time I tinkered around here. Since INTREN is called from the interrupt
critical path now, it should not be too expensive. In this case, we
look at the bits being changed to decide which 8 bit IO port to write to
rather than unconditionally writing to both. I could probably have gone
further and only done the write if the bits actually changed, but that
seemed overkill for the usual case in interrupt threads.
[an outb is rather expensive when it has to cross the ISA bus]
as multi-processor kernels. The old way made it difficult for kernel
modules to be portable between uni-processor and multi-processor
kernels. It is no longer necessary to jump through hoops.
- always load %fs with the private segment on entry to the kernel
- change the type of the self referntial pointer from struct privatespace
to struct globaldata
- make the globaldata symbol have value 0 in all cases, so the symbols
in globals.s are always offsets, not aliases for fields in globaldata
- define the globaldata space used for uniprocessor kernels in C, rather
than assembler
- change the assmebly language accessors to use %fs, add a macro
PCPU_ADDR(member, reg), which loads the register reg with the address
of the per-cpu variable member
variables from i386 assembly language. The syntax is PCPU(member)
where member is the capitalized name of the per-cpu variable, without
the gd_ prefix. Example: movl %eax,PCPU(CURPROC). The capitalization
is due to using the offsets generated by genassym rather than the symbols
provided by linking with globals.o. asmacros.h is the wrong place for
this but it seemed as good a place as any for now. The old implementation
in asnames.h has not been removed because it is still used to de-mangle
the symbols used by the C variables for the UP case.
Also, while here, run up to 32 interrupt sources on APIC systems.
Normalize INTREN/INTRDIS so they are the same on both UP and SMP systems
rather than sometimes a macro, and sometimes a function.
Reviewed by: jhb, jakeb
because it only takes a struct tag which makes it impossible to
use unions, typedefs etc.
Define __offsetof() in <machine/ansi.h>
Define offsetof() in terms of __offsetof() in <stddef.h> and <sys/types.h>
Remove myriad of local offsetof() definitions.
Remove includes of <stddef.h> in kernel code.
NB: Kernelcode should *never* include from /usr/include !
Make <sys/queue.h> include <machine/ansi.h> to avoid polluting the API.
Deprecate <struct.h> with a warning. The warning turns into an error on
01-12-2000 and the file gets removed entirely on 01-01-2001.
Paritials reviews by: various.
Significant brucifications by: bde
type of software interrupt. Roughly, what used to be a bit in spending
now maps to a swi thread. Each thread can have multiple handlers, just
like a hardware interrupt thread.
- Instead of using a bitmask of pending interrupts, we schedule the specific
software interrupt thread to run, so spending, NSWI, and the shandlers
array are no longer needed. We can now have an arbitrary number of
software interrupt threads. When you register a software interrupt
thread via sinthand_add(), you get back a struct intrhand that you pass
to sched_swi() when you wish to schedule your swi thread to run.
- Convert the name of 'struct intrec' to 'struct intrhand' as it is a bit
more intuitive. Also, prefix all the members of struct intrhand with
'ih_'.
- Make swi_net() a MI function since there is now no point in it being
MD.
Submitted by: cp
return through doreti to handle ast's. This is necessary for the
clock interrupts to work properly.
- Change the clock interrupts on the x86 to be fast instead of threaded.
This is needed because both hardclock() and statclock() need to run in
the context of the current process, not in a separate thread context.
- Kill the prevproc hack as it is no longer needed.
- We really need Giant when we call psignal(), but we don't want to block
during the clock interrupt. Instead, use two p_flag's in the proc struct
to mark the current process as having a pending SIGVTALRM or a SIGPROF
and let them be delivered during ast() when hardclock() has finished
running.
- Remove CLKF_BASEPRI, which was #ifdef'd out on the x86 anyways. It was
broken on the x86 if it was turned on since cpl is gone. It's only use
was to bogusly run softclock() directly during hardclock() rather than
scheduling an SWI.
- Remove the COM_LOCK simplelock and replace it with a clock_lock spin
mutex. Since the spin mutex already handles disabling/restoring
interrupts appropriately, this also lets us axe all the *_intr() fu.
