
}
goto err_info;
}
}
en_dbg(DRV, priv, "Allocated tx_info ring at addr:%p size:%d\n",
ring->tx_info, tmp);
ring->buf_size = ALIGN(size * ring->stride, MLX4_EN_PAGE_SIZE);
/* Allocate HW buffers on provided NUMA node */
err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, ring->buf_size,
2 * PAGE_SIZE);
if (err) {
en_err(priv, "Failed allocating hwq resources\n");
goto err_dma_map;
}
err = mlx4_en_map_buffer(&ring->wqres.buf);
if (err) {
en_err(priv, "Failed to map TX buffer\n");
goto err_hwq_res;
}
ring->buf = ring->wqres.buf.direct.buf;
en_dbg(DRV, priv, "Allocated TX ring (addr:%p) - buf:%p size:%d "
"buf_size:%d dma:%llx\n", ring, ring->buf, ring->size,
ring->buf_size, (unsigned long long) ring->wqres.buf.direct.map);
err = mlx4_qp_reserve_range(mdev->dev, 1, 1, &ring->qpn,
MLX4_RESERVE_BF_QP);
if (err) {
en_err(priv, "failed reserving qp for TX ring\n");
goto err_map;
}
err = mlx4_qp_alloc(mdev->dev, ring->qpn, &ring->qp);
if (err) {
en_err(priv, "Failed allocating qp %d\n", ring->qpn);
goto err_reserve;
}
ring->qp.event = mlx4_en_sqp_event;
err = mlx4_bf_alloc(mdev->dev, &ring->bf, node);
if (err) {
en_dbg(DRV, priv, "working without blueflame (%d)", err);
ring->bf.uar = &mdev->priv_uar;
ring->bf.uar->map = mdev->uar_map;
ring->bf_enabled = false;
} else
ring->bf_enabled = true;
ring->queue_index = queue_idx;
if (queue_idx < priv->num_tx_rings_p_up )
CPU_SET(queue_idx, &ring->affinity_mask);
*pring = ring;
return 0;
err_reserve:
mlx4_qp_release_range(mdev->dev, ring->qpn, 1);
err_map:
mlx4_en_unmap_buffer(&ring->wqres.buf);
err_hwq_res:
mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
err_dma_map:
for (x = 0; x != size; x++)
bus_dmamap_destroy(ring->dma_tag, ring->tx_info[x].dma_map);
err_info:
vfree(ring->tx_info);
err_ring:
buf_ring_free(ring->br, M_DEVBUF);
err_free_dma_tag:
bus_dma_tag_destroy(ring->dma_tag);
done:
kfree(ring);
return err;
}
void mlx4_en_destroy_tx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring **pring)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_tx_ring *ring = *pring;
uint32_t x;
en_dbg(DRV, priv, "Destroying tx ring, qpn: %d\n", ring->qpn);
buf_ring_free(ring->br, M_DEVBUF);
if (ring->bf_enabled)
mlx4_bf_free(mdev->dev, &ring->bf);
mlx4_qp_remove(mdev->dev, &ring->qp);
mlx4_qp_free(mdev->dev, &ring->qp);
mlx4_qp_release_range(priv->mdev->dev, ring->qpn, 1);
mlx4_en_unmap_buffer(&ring->wqres.buf);
mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
for (x = 0; x != ring->size; x++)
bus_dmamap_destroy(ring->dma_tag, ring->tx_info[x].dma_map);
vfree(ring->tx_info);
mtx_destroy(&ring->tx_lock.m);
mtx_destroy(&ring->comp_lock.m);
bus_dma_tag_destroy(ring->dma_tag);
kfree(ring);
*pring = NULL;
}
int mlx4_en_activate_tx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring *ring,
int cq, int user_prio)
{
struct mlx4_en_dev *mdev = priv->mdev;
int err;
ring->cqn = cq;
ring->prod = 0;
ring->cons = 0xffffffff;
ring->last_nr_txbb = 1;
ring->poll_cnt = 0;
ring->blocked = 0;
memset(ring->buf, 0, ring->buf_size);
ring->qp_state = MLX4_QP_STATE_RST;
ring->doorbell_qpn = ring->qp.qpn << 8;
