This turns on support for kernel dump encryption and compression, and
netdump. arm and mips platforms are omitted for now, since they are more
constrained and don't benefit as much from these features.
Reviewed by: cem, manu, rgrimes
Tested by: manu (arm64)
Relnotes: yes
Differential Revision: https://reviews.freebsd.org/D15465
Add I2C OPAL driver and a set of dummy-ones to allow
all I2C things on Power8 to attach.
TODO: better async token management
Submitted by: Wojciech Macek <wma@semihalf.com>
Obtained from: Semihalf
Sponsored by: IBM, QCM Technologies
NVMe support is ready and should be compiled-in
to the ppc64 kernel.
Submitted by: Wojciech Macek <wma@semihalf.org>
Obtained from: Semihalf
Sponsored by: IBM, QCM Technologies
There's no reason not to build modules for 64-bit QorIQ devices. This
config has evolved to be analogous to the AIM GENERIC64 kernel, so will grow
to match it in more ways as well.
Add CXGBE driver which is required for PowerNV system.
Also, remove AHCI which does not work in BigEndian.
Created by: Wojciech Macek <wma@semihalf.com>
Obtained from: Semihalf
Sponsored by: QCM Technologies
Make XICS to be OPAL-aware.
Created by: Nathan Whitehorn <nwhitehorn@freebsd.org>
Submitted by: Wojciech Macek <wma@semihalf.com>
Sponsored by: FreeBSD Foundation
OPAL is a dedicated firmware acting as a hypervisor.
Add generic functions to provide all access.
Created by: Nathan Whitehorn <nw@freebsd.org>
Submitted by: Wojciech Macek <wma@freebsd.org>
supported on newer POWER hardware and in graphical VMs run on the same,
which are typically XHCI-only. The 32-bit GENERIC kernel, which
does not run on hardware made in the last decade and is unlikely to
encounter XHCI devices, is left unchanged.
PR: kern/224940
Submitted by: Gustavo Romero
MFC after: 1 week
We already pass -many to the assembler, and -me500 drops 64-bit instruction
handling, for some reason only breaking module building for 64-bit kernels.
Additionally, build with CTF for dtrace.
This brings it closer to par with GENERIC64. In the future I hope to have a
GENERIC64-E and GENERIC-E kernels as Book-E analogues to the GENERIC64/GENERIC
AIM kernels.
Rework the dTSEC and FMan drivers to be more like a full bus relationship,
so that dtsec can use bus_alloc_resource() instead of trying to handle the
offset from the dts. This required taking some code from the sparc64 ebus
driver to allow subdividing the fman region for the dTSEC devices.
This adds some support for ARM as well as 64-bit. 64-bit on PowerPC is
currently not working, and ARM support has not been completed or tested on the
FreeBSD side.
As this was imported from a Linux tree, it includes some Linux-isms
(ioread/iowrite), so compile with the LinuxKPI for now. This may change in the
future.
HEAD. Enable VIMAGE in GENERIC kernels and some others (where GENERIC does
not exist) on HEAD.
Disable building LINT-VIMAGE with VIMAGE being default.
This should give it a lot more exposure in the run-up to 12 to help
us evaluate whether to keep it on by default or not.
We are also hoping to get better performance testing.
The feature can be disabled using nooptions.
Requested by: many
Reviewed by: kristof, emaste, hiren
X-MFC after: never
Relnotes: yes
Differential Revision: https://reviews.freebsd.org/D12639
These devices bring the configs closer to a desktop-like (GENERIC) kernel
config.
* The Freescale DIU support was added to the config in r306358.
Without keyboard support video support is nearly pointless, so add ukbd and
ums.
* The AmigaOne X5000, and P1022 devboard, both use a variant of the ds1307 RTC
* cpufreq scaling is currently supported by the p1022. More SoCs will be added
eventually.
The ccr(4) driver supports use of the crypto accelerator engine on
Chelsio T6 NICs in "lookaside" mode via the opencrypto framework.
Currently, the driver supports AES-CBC, AES-CTR, AES-GCM, and AES-XTS
cipher algorithms as well as the SHA1-HMAC, SHA2-256-HMAC, SHA2-384-HMAC,
and SHA2-512-HMAC authentication algorithms. The driver also supports
chaining one of AES-CBC, AES-CTR, or AES-XTS with an authentication
algorithm for encrypt-then-authenticate operations.