- Back out the hacks in the APIC_IO x86 cpu_initclocks() code to use
temporary fast interrupts for the APIC trial.
- Add two new process flags P_ALRMPEND and P_PROFPEND to mark the pending
signals in hardclock() that are to be delivered in ast().
Submitted by: jakeb (making statclock safe in a fast interrupt)
Submitted by: cp (concept of delaying signals until ast())
- Make softinterrupts (SWI's) almost completely MI, and divorce them
completely from the x86 hardware interrupt code.
- The ihandlers array is now gone. Instead, there is a MI shandlers array
that just contains SWI handlers.
- Most of the former machine/ipl.h files have moved to a new sys/ipl.h.
- Stub out all the spl*() functions on all architectures.
Submitted by: dfr
thread for each interrupt that comes in. If we don't, log the event and
return immediately for a hardware interrupt. For a softinterrupt, panic
instead.
Submitted by: ben
newbus for referencing device interrupt handlers.
- Move the 'struct intrec' type which describes interrupt sources into
sys/interrupt.h instead of making it just be a x86 structure.
- Don't create 'ithd' and 'intrec' typedefs, instead, just use 'struct ithd'
and 'struct intrec'
- Move the code to translate new-bus interrupt flags into an interrupt thread
priority out of the x86 nexus code and into a MI ithread_priority()
function in sys/kern/kern_intr.c.
- Remove now-uneeded x86-specific headers from sys/dev/ata/ata-all.c and
sys/pci/pci_compat.c.
don't take an arg, but swi_generic() is special in order to avoid one
whole conditional branch in the old SWI dispatch code. The new SWI
dispatch code passed it a garbage arg. Bypass swi_generic() and call
swi_dispatcher() directly, like the corresponding alpha code has always
done.
The panic was rare because because it only occurred if more than one
of the {sio,cy,rc} drivers was configured and one was active, and the
cy driver doesn't even compile.
include:
* Mutual exclusion is used instead of spl*(). See mutex(9). (Note: The
alpha port is still in transition and currently uses both.)
* Per-CPU idle processes.
* Interrupts are run in their own separate kernel threads and can be
preempted (i386 only).
Partially contributed by: BSDi (BSD/OS)
Submissions by (at least): cp, dfr, dillon, grog, jake, jhb, sheldonh
panicing and return a status so that we can decide whether to drop
into DDB or panic. If the status from isa_nmi is true, panic the
kernel based on machdep.panic_on_nmi, otherwise if DDB is
enabled, drop to DDB based on machdep.ddb_on_nmi.
Reviewed by: peter, phk
the PnP probe is merely a stub as we make assumptions about some of this
hardware before we have probed it.
Since these devices (with the exception of the speaker) are 'standard',
suppress output in the !bootverbose case to clean up the probe messages
somewhat.
and does not require that evil list of drivers in isa_compat.h.
It uses the same strategy that pci drivers use, namely a
COMPAT_ISA_DRIVER() macro that creates the glue on the fly.
Theoretically old-style isa drivers should be preloadable now.
operands. `movw' could be used, but instead let the assembler decide
the right instruction to use.
2. AT&T asm syntax requires a leading '*' in front of the operand for
indirect calls and jumps.
includes one of bus_at386.h and bus_pc98.h. Becuase only bus_pc98.h
supports indirect pio and bus_at386.h is identical to old bus.h, there
is no functional change in PC-AT's kernels. That is, it cannot cause
performance loss.
Submitted by: nyan
Reviewed by: imp
bde and luoqi provided useful comments for earlier version.
Make the public interface more systematically named.
Remove the alternate method, it doesn't do any good, only ruins performance.
Add counters to profile the usage of the 8 access functions.
Apply the beer-ware to my code.
The weird +/- counts are caused by two repocopies behind the scenes:
kern/kern_clock.c -> kern/kern_tc.c
sys/time.h -> sys/timetc.h
(thanks peter!)
it's options COMPAT_OLDISA and COMPAT_OLDPCI. This is meant to be a
fairly strong incentive to update the older drivers to newbus, but doesn't
(quite) leave anybody hanging with no hardware support. I was talking with
a few folks and I was encouraged to simply break or disable the shims but
that was a bit too drastic for my liking.
the low level interrupt handler number should be used. Change
setup_apic_irq_mapping() to allocate low level interrupt handler X (Xintr${X})
for any ISA interrupt X mentioned in the MP table.