mlx4_en_fill_qp_context(priv, ring->size, ring->stride, 1, 0, ring->qpn,
ring->cqn, user_prio, &ring->context);
if (ring->bf_enabled)
ring->context.usr_page = cpu_to_be32(ring->bf.uar->index);
err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, &ring->context,
&ring->qp, &ring->qp_state);
return err;
}
void mlx4_en_deactivate_tx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring *ring)
{
struct mlx4_en_dev *mdev = priv->mdev;
mlx4_qp_modify(mdev->dev, NULL, ring->qp_state,
MLX4_QP_STATE_RST, NULL, 0, 0, &ring->qp);
}
static volatile struct mlx4_wqe_data_seg *
mlx4_en_store_inline_lso_data(volatile struct mlx4_wqe_data_seg *dseg,
struct mbuf *mb, int len, __be32 owner_bit)
{
uint8_t *inl = __DEVOLATILE(uint8_t *, dseg);
/* copy data into place */
m_copydata(mb, 0, len, inl + 4);
dseg += DIV_ROUND_UP(4 + len, DS_SIZE_ALIGNMENT);
return (dseg);
}
static void
mlx4_en_store_inline_lso_header(volatile struct mlx4_wqe_data_seg *dseg,
int len, __be32 owner_bit)
{
}
static void
mlx4_en_stamp_wqe(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring *ring, u32 index, u8 owner)
{
struct mlx4_en_tx_info *tx_info = &ring->tx_info[index];
struct mlx4_en_tx_desc *tx_desc = (struct mlx4_en_tx_desc *)
(ring->buf + (index * TXBB_SIZE));
volatile __be32 *ptr = (__be32 *)tx_desc;
const __be32 stamp = cpu_to_be32(STAMP_VAL |
((u32)owner << STAMP_SHIFT));
u32 i;
/* Stamp the freed descriptor */
for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE; i += STAMP_STRIDE) {
*ptr = stamp;
ptr += STAMP_DWORDS;
}
}
static u32
mlx4_en_free_tx_desc(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring *ring, u32 index)
{
struct mlx4_en_tx_info *tx_info;
struct mbuf *mb;
tx_info = &ring->tx_info[index];
mb = tx_info->mb;
if (mb == NULL)
goto done;
bus_dmamap_sync(ring->dma_tag, tx_info->dma_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->dma_tag, tx_info->dma_map);
m_freem(mb);
done:
return (tx_info->nr_txbb);
}
int mlx4_en_free_tx_buf(struct net_device *dev, struct mlx4_en_tx_ring *ring)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
int cnt = 0;
/* Skip last polled descriptor */
ring->cons += ring->last_nr_txbb;
en_dbg(DRV, priv, "Freeing Tx buf - cons:0x%x prod:0x%x\n",
ring->cons, ring->prod);
if ((u32) (ring->prod - ring->cons) > ring->size) {
en_warn(priv, "Tx consumer passed producer!\n");
return 0;
}
while (ring->cons != ring->prod) {
ring->last_nr_txbb = mlx4_en_free_tx_desc(priv, ring,
ring->cons & ring->size_mask);
ring->cons += ring->last_nr_txbb;
cnt++;
}
if (cnt)
en_dbg(DRV, priv, "Freed %d uncompleted tx descriptors\n", cnt);
return cnt;
}
static bool
mlx4_en_tx_ring_is_full(struct mlx4_en_tx_ring *ring)
{
int wqs;
wqs = ring->size - (ring->prod - ring->cons);
return (wqs < (HEADROOM + (2 * MLX4_EN_TX_WQE_MAX_WQEBBS)));
}
static int mlx4_en_process_tx_cq(struct net_device *dev,
struct mlx4_en_cq *cq)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
struct mlx4_cq *mcq = &cq->mcq;
struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring];
struct mlx4_cqe *cqe;
u16 index;
u16 new_index, ring_index, stamp_index;
u32 txbbs_skipped = 0;
