Commit Graph

1692 Commits

Author SHA1 Message Date
Adrian Chadd
22a3aee637 Implement my first cut at "correct" node power-save and
PS-POLL support.

This implements PS-POLL awareness i nthe

* Implement frame "leaking", which allows for a software queue
  to be scheduled even though it's asleep
* Track whether a frame has been leaked or not
* Leak out a single non-AMPDU frame when transmitting aggregates
* Queue BAR frames if the node is asleep
* Direct-dispatch the rest of control and management frames.
  This allows for things like re-association to occur (which involves
  sending probe req/resp as well as assoc request/response) when
  the node is asleep and then tries reassociating.
* Limit how many frames can set in the software node queue whilst
  the node is asleep.  net80211 is already buffering frames for us
  so this is mostly just paranoia.
* Add a PS-POLL method which leaks out a frame if there's something
  in the software queue, else it calls net80211's ps-poll routine.
  Since the ath PS-POLL routine marks the node as having a single frame
  to leak, either a software queued frame would leak, OR the next queued
  frame would leak. The next queued frame could be something from the
  net80211 power save queue, OR it could be a NULL frame from net80211.

TODO:

* Don't transmit further BAR frames (eg via a timeout) if the node is
  currently asleep.  Otherwise we may end up exhausting management frames
  due to the lots of queued BAR frames.

  I may just undo this bit later on and direct-dispatch BAR frames
  even if the node is asleep.

* It would be nice to burst out a single A-MPDU frame if both ends
  support this.  I may end adding a FreeBSD IE soon to negotiate
  this power save behaviour.

* I should make STAs timeout of power save mode if they've been in power
  save for more than a handful of seconds.  This way cards that get
  "stuck" in power save mode don't stay there for the "inactivity" timeout
  in net80211.

* Move the queue depth check into the driver layer (ath_start / ath_transmit)
  rather than doing it in the TX path.

* There could be some naughty corner cases with ps-poll leaking.
  Specifically, if net80211 generates a NULL data frame whilst another
  transmitter sends a normal data frame out net80211 output / transmit,
  we need to ensure that the NULL data frame goes out first.
  This is one of those things that should occur inside the VAP/ic TX lock.
  Grr, more investigations to do..

Tested:

* STA: AR5416, AR9280
* AP: AR5416, AR9280, AR9160
2013-05-15 18:33:05 +00:00
Adrian Chadd
370f81fab6 Add ALQ beacon debugging. 2013-05-13 21:18:00 +00:00
Adrian Chadd
5086df9f1f Support sending ATH_ALQ messages with no payload. 2013-05-13 21:17:27 +00:00
Adrian Chadd
9b48fb4b32 Improve the debugging output - use the MAC address rather than various
pointer values everywhere.
2013-05-13 19:52:35 +00:00
Adrian Chadd
ba83edd45c Since the node state is 100% back under the TX lock, just kill the use
of atomics.

I'll re-think this nonsense later.
2013-05-13 19:03:12 +00:00
Adrian Chadd
22780332ae Oops, commit the other half of r250606. 2013-05-13 19:02:22 +00:00
Adrian Chadd
01a2ad5a4c This lock only protects the rate control state for now, mention this. 2013-05-13 18:57:18 +00:00
Adrian Chadd
4bed2b67ca Begin tidying up the reassociation and node sleep/wakeup paths.
* Move the node sleep/wake state under the TX lock rather than the
  node lock.  Let's leave the node lock protecting rate control only
  for now.

* When reassociating, various state needs to be cleared.  For example,
  the aggregate session needs to be torn down, including any pending
  aggregation negotiation and BAR TX waiting.

* .. and we need to do a "cleanup" pass since frames in the hardware
  TX queue need to be transmitted.

Modify ath_tx_tid_cleanup() to be called with the TX lock held and push
frames into a completion list.  This allows for the cleanup to be
done atomically for all TIDs in a node rather than grabbing and
releasing the TX lock each time.
2013-05-13 18:56:04 +00:00
Adrian Chadd
8328d6e4d4 Make sure the holding descriptor and link pointer are both freed during
a non-loss reset.

When the drain functions are called, the holding descriptor and link pointers
are NULLed out.

But when the processq function is called during a non-loss reset, this
doesn't occur.  So the next time a DMA occurs, it's chained to a descriptor
that no longer exists and the hardware gets angry.

Tested:

* AR5416, STA mode; use sysctl dev.ath.X.forcebstuck=1 to force a non-loss
  reset.

TODO:

* Further AR9380 testing just to check that the behaviour for the EDMA
  chips is sane.