Note that this driver is still under active development and testing and
may not yet be ready for production use. It does pass the tests in
tests/sys/opencrypto with the exception that the AES-GCM implementation
in the driver does not yet support requests with a zero byte payload.
To use this driver currently, the "uwire" configuration must be used
along with explicitly enabling support for lookaside crypto capabilities
in the cxgbe(4) driver. These can be done by setting the following
tunables before loading the cxgbe(4) driver:
hw.cxgbe.config_file=uwire
hw.cxgbe.cryptocaps_allowed=-1
MFC after: 1 month
Relnotes: yes
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D10763
Extend the Book-E pmap to support 64-bit operation. Much of this was taken from
Juniper's Junos FreeBSD port. It uses a 3-level page table (page directory
list -- PP2D, page directory, page table), but has gaps in the page directory
list where regions will repeat, due to the design of the PP2D hash (a 20-bit gap
between the two parts of the index). In practice this may not be a problem
given the expanded address space. However, an alternative to this would be to
use a 4-level page table, like Linux, and possibly reduce the available address
space; Linux appears to use a 46-bit address space. Alternatively, a cache of
page directory pointers could be used to keep the overall design as-is, but
remove the gaps in the address space.
This includes a new kernel config for 64-bit QorIQ SoCs, based on MPC85XX, with
the following notes:
* The DPAA driver has not yet been ported to 64-bit so is not included in the
kernel config.
* This has been tested on the AmigaOne X5000, using a MD_ROOT compiled in
(total size kernel+mdroot must be under 64MB).
* This can run both 32-bit and 64-bit processes, and has even been tested to run
a 32-bit init with 64-bit children.
Many thanks to stevek and marcel for getting Juniper's FreeBSD patches open
sourced to be used here, and to stevek for reviewing, and providing some
historical contexts on quirks of the code.
Reviewed by: stevek
Obtained from: Juniper (in part)
MFC after: 2 months
Relnotes: yes
Differential Revision: https://reviews.freebsd.org/D9433
- em(4) igb(4) and lem(4)
- deprecate the igb device from kernel configurations
- create a symbolic link in /boot/kernel from if_em.ko to if_igb.ko
Devices tested:
- 82574L
- I218-LM
- 82546GB
- 82579LM
- I350
- I217
Please report problems to freebsd-net@freebsd.org
Partial review from jhb and suggestions on how to *not* brick folks who
originally would have lost their igbX device.
Submitted by: mmacy@nextbsd.org
MFC after: 2 weeks
Relnotes: yes
Sponsored by: Limelight Networks and Dell EMC Isilon
Differential Revision: https://reviews.freebsd.org/D8299
Summary:
This implements part of the gpio-poweroff and gpio-restart device tree
bindings. Optional properties are not handled currently. It also currently
only supports level-triggered reset.
Reviewed By: gonzo
Differential Revision: https://reviews.freebsd.org/D8521
Linux has a slightly different device tree definition for DPAA than originally
done in the FreeBSD driver. This changes the driver to be mostly compatible
with the Linux device tree definitions. Currently the differences are:
bman-portals: compatible = "fsl,bman-portals" (Linux is "simple-bus")
qman-portals: compatible = "fsl,qman-portals" (Linux is "simple-bus")
fman: compatible = "fsl,fman" (Linux is "simple-bus")
The Linux device tree doesn't specify anything for rgmii in the mdio. This
change still requires the device tree to specify the phy-handle, and doesn't yet
support tbi.
Summary:
The Freescale e500v2 PowerPC core does not use a standard FPU.
Instead, it uses a Signal Processing Engine (SPE)--a DSP-style vector processor
unit, which doubles as a FPU. The PowerPC SPE ABI is incompatible with the
stock powerpc ABI, so a new MACHINE_ARCH was created to deal with this.
Additionaly, the SPE opcodes overlap with Altivec, so these are mutually
exclusive. Taking advantage of this fact, a new file, powerpc/booke/spe.c, was
created with the same function set as in powerpc/powerpc/altivec.c, so it
becomes effectively a drop-in replacement. setjmp/longjmp were modified to save
the upper 32-bits of the now-64-bit GPRs (upper 32-bits are only accessible by
the SPE).
Note: This does _not_ support the SPE in the e500v1, as the e500v1 SPE does not
support double-precision floating point.