Remove an assumption in the driver for the system clock (clock.c) that
interrupts mentioned in the MP table as delivered to IOAPIC #0 intpin Y
is handled by low level interrupt handler Y (Xintr${Y}) but don't assume
that low level interrupt handler 0 (Xintr0) is used.
Don't allocate two low level interrupt handlers for the system clock.
Reviewed by: NOKUBI Hirotaka <hnokubi@yyy.or.jp>
is an application space macro and the applications are supposed to be free
to use it as they please (but cannot). This is consistant with the other
BSD's who made this change quite some time ago. More commits to come.
is not configured. Including <isa/isavar.h> when it is not used is
harmful as well as bogus, since it includes "isa_if.h" which is not
generated when isa is not configured.
Some interface botches went away, leaving the macros unused outside of
the implementation of interrupt masking, and it was silly for the
implementation to use the macros in only one place each.
apm_default_resume() to sometimes set a very wrong time.
(1) Accesses to the RTC index and data registers were not atomic enough.
Interrupts were not masked. This was only good enough until an
interrupt handler (rtcintr()) started accessing the RTC in FreeBSD-2.0.
(2) Access to the block of time registers in inittodr() was not atomic
enough. inittodr() has 244us to read the time registers. Interrupts
were not masked. This was only good enough until something (apm)
started calling inittodr() after boot time in FreeBSD-2.0.
The fix for (2) also makes the timecounter update more atomic, although
this is currently unimportant due to the low resolution of the RTC.
Problem reported by: mckay
the countdown register.
this should not be necessary but there are broken laptops that
do not restore the countdown register on resume.
when it happnes, it messes up the hardclock interval and system clock,
which leads to the infamous "calcru: negative time" problem.
Submitted by: kjc, iwasaki
Reviewed by: Steve O'Hara-Smith <steveo@eircom.net> and committers.
Obtained from: PAO3
resource_list_release. This removes the dependancy on the
layout of ivars.
* Move set_resource, get_resource and delete_resource from
isa_if.m to bus_if.m.
* Simplify driver code by providing wrappers to those methods:
bus_set_resource(dev, type, rid, start, count);
bus_get_resource(dev, type, rid, startp, countp);
bus_get_resource_start(dev, type, rid);
bus_get_resource_count(dev, type, rid);
bus_delete_resource(dev, type, rid);
* Delete isa_get_rsrc and use bus_get_resource_start instead.
* Fix a stupid typo in isa_alloc_resource reported by Takahashi
Yoshihiro <nyan@FreeBSD.org>.
* Print a diagnostic message if we can't assign resources to a PnP
device.
* Change device_print_prettyname() so that it doesn't print
"(no driver assigned)-1" for anonymous devices.
active or not. The only sane thing we can do here is assume that if
APM is supported it might be active at some point, and bail.
In reality, even this isn't good enough; regardless of whether we support
APM or not, the system may well futz with the CPU's clock speed and throw
the TSC off. We need to stop using it for timekeeping except under
controlled circumstances. Curse the lack of a dependable high-resolution
timer.
macros) to the signal handler, for old-style BSD signal handlers as
the second (int) argument, for SA_SIGINFO signal handlers as
siginfo_t->si_code. This is source-compatible with Solaris, except
that we have no <siginfo.h> (which isn't even mentioned in POSIX
1003.1b).
An rather complete example program is at
http://www3.cons.org/cracauer/freebsd-signal.c
This will be added to the regression tests in src/.
This commit also adds code to disable the (hardware) FPU from
userconfig, so that you can use a software FP emulator on a machine
that has hardware floating point. See LINT.
the caller to specify a function to be guarded between an entry and exit
barrier, as well as pre- and post-barrier functions.
The primary use for this function is synchronised update of per-cpu private
data. The implementation is almost (but not quite) MI; with a better
mechanism for masking per-CPU interrupts it could probably be hoisted.
Reviewed by: peter (partially)
but broken, since tsc_timecounter is not initialised in that case,
and updating an uninitialised timecounter is fatal.