u32 txbbs_stamp = 0;
u32 cons_index = mcq->cons_index;
int size = cq->size;
u32 size_mask = ring->size_mask;
struct mlx4_cqe *buf = cq->buf;
int factor = priv->cqe_factor;
if (!priv->port_up)
return 0;
index = cons_index & size_mask;
cqe = &buf[(index << factor) + factor];
ring_index = ring->cons & size_mask;
stamp_index = ring_index;
/* Process all completed CQEs */
while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK,
cons_index & size)) {
/*
* make sure we read the CQE after we read the
* ownership bit
*/
rmb();
if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
MLX4_CQE_OPCODE_ERROR)) {
en_err(priv, "CQE completed in error - vendor syndrom: 0x%x syndrom: 0x%x\n",
((struct mlx4_err_cqe *)cqe)->
vendor_err_syndrome,
((struct mlx4_err_cqe *)cqe)->syndrome);
}
/* Skip over last polled CQE */
new_index = be16_to_cpu(cqe->wqe_index) & size_mask;
do {
txbbs_skipped += ring->last_nr_txbb;
ring_index = (ring_index + ring->last_nr_txbb) & size_mask;
/* free next descriptor */
ring->last_nr_txbb = mlx4_en_free_tx_desc(
priv, ring, ring_index);
mlx4_en_stamp_wqe(priv, ring, stamp_index,
!!((ring->cons + txbbs_stamp) &
ring->size));
stamp_index = ring_index;
txbbs_stamp = txbbs_skipped;
} while (ring_index != new_index);
++cons_index;
index = cons_index & size_mask;
cqe = &buf[(index << factor) + factor];
}
/*
* To prevent CQ overflow we first update CQ consumer and only then
* the ring consumer.
*/
mcq->cons_index = cons_index;
mlx4_cq_set_ci(mcq);
wmb();
ring->cons += txbbs_skipped;
/* Wakeup Tx queue if it was stopped and ring is not full */
if (unlikely(ring->blocked) && !mlx4_en_tx_ring_is_full(ring)) {
ring->blocked = 0;
if (atomic_fetchadd_int(&priv->blocked, -1) == 1)
atomic_clear_int(&dev->if_drv_flags ,IFF_DRV_OACTIVE);
ring->wake_queue++;
priv->port_stats.wake_queue++;
}
return (0);
}
void mlx4_en_tx_irq(struct mlx4_cq *mcq)
{
struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq);
struct mlx4_en_priv *priv = netdev_priv(cq->dev);
struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring];
if (!spin_trylock(&ring->comp_lock))
return;
mlx4_en_process_tx_cq(cq->dev, cq);
mod_timer(&cq->timer, jiffies + 1);
spin_unlock(&ring->comp_lock);
}
void mlx4_en_poll_tx_cq(unsigned long data)
{
struct mlx4_en_cq *cq = (struct mlx4_en_cq *) data;
struct mlx4_en_priv *priv = netdev_priv(cq->dev);
struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring];
u32 inflight;
INC_PERF_COUNTER(priv->pstats.tx_poll);
if (!spin_trylock(&ring->comp_lock)) {
mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT);
return;
}
mlx4_en_process_tx_cq(cq->dev, cq);
inflight = (u32) (ring->prod - ring->cons - ring->last_nr_txbb);
/* If there are still packets in flight and the timer has not already
* been scheduled by the Tx routine then schedule it here to guarantee
* completion processing of these packets */
if (inflight && priv->port_up)
mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT);
spin_unlock(&ring->comp_lock);
}
static inline void mlx4_en_xmit_poll(struct mlx4_en_priv *priv, int tx_ind)
{
struct mlx4_en_cq *cq = priv->tx_cq[tx_ind];