Also, without a new MACHINE_ARCH it would be impossible to provide binary
packages which utilize the SPE.
Additionally, no work has been done to support ports, work is needed for this.
This also means no newer gcc can yet be used. However, gcc's powerpc support
has been refactored which would make adding a powerpcspe-freebsd target very
easy.
Test Plan:
This was lightly tested on a RouterBoard RB800 and an AmigaOne A1222
(P1022-based) board, compiled against the new ABI. Base system utilities
(/bin/sh, /bin/ls, etc) still function appropriately, the system is able to boot
multiuser.
Reviewed By: bdrewery, imp
Relnotes: yes
Differential Revision: https://reviews.freebsd.org/D5683
Instead replace it with a different hack, that turns fman into a simplebus
subclass, and maps its children within its address space.
Since all PHY communication is done through dtsec0's mdio space, the FDT
contains a reference to the dtsec0 mdio handle in all nodes that need it.
Instead of using Freescale's implementation for MII access, use our own (copied
loosely from the eTSEC driver, and could possibly be merged eventually). This
lets us access the registers directly rather than needing a full dtsec interface
just to access the registers.
Future directions will include turning fman into more of a simplebus, and not
mapping the region and playing games. This will require changes to the dtsec
driver to make it a child of fman, and possibly other drivers as well.
to add actions that run when a TCP frame is sent or received on a TCP
session in the ESTABLISHED state. In the base tree, this functionality is
only used for the h_ertt module, which is used by the cc_cdg, cc_chd, cc_hd,
and cc_vegas congestion control modules.
Presently, we incur overhead to check for hooks each time a TCP frame is
sent or received on an ESTABLISHED TCP session.
This change adds a new compile-time option (TCP_HHOOK) to determine whether
to include the hhook(9) framework for TCP. To retain backwards
compatibility, I added the TCP_HHOOK option to every configuration file that
already defined "options INET". (Therefore, this patch introduces no
functional change. In order to see a functional difference, you need to
compile a custom kernel without the TCP_HHOOK option.) This change will
allow users to easily exclude this functionality from their kernel, should
they wish to do so.
Note that any users who use a custom kernel configuration and use one of the
congestion control modules listed above will need to add the TCP_HHOOK
option to their kernel configuration.
Reviewed by: rrs, lstewart, hiren (previous version), sjg (makefiles only)
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D8185
Summary:
This enables some features of the DIU, using a static configuration,
specified either via a 'edid' property on the 'display' FDT node, or a
'video-mode' environment variable (bootarg). 'video-mode' was chosen because it
matches u-boot's naming, so it can be set with:
setenv bootargs video-mode=${video-mode}
at the u-boot CLI.
Mouse cursor is not supported currently, as a hardware cursor is not supported
by framebuffer VT yet. Currently it only supports a 32bpp ARGB (actually BGRA)
format, and only a single composite plane, at up to 1280x1024.
Differential Revision: https://reviews.freebsd.org/D8022
The cxgbev/cxlv driver supports Virtual Function devices for Chelsio
T4 and T4 adapters. The VF devices share most of their code with the
existing PF4 driver (cxgbe/cxl) and as such the VF device driver
currently depends on the PF4 driver.
Similar to the cxgbe/cxl drivers, the VF driver includes a t4vf/t5vf
PCI device driver that attaches to the VF device. It then creates
child cxgbev/cxlv devices representing ports assigned to the VF.
By default, the PF driver assigns a single port to each VF.
t4vf_hw.c contains VF-specific routines from the shared code used to
fetch VF-specific parameters from the firmware.
t4_vf.c contains the VF-specific PCI device driver and includes its
own attach routine.
VF devices are required to use a different firmware request when
transmitting packets (which in turn requires a different CPL message
to encapsulate messages). This alternate firmware request does not
permit chaining multiple packets in a single message, so each packet
results in a firmware request. In addition, the different CPL message
requires more detailed information when enabling hardware checksums,
so parse_pkt() on VF devices must examine L2 and L3 headers for all
packets (not just TSO packets) for VF devices. Finally, L2 checksums
on non-UDP/non-TCP packets do not work reliably (the firmware trashes
the IPv4 fragment field), so IPv4 checksums for such packets are
calculated in software.
Most of the other changes in the non-VF-specific code are to expose
various variables and functions private to the PF driver so that they
can be used by the VF driver.