Fixed style bugs in the machdep.i8254_freq and machdep.tsc_freq
sysctls.
Reviewed by: phk
not masked during handling of shared PCI interrupts. This resulted in
ASTs sometimes being discarded and softclock interrupts sometimes being
handled prematurely (sometimes = quite often on systems with shared PCI
interrupts, never on other systems).
Debugged by: gibbs and other people at plutotech.com
PR: 6944, maybe 12381
1. Rise is recognized in identdcpu.c.
2. The TSC is not written to. A workaround for the CPU bug is being
applied to clock.c (the bug being that the mP6 has TSC enabled
in its CPUID-capabilities, but it only supports reading it. If we
try to write to it (MSR 16), a GPF occurs.) The new behavior is that
FreeBSD will _not_ zero the TSC. Instead, we do a bit of 64-bit
arithmetic.
Reviewed by: msmith
Obtained from: unfurl & msmith
The old version only worked right when the time was read strictly
more often than every 1/HZ seconds, but we only guarantee reading
it every (1/HZ + epsilon) seconds. Part of rev.1.126-1.127 attempted
to fix this but didn't succeed. Detect counter rollover using the
heuristic from the old version of microtime() with additional
complications for supporting calls from fast interrupt handlers.
This works provided i8254 interrupts are not delayed by more than
1/(2*HZ) seconds.
This needs more comments, and cleanups for the SMP case, and more
testing of the SMP case before it is merged into RELENG_3.
Tested by: jhay
* Re-work the resource allocation code to use helper functions in subr_bus.c.
* Add simple isa interface for manipulating the resource ranges which can be
allocated and remove the code from isa_write_ivar() which was previously
used for this purpose.
though, on systems (386 mostly) that still have a seperate fpu, but it
might be possible to find systems where the FPU coprocessor is wired to
a different IRQ pin.
instances to a parent bus.
* Define a new method BUS_ADD_CHILD which can be called from DEVICE_IDENTIFY
to add new instances.
* Add a generic implementation of DEVICE_PROBE which calls DEVICE_IDENTIFY
for each driver attached to the parent's devclass.
* Move the hint-based isa probe from the isa driver to a new isahint driver
which can be shared between i386 and alpha.
new isa drivers with sensitive flags. If the resource_find() code
is meant to "find" the wildcard sensitive flag for a driver even though
a unit is supplied, this can be simplified.
for elf kernels (it is broken for all kernels due to lack of egcs support).
Renaming of many assembler labels is avoided by declaring by declaring
the labels that need to be visible to gprof as having type "function"
and depending on the elf version of gprof being zealous about discarding
the others. A few type declarations are still missing, mainly for SMP.
PR: 9413
Submitted by: Assar Westerlund <assar@sics.se> (initial parts)
handler. This fixes pnp interrupts and would have fixed pccard interrupts
but a workaround has been applied there.
This the sound driver problems which people have reported with new-bus.
- %fs register is added to trapframe and saved/restored upon kernel entry/exit.
- Per-cpu pages are no longer mapped at the same virtual address.
- Each cpu now has a separate gdt selector table. A new segment selector
is added to point to per-cpu pages, per-cpu global variables are now
accessed through this new selector (%fs). The selectors in gdt table are
rearranged for cache line optimization.
- fask_vfork is now on as default for both UP and SMP.
- Some aio code cleanup.
Reviewed by: Alan Cox <alc@cs.rice.edu>
John Dyson <dyson@iquest.net>
Julian Elischer <julian@whistel.com>
Bruce Evans <bde@zeta.org.au>
David Greenman <dg@root.com>
conversion from short to unsigned long which is an argument of
bus_alloc_resource. Since the value -1 is used to indicate no port
reousece, id_port need to be signed (suggested by Doug Rabson and
Peter Wemm.)
Interrupts under the new scheme are managed by the i386 nexus with the
awareness of the resource manager. There is further room for optimizing
the interfaces still. All the users of register_intr()/intr_create()
should be gone, with the exception of pcic and i386/isa/clock.c.
i386 platform boots, it is no longer ISA-centric, and is fully dynamic.