struct mlx4_en_tx_ring *ring = priv->tx_ring[tx_ind];
/* If we don't have a pending timer, set one up to catch our recent
post in case the interface becomes idle */
if (!timer_pending(&cq->timer))
mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT);
/* Poll the CQ every mlx4_en_TX_MODER_POLL packets */
if ((++ring->poll_cnt & (MLX4_EN_TX_POLL_MODER - 1)) == 0)
if (spin_trylock(&ring->comp_lock)) {
mlx4_en_process_tx_cq(priv->dev, cq);
spin_unlock(&ring->comp_lock);
}
}
static u16
mlx4_en_get_inline_hdr_size(struct mlx4_en_tx_ring *ring, struct mbuf *mb)
{
u16 retval;
/* only copy from first fragment, if possible */
retval = MIN(ring->inline_thold, mb->m_len);
/* check for too little data */
if (unlikely(retval < MIN_PKT_LEN))
retval = MIN(ring->inline_thold, mb->m_pkthdr.len);
return (retval);
}
static int
mlx4_en_get_header_size(struct mbuf *mb)
{
struct ether_vlan_header *eh;
struct tcphdr *th;
struct ip *ip;
int ip_hlen, tcp_hlen;
struct ip6_hdr *ip6;
uint16_t eth_type;
int eth_hdr_len;
eh = mtod(mb, struct ether_vlan_header *);
if (mb->m_len < ETHER_HDR_LEN)
return (0);
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
eth_type = ntohs(eh->evl_proto);
eth_hdr_len = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
} else {
eth_type = ntohs(eh->evl_encap_proto);
eth_hdr_len = ETHER_HDR_LEN;
}
if (mb->m_len < eth_hdr_len)
return (0);
switch (eth_type) {
case ETHERTYPE_IP:
ip = (struct ip *)(mb->m_data + eth_hdr_len);
if (mb->m_len < eth_hdr_len + sizeof(*ip))
return (0);
if (ip->ip_p != IPPROTO_TCP)
return (0);
ip_hlen = ip->ip_hl << 2;
eth_hdr_len += ip_hlen;
break;
case ETHERTYPE_IPV6:
ip6 = (struct ip6_hdr *)(mb->m_data + eth_hdr_len);
if (mb->m_len < eth_hdr_len + sizeof(*ip6))
return (0);
if (ip6->ip6_nxt != IPPROTO_TCP)
return (0);
eth_hdr_len += sizeof(*ip6);
break;
default:
return (0);
}
if (mb->m_len < eth_hdr_len + sizeof(*th))
return (0);
th = (struct tcphdr *)(mb->m_data + eth_hdr_len);
tcp_hlen = th->th_off << 2;
eth_hdr_len += tcp_hlen;
if (mb->m_len < eth_hdr_len)
return (0);
return (eth_hdr_len);
}
static volatile struct mlx4_wqe_data_seg *
mlx4_en_store_inline_data(volatile struct mlx4_wqe_data_seg *dseg,
struct mbuf *mb, int len, __be32 owner_bit)
{
uint8_t *inl = __DEVOLATILE(uint8_t *, dseg);
const int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - 4;
if (unlikely(len < MIN_PKT_LEN)) {
m_copydata(mb, 0, len, inl + 4);
memset(inl + 4 + len, 0, MIN_PKT_LEN - len);
dseg += DIV_ROUND_UP(4 + MIN_PKT_LEN, DS_SIZE_ALIGNMENT);
} else if (len <= spc) {
m_copydata(mb, 0, len, inl + 4);
dseg += DIV_ROUND_UP(4 + len, DS_SIZE_ALIGNMENT);
} else {
m_copydata(mb, 0, spc, inl + 4);
m_copydata(mb, spc, len - spc, inl + 8 + spc);
dseg += DIV_ROUND_UP(8 + len, DS_SIZE_ALIGNMENT);
}
return (dseg);
}
static void
mlx4_en_store_inline_header(volatile struct mlx4_wqe_data_seg *dseg,
int len, __be32 owner_bit)
{
uint8_t *inl = __DEVOLATILE(uint8_t *, dseg);
const int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - 4;
if (unlikely(len < MIN_PKT_LEN)) {
*(volatile uint32_t *)inl =
SET_BYTE_COUNT((1 << 31) | MIN_PKT_LEN);