Note that a limited subset of cxgbetool functions are supported on VF
devices including register dumps, scheduler classes, and clearing of
statistics. In addition, TOE is not supported on VF devices, only for
the PF interfaces.
Reviewed by: np
MFC after: 2 months
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D7599
Summary:
MPC85XX and QorIQ are very similar. When the DPAA dTSEC driver was
added, QORIQ_DPAA was brought in as a config option to support the differences
in hardware register settings between QorIQ (e500mc-, e5500- based) SoCs and
QUICC (e500v1/e500v2-based) SoCs, particularly in the Local Access Window (LAW)
target settings.
Unify these settings using macros to hide details and ease porting, and use a
new function (mpc85xx_is_qoriq()) to distinguish between QorIQ and QUICC SoCs at
runtime.
An alternative to using the function could be to use a variable initialized at
platform attach time, which may incur less overhead at runtime. Since it's not
in the critical path once booted, this optimization doesn't seem necessary at
first pass.
Reviewed by: nwhitehorn
MFC after: 1 week
Differential Revision: https://reviews.freebsd.org/D7294
PCI-express HotPlug support is implemented via bits in the slot
registers of the PCI-express capability of the downstream port along
with an interrupt that triggers when bits in the slot status register
change.
This is implemented for FreeBSD by adding HotPlug support to the
PCI-PCI bridge driver which attaches to the virtual PCI-PCI bridges
representing downstream ports on HotPlug slots. The PCI-PCI bridge
driver registers an interrupt handler to receive HotPlug events. It
also uses the slot registers to determine the current HotPlug state
and drive an internal HotPlug state machine. For simplicty of
implementation, the PCI-PCI bridge device detaches and deletes the
child PCI device when a card is removed from a slot and creates and
attaches a PCI child device when a card is inserted into the slot.
The PCI-PCI bridge driver provides a bus_child_present which claims
that child devices are present on HotPlug-capable slots only when a
card is inserted. Rather than requiring a timeout in the RC for
config accesses to not-present children, the pcib_read/write_config
methods fail all requests when a card is not present (or not yet
ready).
These changes include support for various optional HotPlug
capabilities such as a power controller, mechanical latch,
electro-mechanical interlock, indicators, and an attention button.
It also includes support for devices which require waiting for
command completion events before initiating a subsequent HotPlug
command. However, it has only been tested on ExpressCard systems
which support surprise removal and have none of these optional
capabilities.
PCI-express HotPlug support is conditional on the PCI_HP option
which is enabled by default on arm64, x86, and powerpc.
Reviewed by: adrian, imp, vangyzen (older versions)
Relnotes: yes
Differential Revision: https://reviews.freebsd.org/D6136
Freescale's QorIQ line includes a new ethernet controller, based on their
Datapath Acceleration Architecture (DPAA). This uses a combination of a Frame
manager, Buffer manager, and Queue manager to improve performance across all
interfaces by being able to pass data directly between hardware acceleration
interfaces.
As part of this import, Freescale's Netcomm Software (ncsw) driver is imported.
This was an attempt by Freescale to create an OS-agnostic sub-driver for
managing the hardware, using shims to interface to the OS-specific APIs. This
work was abandoned, and Freescale's primary work is in the Linux driver (dual
BSD/GPL license). Hence, this was imported directly to sys/contrib, rather than
going through the vendor area. Going forward, FreeBSD-specific changes may be
made to the ncsw code, diverging from the upstream in potentially incompatible
ways. An alternative could be to import the Linux driver itself, using the
linuxKPI layer, as that would maintain parity with the vendor-maintained driver.
However, the Linux driver has not been evaluated for reliability yet, and may
have issues with the import, whereas the ncsw-based driver in this commit was
completed by Semihalf 4 years ago, and is very stable.
Other SoC modules based on DPAA, which could be added in the future:
* Security and Encryption engine (SEC4.x, SEC5.x)
* RAID engine
Additional work to be done:
* Implement polling mode
* Test vlan support
* Add support for the Pattern Matching Engine, which can do regular expression
matching on packets.
This driver has been tested on the P5020 QorIQ SoC. Others listed in the
dtsec(4) manual page are expected to work as the same DPAA engine is included in
all.
Obtained from: Semihalf
Relnotes: Yes
Sponsored by: Alex Perez/Inertial Computing