Most old drivers compile and run without modification via 'compatability
shims' to enable a smoother transition. eisa, isapnp and pccard* are
not yet using the new resource manager. Once fully converted, all drivers
will be loadable, including PCI and ISA.
(Some other changes appear to have snuck in, including a port of Soren's
ATA driver to the Alpha. Soren, back this out if you need to.)
This is a checkpoint of work-in-progress, but is quite functional.
The bulk of the work was done over the last few years by Doug Rabson and
Garrett Wollman.
Approved by: core
for possible buffer overflow problems. Replaced most sprintf()'s
with snprintf(); for others cases, added terminating NUL bytes where
appropriate, replaced constants like "16" with sizeof(), etc.
These changes include several bug fixes, but most changes are for
maintainability's sake. Any instance where it wasn't "immediately
obvious" that a buffer overflow could not occur was made safer.
Reviewed by: Bruce Evans <bde@zeta.org.au>
Reviewed by: Matthew Dillon <dillon@apollo.backplane.com>
Reviewed by: Mike Spengler <mks@networkcs.com>
1) The vnode pager wasn't properly tracking the file size due to
"size" being page rounded in some cases and not in others.
This sometimes resulted in corrupted files. First noticed by
Terry Lambert.
Fixed by changing the "size" pager_alloc parameter to be a 64bit
byte value (as opposed to a 32bit page index) and changing the
pagers and their callers to deal with this properly.
2) Fixed a bogus type cast in round_page() and trunc_page() that
caused some 64bit offsets and sizes to be scrambled. Removing
the cast required adding casts at a few dozen callers.
There may be problems with other bogus casts in close-by
macros. A quick check seemed to indicate that those were okay,
however.
specified. This makes haveseen_isadev() useful for searching for a
free resource. This increases the bitrot in the pci RESOURCE_CHECK
code.
Fixed the pre-attach conflict message. The flag for distinguishing
pre-attach conflict checks from pre-probe ones was never set.
went backwards when interrupts were masked for more than one i8254
interrupt period. It sometimes went backwards when the i8254 counter
was reprogrammed. Neither of these should happen in normal operation.
Update the i8254 timecounter support variables atomically. Calling
timecounter functions from fast interrupt handlers may actually work
in all cases now.
and use this when masking/unmasking interrupts.
Maintain a mapping from (iopaic number, int pin) tuple to irq number,
and use this when configuring devices and programming the ioapics.
Previous code assumed that irq number was equal to int pin number, and
that the ioapic number was 0.
Don't let an AP enter _cpu_switch before all local apics are initialized.
instead of at compile time using ifdefs.
Use _swi_null instead of dummycamisr. CAM and dpt should call
register_swi() instead of hacking on ihandlers[] directly.
small part of a bug suite beginning in the SLICE probes but mostly in the
floppy driver. This is a quick fix: the auto case shouldn't be special;
DMA should also be stopped in isa_dma_release(); isa_dmastop() probably
shouldn't exist; common DMA registers should not be accessed without
locking.
`void *' arg. Fixed or hid most of the resulting type mismatches.
Handlers can now be updated locally (except for reworking their
global declarations in isa_device.h).
a test of the irq number, and made failure of this test non-fatal.
Removed related unused complications for the APIC_IO case. Removed the
no-test3 flag.
Deverbosified the failure messages for the other tests. Removed the
per-port verbose flag - just use the general verbose flag.
Clean up (or if antipodic: down) some of the msgbuf stuff.
Use an inline function rather than a macro for timecounter delta.
Maintain process "on-cpu" time as 64 bits of microseconds to avoid
needless second rollover overhead.
Avoid calling microuptime the second time in mi_switch() if we do
not pass through _idle in cpu_switch()
This should reduce our context-switch overhead a bit, in particular
on pre-P5 and SMP systems.
WARNING: Programs which muck about with struct proc in userland
will have to be fixed.
Reviewed, but found imperfect by: bde
"time" wasn't a atomic variable, so splfoo() protection were needed
around any access to it, unless you just wanted the seconds part.
Most uses of time.tv_sec now uses the new variable time_second instead.
gettime() changed to getmicrotime(0.
Remove a couple of unneeded splfoo() protections, the new getmicrotime()
is atomic, (until Bruce sets a breakpoint in it).