} else if (len <= spc) {
*(volatile uint32_t *)inl =
SET_BYTE_COUNT((1 << 31) | len);
} else {
*(volatile uint32_t *)(inl + 4 + spc) =
SET_BYTE_COUNT((1 << 31) | (len - spc));
wmb();
*(volatile uint32_t *)inl =
SET_BYTE_COUNT((1 << 31) | spc);
}
}
static uint32_t hashrandom;
static void hashrandom_init(void *arg)
{
/*
* It is assumed that the random subsystem has been
* initialized when this function is called:
*/
hashrandom = m_ether_tcpip_hash_init();
}
SYSINIT(hashrandom_init, SI_SUB_RANDOM, SI_ORDER_ANY, &hashrandom_init, NULL);
u16 mlx4_en_select_queue(struct net_device *dev, struct mbuf *mb)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
u32 rings_p_up = priv->num_tx_rings_p_up;
u32 up = 0;
u32 queue_index;
#if (MLX4_EN_NUM_UP > 1)
/* Obtain VLAN information if present */
if (mb->m_flags & M_VLANTAG) {
u32 vlan_tag = mb->m_pkthdr.ether_vtag;
up = (vlan_tag >> 13) % MLX4_EN_NUM_UP;
}
#endif
queue_index = m_ether_tcpip_hash(MBUF_HASHFLAG_L3 | MBUF_HASHFLAG_L4, mb, hashrandom);
return ((queue_index % rings_p_up) + (up * rings_p_up));
}
static void mlx4_bf_copy(void __iomem *dst, volatile unsigned long *src, unsigned bytecnt)
{
__iowrite64_copy(dst, __DEVOLATILE(void *, src), bytecnt / 8);
}
static u64 mlx4_en_mac_to_u64(u8 *addr)
{
u64 mac = 0;
int i;
for (i = 0; i < ETHER_ADDR_LEN; i++) {
mac <<= 8;
mac |= addr[i];
}
return mac;
}
static int mlx4_en_xmit(struct mlx4_en_priv *priv, int tx_ind, struct mbuf **mbp)
{
enum {
DS_FACT = TXBB_SIZE / DS_SIZE_ALIGNMENT,
CTRL_FLAGS = cpu_to_be32(MLX4_WQE_CTRL_CQ_UPDATE |
MLX4_WQE_CTRL_SOLICITED),
};
bus_dma_segment_t segs[MLX4_EN_TX_MAX_MBUF_FRAGS];
volatile struct mlx4_wqe_data_seg *dseg;
volatile struct mlx4_wqe_data_seg *dseg_inline;
volatile struct mlx4_en_tx_desc *tx_desc;
struct mlx4_en_tx_ring *ring = priv->tx_ring[tx_ind];
struct ifnet *ifp = priv->dev;
struct mlx4_en_tx_info *tx_info;
struct mbuf *mb = *mbp;
struct mbuf *m;
__be32 owner_bit;
int nr_segs;
int pad;
int err;
u32 bf_size;
u32 bf_prod;
u32 opcode;
u16 index;
u16 ds_cnt;
u16 ihs;
if (unlikely(!priv->port_up)) {
err = EINVAL;
goto tx_drop;
}
/* check if TX ring is full */
if (unlikely(mlx4_en_tx_ring_is_full(ring))) {
/* every full native Tx ring stops queue */
if (ring->blocked == 0)
atomic_add_int(&priv->blocked, 1);
/* Set HW-queue-is-full flag */
atomic_set_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE);
priv->port_stats.queue_stopped++;
ring->blocked = 1;
priv->port_stats.queue_stopped++;
ring->queue_stopped++;
/* Use interrupts to find out when queue opened */
mlx4_en_arm_cq(priv, priv->tx_cq[tx_ind]);
return (ENOBUFS);
}
/* sanity check we are not wrapping around */
KASSERT(((~ring->prod) & ring->size_mask) >=
(MLX4_EN_TX_WQE_MAX_WQEBBS - 1), ("Wrapping around TX ring"));
/* Track current inflight packets for performance analysis */
AVG_PERF_COUNTER(priv->pstats.inflight_avg,
(u32) (ring->prod - ring->cons - 1));
/* Track current mbuf packet header length */
AVG_PERF_COUNTER(priv->pstats.tx_pktsz_avg, mb->m_pkthdr.len);
/* Grab an index and try to transmit packet */
owner_bit = (ring->prod & ring->size) ?
cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0;
index = ring->prod & ring->size_mask;
tx_desc = (volatile struct mlx4_en_tx_desc *)
(ring->buf + index * TXBB_SIZE);
tx_info = &ring->tx_info[index];
dseg = &tx_desc->data;
/* send a copy of the frame to the BPF listener, if any */
if (ifp != NULL && ifp->if_bpf != NULL)
ETHER_BPF_MTAP(ifp, mb);
/* get default flags */
tx_desc->ctrl.srcrb_flags = CTRL_FLAGS;
if (mb->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO))
tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM);
if (mb->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP |
CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_TCP_UDP_CSUM);
/* do statistics */
if (likely(tx_desc->ctrl.srcrb_flags != CTRL_FLAGS)) {
priv->port_stats.tx_chksum_offload++;
ring->tx_csum++;
}
/* check for VLAN tag */
if (mb->m_flags & M_VLANTAG) {
tx_desc->ctrl.vlan_tag = cpu_to_be16(mb->m_pkthdr.ether_vtag);
tx_desc->ctrl.ins_vlan = MLX4_WQE_CTRL_INS_VLAN;
} else {
tx_desc->ctrl.vlan_tag = 0;
tx_desc->ctrl.ins_vlan = 0;
}
/* clear immediate field */
tx_desc->ctrl.imm = 0;
/* Handle LSO (TSO) packets */
if (mb->m_pkthdr.csum_flags & CSUM_TSO) {
u32 payload_len;
u32 mss = mb->m_pkthdr.tso_segsz;
u32 num_pkts;
opcode = cpu_to_be32(MLX4_OPCODE_LSO | MLX4_WQE_CTRL_RR) |
owner_bit;
ihs = mlx4_en_get_header_size(mb);
if (unlikely(ihs > MAX_INLINE)) {
ring->oversized_packets++;
err = EINVAL;
goto tx_drop;
}
tx_desc->lso.mss_hdr_size = cpu_to_be32((mss << 16) | ihs);
payload_len = mb->m_pkthdr.len - ihs;
if (unlikely(payload_len == 0))
num_pkts = 1;
else
num_pkts = DIV_ROUND_UP(payload_len, mss);
ring->bytes += payload_len + (num_pkts * ihs);
ring->packets += num_pkts;
priv->port_stats.tso_packets++;
/* store pointer to inline header */
dseg_inline = dseg;
/* copy data inline */
dseg = mlx4_en_store_inline_lso_data(dseg,
mb, ihs, owner_bit);
} else {
opcode = cpu_to_be32(MLX4_OPCODE_SEND) |
owner_bit;
ihs = mlx4_en_get_inline_hdr_size(ring, mb);
ring->bytes += max_t (unsigned int,
mb->m_pkthdr.len, ETHER_MIN_LEN - ETHER_CRC_LEN);
ring->packets++;
/* store pointer to inline header */
dseg_inline = dseg;
/* copy data inline */
dseg = mlx4_en_store_inline_data(dseg,
mb, ihs, owner_bit);
}
m_adj(mb, ihs);
/* trim off empty mbufs */
while (mb->m_len == 0) {
mb = m_free(mb);
/* check if all data has been inlined */
if (mb == NULL) {
nr_segs = 0;
goto skip_dma;
}
}
err = bus_dmamap_load_mbuf_sg(ring->dma_tag, tx_info->dma_map,
mb, segs, &nr_segs, BUS_DMA_NOWAIT);
if (unlikely(err == EFBIG)) {
/* Too many mbuf fragments */
m = m_defrag(mb, M_NOWAIT);
if (m == NULL) {
ring->oversized_packets++;
goto tx_drop;
}
mb = m;
/* Try again */
err = bus_dmamap_load_mbuf_sg(ring->dma_tag, tx_info->dma_map,
mb, segs, &nr_segs, BUS_DMA_NOWAIT);
}
/* catch errors */
if (unlikely(err != 0)) {
ring->oversized_packets++;
goto tx_drop;
}
/* make sure all mbuf data is written to RAM */
bus_dmamap_sync(ring->dma_tag, tx_info->dma_map,
BUS_DMASYNC_PREWRITE);
skip_dma:
/* compute number of DS needed */
ds_cnt = (dseg - ((volatile struct mlx4_wqe_data_seg *)tx_desc)) + nr_segs;
/*
* Check if the next request can wrap around and fill the end
* of the current request with zero immediate data:
*/
pad = DIV_ROUND_UP(ds_cnt, DS_FACT);
pad = (~(ring->prod + pad)) & ring->size_mask;
if (unlikely(pad < (MLX4_EN_TX_WQE_MAX_WQEBBS - 1))) {
/*
* Compute the least number of DS blocks we need to
* pad in order to achieve a TX ring wraparound:
*/
pad = (DS_FACT * (pad + 1));
} else {
/*
* The hardware will automatically jump to the next
* TXBB. No need for padding.