PR:		kern/178477
2013-05-10 10:06:45 +00:00
Adrian Chadd
caedab2c56 Update the holding buffer locking for EDMA. 2013-05-09 15:57:55 +00:00
Adrian Chadd
5e0185081d Fix the holding descriptor logic to actually be "right" (for values
of "right".)

Flip back on the "always continue TX DMA using the holding descriptor"
code - by always setting ATH_BUF_BUSY and never setting axq_link to NULL.

Since the holding descriptor is accessed via txq->axq_link and _that_
is done behind the TXQ lock rather than the TX path lock, the holding
descriptor stuff itself needs to be behind the TXQ lock.

So, do the mental gymnastics needed to do this.

I've not seen any of the hardware failures that I was seeing when
I last tried to do this.

Tested:

* AR5416, STA mode
2013-05-08 21:23:51 +00:00
Adrian Chadd
caa16e6960 This shouldn't have made it into this commit, sorry. 2013-05-08 08:53:55 +00:00
Adrian Chadd
d3731e4b21 Revert a previous commit - this is causing hardware errors.
I'm not sure why this is failing.  The holding descriptor should be being
re-read when starting DMA of the next frame.  Obviously something here
isn't totally correct.

I'll review the TX queue handling and see if I can figure out why this
is failing.  I'll then re-revert this patch out and use the holding
descriptor again.
2013-05-08 07:30:33 +00:00
Adrian Chadd
2c47932c88 Implement STBC receive frame statistics.
The AR9280 and later can receive STBC.  This adds some statistics
tracking to count these frames.

A patch to athstats will be forthcoming.
2013-05-08 01:11:25 +00:00
Adrian Chadd
7dcb2bea01 Re-work how transmit buffer limits are enforced - partly to fix the PR,
but partly to just tidy up things.

The problem here - there are too many TX buffers in the queue! By the
time one needs to transmit an EAPOL frame (for this PR, it's the response
to the group rekey notification from the AP) there are no ath_buf entries
free and the EAPOL frame doesn't go out.

Now, the problem!

* Enforcing the TX buffer limitation _before_ we dequeue the frame?
  Bad idea. Because..
* .. it means I can't check whether the mbuf has M_EAPOL set.

The solution(s):

* De-queue the frame first
* Don't bother doing the TX buffer minimum free check until after
  we know whether it's an EAPOL frame or not.
* If it's an EAPOL frame, allocate the buffer from the mgmt pool
  rather than the default pool.

Whilst I'm here:

* Add a tweak to limit how many buffers a single node can acquire.
* Don't enforce that for EAPOL frames.
* .. set that to default to 1/4 of the available buffers, or 32,
  whichever is more sane.

This doesn't fix issues due to a sleeping node or a very poor performing
node; but this doesn't make it worse.

Tested:

* AR5416 STA, TX'ing 100+ mbit UDP to an AP, but only 50mbit being received
  (thus the TX queue fills up.)
* .. with CCMP / WPA2 encryption configured
* .. and the group rekey time set to 10 seconds, just to elicit the
  behaviour very quickly.

PR:		kern/138379
2013-05-07 07:52:18 +00:00
Adrian Chadd
55cf0326a1 Simplify this bit of code! 2013-05-07 07:44:07 +00:00
Adrian Chadd
4136c09143 The holding buffer logic needs to be used for _all_ transmission, not
just "when the queue is busy."

After talking with the MAC team, it turns out that the linked list
implementation sometimes will not accept a TxDP update and will
instead re-read the link pointer.  So even if the hardware has
finished transmitting a chain and has hit EOL/VEOL, it may still
re-read the link pointer to begin transmitting again.

So, always set ATH_BUF_BUSY on the last buffer in the chain (to
mark the last descriptor as the holding descriptor) and never
blank the axq_link pointer.

Tested:

* AR5416, STA mode

TODO:

* much more thorough testing with the pre-11n NICs, just to verify
  that they behave the same way.
* test TDMA on the 11n and non-11n hardware.
2013-05-04 04:03:50 +00:00
Adrian Chadd
2f544eedb3 Add device identification and probe/attach support for the QCA9565.
The QCA9565 is a 1x1 2.4GHz 11n chip with integrated on-chip bluetooth.
The AR9300 HAL already has support for this chip; it just wasn't
included in the probe/attach path.

Tested:

* This commit brought to you over a QCA9565 wifi connection from
  FreeBSD.
* .. ie, basic STA, pings, no iperf or antenna diversity checking just yet.
2013-05-02 00:59:39 +00:00
Adrian Chadd
8d06054291 Debugging changes!
* That lock isn't actually held during reset - just the whole TX/RX path
  is paused.  So, remove the assertion.