A couple of places needed random data, so use read_random() instead
of mucking about with time which isn't random.
Add a new nfs_curusec() function.
Mark a couple of bogosities involving the now disappeard time variable.
Update ffs_update() to avoid the weird "== &time" checks, by fixing the
one remaining call that passwd &time as args.
Change profiling in ncr.c to use ticks instead of time. Resolution is
the same.
Add new function "tvtohz()" to avoid the bogus "splfoo(), add time, call
hzto() which subtracts time" sequences.
Reviewed by: bde
on the IOAPIC being connected to the 8254 timer interrupt.
Verify that timer interrupts are delivered. If they aren't, attempt
a fallback to mixed mode (i.e. routing the timer interrupt via the 8259 PIC).
interrupts are masked, and EOI is sent iff the corresponding ISR bit
is set in the local apic. If the CPU cannot obtain the interrupt
service lock (currently the global kernel lock) the interrupt is
forwarded to the CPU holding that lock.
Clock interrupts now have higher priority than other slow interrupts.
the signal handling latency for cpu-bound processes that performs very
few system calls.
The IPI for forcing an additional software trap is no longer dependent upon
BETTER_CLOCK being defined.
it runs at a constant frequency. This was less of an issue before,
because the TSC only interpolated in the HZ intervals, but now where
the timecounter is used all the way, this becomes much more visible.
Nit: Fix a printf which triggered the bde-filter.
Highlights:
* Simple model for underlying hardware.
* Hardware basis for timekeeping can be changed on the fly.
* Only one hardware clock responsible for TOD keeping.
* Provides a real nanotime() function.
* Time granularity: .232E-18 seconds.
* Frequency granularity: .238E-12 s/s
* Frequency adjustment is continuous in time.
* Less overhead for frequency adjustment.
* Improves xntpd performance.
Reviewed by: bde, bde, bde
is "acquired". This fixes a TSC biasing error of about 10 msec when
pcaudio is active.
Update `time' before calling hardclock() when timer0 is being released.
This is not known to be important.
Added some delays in writertc(). Efficiency is not critical here, unlike
in rtcin(), and we already use conservative delays there.
Don't touch the hardware when machdep.i8254_freq is being changed but
the maximum count wouldn't change. This fixes jitter of up to 10 msec
for most small adjustments to machdep.i8254_freq. When the maximum
count needs to change, the hardware should be adjusted more carefully.
actually faster (more than 20% faster for zeroing 1 MB at boot time).
This fixes pessimized copying and zeroing on K6's and perhaps on other
CPUs that are misclassified as i586's.
Wrappered and enabled by the define BETTER_CLOCK (on by default in smpyests.h)
apic_vector.s also contains a small change I (smp) made to eliminate
the double level INT problem. It seems stable, but I haven't the tools
in place to prove it fixes the problem.
Reviewed by: smp@csn.net
Submitted by: Tor Egge <Tor.Egge@idi.ntnu.no>
make isa_dmacascade, isa_dmastart, isa_dmadone, and find_isadev MUCH
easier to be found by starting them at the beginging of the line...
remove braces inside of ifdef RESOURCE_CHECK... found by % in vi...
there is a natural place to initialize `safepri' in a future commit.
Spinoffs:
- spl0() gets called in the unlikely event that isa is not configured.
- configure() has better control over enabling interrupts.
- it is now less unclear that interrupts aren't actually enabled early.
Rev.1.48 of autoconf.c seems to have done the opposite of what was
intended - moving the isa_configure() call delayed the spl0() side
effect.
Added some comments about the bogons. Removed the splhigh() call since
it is a no-op.
in <machine/cpu.h>. Moved the declarations to <machine/cputypes.h>.
Fixed style bugs in the moved code. Fixed everything that depended on
the nested include. Don't include <machine/cpu.h> (in the changed files)
unless something in it is used directly.
It seems I didn't count my 0's properly when adding the new masks into
icu_vector.s pushing SWI_AST_MASK off the end of the array and screwing
up the indexing for SWI_CLOCK_MASK.
Fix the bug icu_vector.s and also reformat the code in both icu_vector.s and
apic_vector.s so that it will be much harder to make the same mistake in
the future.