*/
pad = 0;
}
/* compute total number of DS blocks */
ds_cnt += pad;
/*
* When modifying this code, please ensure that the following
* computation is always less than or equal to 0x3F:
*
* ((MLX4_EN_TX_WQE_MAX_WQEBBS - 1) * DS_FACT) +
* (MLX4_EN_TX_WQE_MAX_WQEBBS * DS_FACT)
*
* Else the "ds_cnt" variable can become too big.
*/
tx_desc->ctrl.fence_size = (ds_cnt & 0x3f);
/* store pointer to mbuf */
tx_info->mb = mb;
tx_info->nr_txbb = DIV_ROUND_UP(ds_cnt, DS_FACT);
bf_size = ds_cnt * DS_SIZE_ALIGNMENT;
bf_prod = ring->prod;
/* compute end of "dseg" array */
dseg += nr_segs + pad;
/* pad using zero immediate dseg */
while (pad--) {
dseg--;
dseg->addr = 0;
dseg->lkey = 0;
wmb();
dseg->byte_count = SET_BYTE_COUNT((1 << 31)|0);
}
/* fill segment list */
while (nr_segs--) {
if (unlikely(segs[nr_segs].ds_len == 0)) {
dseg--;
dseg->addr = 0;
dseg->lkey = 0;
wmb();
dseg->byte_count = SET_BYTE_COUNT((1 << 31)|0);
} else {
dseg--;
dseg->addr = cpu_to_be64((uint64_t)segs[nr_segs].ds_addr);
dseg->lkey = cpu_to_be32(priv->mdev->mr.key);
wmb();
dseg->byte_count = SET_BYTE_COUNT((uint32_t)segs[nr_segs].ds_len);
}
}
wmb();
/* write owner bits in reverse order */
if ((opcode & cpu_to_be32(0x1F)) == cpu_to_be32(MLX4_OPCODE_LSO))
mlx4_en_store_inline_lso_header(dseg_inline, ihs, owner_bit);
else
mlx4_en_store_inline_header(dseg_inline, ihs, owner_bit);
if (unlikely(priv->validate_loopback)) {
/* Copy dst mac address to wqe */
struct ether_header *ethh;
u64 mac;
u32 mac_l, mac_h;
ethh = mtod(mb, struct ether_header *);
mac = mlx4_en_mac_to_u64(ethh->ether_dhost);
if (mac) {
mac_h = (u32) ((mac & 0xffff00000000ULL) >> 16);
mac_l = (u32) (mac & 0xffffffff);
tx_desc->ctrl.srcrb_flags |= cpu_to_be32(mac_h);
tx_desc->ctrl.imm = cpu_to_be32(mac_l);
}
}
/* update producer counter */
ring->prod += tx_info->nr_txbb;
if (ring->bf_enabled && bf_size <= MAX_BF &&
(tx_desc->ctrl.ins_vlan != MLX4_WQE_CTRL_INS_VLAN)) {
/* store doorbell number */
*(volatile __be32 *) (&tx_desc->ctrl.vlan_tag) |= cpu_to_be32(ring->doorbell_qpn);
/* or in producer number for this WQE */
opcode |= cpu_to_be32((bf_prod & 0xffff) << 8);
/*
* Ensure the new descriptor hits memory before
* setting ownership of this descriptor to HW:
*/
wmb();
tx_desc->ctrl.owner_opcode = opcode;
wmb();
mlx4_bf_copy(((u8 *)ring->bf.reg) + ring->bf.offset,
(volatile unsigned long *) &tx_desc->ctrl, bf_size);
wmb();
ring->bf.offset ^= ring->bf.buf_size;
} else {
/*
* Ensure the new descriptor hits memory before
* setting ownership of this descriptor to HW:
*/
wmb();
tx_desc->ctrl.owner_opcode = opcode;
wmb();
writel(cpu_to_be32(ring->doorbell_qpn),
((u8 *)ring->bf.uar->map) + MLX4_SEND_DOORBELL);
}
return (0);
tx_drop:
*mbp = NULL;
m_freem(mb);
return (err);
}
static int
mlx4_en_transmit_locked(struct ifnet *dev, int tx_ind, struct mbuf *m)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
struct mlx4_en_tx_ring *ring;
struct mbuf *next;
int enqueued, err = 0;
ring = priv->tx_ring[tx_ind];
if ((dev->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || priv->port_up == 0) {
if (m != NULL)
err = drbr_enqueue(dev, ring->br, m);
return (err);
}
enqueued = 0;
if (m != NULL)
/*
* If we can't insert mbuf into drbr, try to xmit anyway.