Submitted by: Bruce Evans <bde@zeta.org.au>
machine generates an NMI for each floating point error, just like an old XT.
Since it is ISA only, reading the EISA status port yields 0xff, which would
give a spurious EISA panic. The simplest thing to do is to ignore the 0xff.
these structs for conflics...
it still exist that two PnP cards can colide, but this is up to the user
to make sure it doesn't happen...
other modifications to pnp.c to format output properly, and hide more
output behind bootverbose flag...
fix some bugons in pnp.h that would of made it difficult for inclusion
in external programs (for import of pnpinfo)
mode, the slash is a comment leader, while under non-elf it is a divide
symbol (what a concept! :-). Theoretically, #APP/#NO_APP can change this
but that doesn't seem to mesh too well with macros and line continuation.
Add a simplelock to deal with disable_intr()/enable_intr() as used in UP kernel.
UP kernel expects that this is enough to guarantee exclusive access to
regions of code bracketed by these 2 functions.
Add a simplelock to bracket clock accesses in clock.c: clock_lock.
Help from: Bruce Evans <bde@zeta.org.au>
and the sound driver which uses auto dma.
The dma interface functionality remains however it now checks
to see if a dma is operating in auto dma mode and if so it bypasses
the busy flag check . I have modified the sound driver 3.5 to
adjust for this new behavior and tested it under FreeBSD 3.0 -current
This patch also includes the new function isa_dmastop.
Submitted by: Amancio Hasty <hasty@rah.star-gate.com>
irqs can't work (at best, the first one attached wins). It used to
be necessary to skip this check because of bogus irqs in the sound
drivers, but the sound drivers have been fixed, except possibly the
OSS ones.
region protected by the simplelock 'cpl_lock'.
Notes:
- this code is currently controlled on a section by section basis with
defines in machine/param.h. All sections are currently enabled.
- this code is not as clean as I would like, but that can wait till later.
- the "giant lock" still surrounds most instances of this "cpl region".
I still have to do the code that arbitrates setting cpl between the
top and bottom halves of the kernel.
- the possibility of deadlock exists, I am committing the code at this
point so as to exercise it and detect any such cases B4 the "giant lock"
is removed.
Made NEW_STRATEGY default.
Removed misc. old cruft.
Centralized simple locks into mp_machdep.c
Centralized simple lock macros into param.h
More cleanup in the direction of making splxx()/cpl MP-safe.
Work done by BSDI, Jonathan Lemon <jlemon@americantv.com>,
Mike Smith <msmith@gsoft.com.au>, Sean Eric Fagan <sef@kithrup.com>,
and probably alot of others.
Submitted by: Jnathan Lemon <jlemon@americantv.com>
Mask the read value from the count register in order to return zero correctly
after TC, as per intel datasheet : "If it is not autoinitialised, this
register will have a count of FFFFH after TC"
comments. Remove reduntant extra addition that was unncessary, and
unneeded mask (asuming inb works correctly).
Submitted by: Stephen McKay <syssgm@dtir.qld.gov.au>
handlers don't skew the results of isa_dmastatus. The function can be
safely called with interrupts disabled.
Submitted by: Stephen McKay <syssgm@dtir.qld.gov.au>
- removed TEST_ALTTIMER.
- removed APIC_PIN0_TIMER.
- removed TIMER_ALL.
apic_vector.s:
- new algorithm where a CPU uses try_mplock instead of get_mplock:
if successful continue as before.
if fail set ipending bit, mask INT (to avoid recursion), cleanup & iret.
This allows the CPU to return to successful work, while the ISR will be run
by the CPU holding the lock as part of the doreti dance.
- added Xcpustop IPI code to support stop_cpus()/restart_cpus().
it is off by default, enable via smptests.h:TEST_CPUSTOP
intr_machdep.h:
- moved +ICULEN to lower level.
- added entry for Xcpustop.
This eliminates a lot of #ifdef SMP type code. Things like _curproc reside
in a data page that is unique on each cpu, eliminating the expensive macros
like: #define curproc (SMPcurproc[cpunumber()])
There are some unresolved bootstrap and address space sharing issues at
present, but Steve is waiting on this for other work. There is still some
strictly temporary code present that isn't exactly pretty.
This is part of a larger change that has run into some bumps, this part is
standalone so it should be safe. The temporary code goes away when the
full idle cpu support is finished.
Reviewed by: fsmp, dyson
top of the hardware interrupt handlers. Apparently this is slightly
faster with the bit scanning instruction that looks these up - this set of
changes reverts the original change.
Reviewed by: bde
- vector.s <- stub called by i386/exception.s
- icu_vector.s <- UP
- apic_vector.s <- SMP
Split icu.s into UP and SMP specific files:
- ipl.s <- stub called by i386/exception.s (formerly icu.s)
- icu_ipl.s <- UP
- apic_ipl.s <- SMP
This was done in preparation for massive changes to the SMP INTerrupt
mechanisms. More fine tuning, such as merging ipl.s into exception.s,
may be appropriate.
be (eventually) architecture independent. It provides an emulation
of the ISA interrupt registration function register_intr(), but that
function does no longer manipulated the interrupt controller and
interrupt descriptor table, but calls the architecture dependent
function setup_icu() for that purpose.
After the ISA/EISA bus code has been modified to directly call the new
interrupt registartion functions (intr_create() and intr_connect()),
the emulation of register_intr() should be dropped.
The C level interrupt handler function should take a (void*) argument,
and the function pointer type (inthand2_t) should defined in some other
place than isa_device.h.
This commit is a pre-requisite for the removal of the PCI specific shared
interrupt code.
Reviewed by: dfr,bde
- doesn't break my system.
- NOT yet verified on the affected motherboard.
Stifle an annoying dma_start busy message for the sound cards.
Submitted by: "John S. Dyson" <toor@dyson.iquest.net>
simplifies some assumptions and stops some code compile problems.
This should fix the compile hiccup in PR#3491, but smp kernel profiling
isn't likely to be fixed by this.
Peter Wemm <peter@spinner.DIALix.COM>, Steve Passe <smp@csn.net>
removed all the IPI_INTS code.
made the XFAST_IPI32 code default, renaming Xfastipi32 to Xinvltlb.
cleanup of i386/isa/isa_device.h to eliminate SMP dependancies:
made the id_irq member of struct isa_device an u_int.
made the id_drq member of struct isa_device an int.
removed all other '#ifdefs' concerning SMP & APIC_IO.
removed SMP/APIC_IO dependancies from if_ze.c.
There are various options documented in i386/conf/LINT, there is more to
come over the next few days.
The kernel should run pretty much "as before" without the options to
activate SMP mode.
There are a handful of known "loose ends" that need to be fixed, but
have been put off since the SMP kernel is in a moderately good condition
at the moment.
This commit is the result of the tinkering and testing over the last 14
months by many people. A special thanks to Steve Passe for implementing
the APIC code!
have successfully built, booted, and run a number of different ELF
kernel configurations, including GENERIC. LINT also builds and
links cleanly, though I have not tried to boot it.
The impact on developers is virtually nil, except for two things.
All linker sets that might possibly be present in the kernel must be
listed in "sys/i386/i386/setdefs.h". And all C symbols that are
also referenced from assembly language code must be listed in
"sys/i386/include/asnames.h". It so happens that failure to do
these things will have no impact on the a.out kernel. But it will
break the build of the ELF kernel.
The ELF bootloader works, but it is not ready to commit quite yet.
print "at <not configured>" for iobase == -1 (autodetect not happens)
and not print anything for iobase == -2 (none)
Old code treat this two special config numbers as big port numbers.
I have code to calibrate the overhead fairly accurately, but there
is little point in using it since it is most accurate on machines
where an estimate of 0 works well. On slow machines, the accuracy
of DELAY() has a large variance since it is limited by the resolution
of getit() even if the initial delay is calibrated perfectly.
Use fixed point and long longs to speed up scaling in DELAY().
The old method slowed down a lot when the frequency became variable.
Assume the default frequency for short delays so that the fixed
point calculation can be exact.
Fast scaling is only important for small delays. Scaling is done
after looking at the counter and outside the loop, so it doesn't
decrease accuracy or resolution provided it completes before the
delay is up. The comment in the code is still confused about this.