* We keep the error we got so we could return that after xmit.
*/
err = drbr_enqueue(dev, ring->br, m);
/* Process the queue */
2013-02-09 04:13:45 +00:00
while ((next = drbr_peek(dev, ring->br)) != NULL) {
if (mlx4_en_xmit(priv, tx_ind, &next) != 0) {
if (next == NULL) {
2013-02-09 04:13:45 +00:00
drbr_advance(dev, ring->br);
} else {
2013-02-09 04:13:45 +00:00
drbr_putback(dev, ring->br, next);
}
break;
}
2013-02-09 04:13:45 +00:00
drbr_advance(dev, ring->br);
enqueued++;
if ((dev->if_drv_flags & IFF_DRV_RUNNING) == 0)
break;
}
if (enqueued > 0)
ring->watchdog_time = ticks;
return (err);
}
void
mlx4_en_tx_que(void *context, int pending)
{
struct mlx4_en_tx_ring *ring;
struct mlx4_en_priv *priv;
struct net_device *dev;
struct mlx4_en_cq *cq;
int tx_ind;
cq = context;
dev = cq->dev;
priv = dev->if_softc;
tx_ind = cq->ring;
ring = priv->tx_ring[tx_ind];
if (dev->if_drv_flags & IFF_DRV_RUNNING) {
mlx4_en_xmit_poll(priv, tx_ind);
spin_lock(&ring->tx_lock);
if (!drbr_empty(dev, ring->br))
mlx4_en_transmit_locked(dev, tx_ind, NULL);
spin_unlock(&ring->tx_lock);
}
}
int
mlx4_en_transmit(struct ifnet *dev, struct mbuf *m)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
struct mlx4_en_tx_ring *ring;
struct mlx4_en_cq *cq;
int i, err = 0;
/* Compute which queue to use */
if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
i = m->m_pkthdr.flowid % priv->tx_ring_num;
}
else {
i = mlx4_en_select_queue(dev, m);
}
ring = priv->tx_ring[i];
if (spin_trylock(&ring->tx_lock)) {
err = mlx4_en_transmit_locked(dev, i, m);
spin_unlock(&ring->tx_lock);
/* Poll CQ here */
mlx4_en_xmit_poll(priv, i);
} else {
err = drbr_enqueue(dev, ring->br, m);
cq = priv->tx_cq[i];
taskqueue_enqueue(cq->tq, &cq->cq_task);
}
return (err);
}
/*
* Flush ring buffers.
*/
void
mlx4_en_qflush(struct ifnet *dev)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
struct mlx4_en_tx_ring *ring;
struct mbuf *m;
for (int i = 0; i < priv->tx_ring_num; i++) {
ring = priv->tx_ring[i];
spin_lock(&ring->tx_lock);
while ((m = buf_ring_dequeue_sc(ring->br)) != NULL)
m_freem(m);
spin_unlock(&ring->tx_lock);
}
if_qflush(dev);
}