* Log the TX queue status - how many hardware frames are active in the
  MAC and whether the queue is active.
2013-04-29 07:28:29 +00:00
Adrian Chadd
07187d1109 Conditionally compile this only if ATH_DEBUG is defined. 2013-04-26 22:22:38 +00:00
Adrian Chadd
ed261a611b Dump the entire TXQ descriptor contents during a reset, rather than only
completed descriptors.
2013-04-26 21:51:17 +00:00
Adrian Chadd
3527f6a9b1 When doing BAW tracking, don't dereference a NULL pointer if the BAW
slot is actually NULL.
2013-04-21 00:41:15 +00:00
Adrian Chadd
dff5bdf48c There's some races (likely in the BAR handling, sigh) which is causing
the pause/resume code to not be called completely symmetrically.

I'll chase down the root cause of that soon; this at least works around
the bug and tells me when it happens.
2013-04-20 22:46:31 +00:00
Adrian Chadd
ff5b563430 Initialise the chainmask fields regardless of whether 11n support
is compiled in or not.

This fixes issues with people running -HEAD but who build modules
without doing a "make buildkernel KERNCONF=XXX", thus picking up
opt_*.h.  The resulting module wouldn't have 11n enabled and the
chainmask configuration would just be plain wrong.
2013-04-19 21:49:11 +00:00
Adrian Chadd
7904f51655 Add a debug statement to log the currently chosen chainmask configuration. 2013-04-19 08:06:45 +00:00
Adrian Chadd
b0bf95ff15 .. don't know how this snuck into this commit. Sorry.
Fix compile build before anyone notices.
2013-04-19 08:01:34 +00:00
Adrian Chadd
b661bd2e52 Print out the chainmask configuration. 2013-04-19 07:56:22 +00:00
Adrian Chadd
6f4fb2d8e6 Use uint32_t for fields that are fetched via ath_hal_getcapability(). 2013-04-19 06:59:10 +00:00
Adrian Chadd
91046e9c5f Setup needed tables for TPC on AR5416->AR9287 chips.
* Add ah_ratesArray[] to the ar5416 HAL state - this stores the maximum
  values permissable per rate.
* Since different chip EEPROM formats store this value in a different place,
  store the HT40 power detector increment value in the ar5416 HAL state.
* Modify the target power setup code to store the maximum values in the
  ar5416 HAL state rather than using a local variable.
* Add ar5416RateToRateTable() - to convert a hardware rate code to the
  ratesArray enum / index.
* Add ar5416GetTxRatePower() - which goes through the gymnastics required
  to correctly calculate the target TX power:
  + Add the power detector increment for ht40;
  + Take the power offset into account for AR9280 and later;
  + Offset the TX power correctly when doing open-loop TX power control;
  + Enforce the per-rate maximum value allowable.

Note - setting a TPC value of 0x0 in the TX descriptor on (at least)
the AR9160 resulted in the TX power being very high indeed.  This didn't
happen on the AR9220.  I'm guessing it's a chip bug that was fixed at
some point.  So for now, just assume the AR5416/AR5418 and AR9130 are
also suspect and clamp the minimum value here at 1.

Tested:

* AR5416, AR9160, AR9220 hostap, verified using (2GHz) spectrum analyser
* Looked at target TX power in TX descriptor (using athalq) as well as TX
  power on the spectrum analyser.

TODO:

* The TX descriptor code sets the target TX power to 0 for AR9285 chips.
  I'm not yet sure why.  Disable this for TPC and ensure that the TPC
  TX power is set.
* AR9280, AR9285, AR9227, AR9287 testing!
* 5GHz testing!

Quirks:

* The per-packet TPC code is only exercised when the tpc sysctl is set
  to 1. (dev.ath.X.tpc=1.) This needs to be done before you bring the
  interface up.
* When TPC is enabled, setting the TX power doesn't end up with a call
  through to the HAL to update the maximum TX power.  So ensure that
  you set the TPC sysctl before you bring the interface up and configure
  a lower TX power or the hardware will be clamped by the lower TX
  power (at least until the next channel change.)

Thanks to Qualcomm Atheros for all the hardware, and Sam Leffler for use
of his spectrum analyser to verify the TX channel power.
2013-04-17 07:31:53 +00:00
Adrian Chadd
8b470f6f71 Use the TPC bank by default for AR9160.
Tested:

* AR9160, hostap, verified TX power using (2GHz) spectrum analyser

TODO:

* 5GHz verification!
2013-04-17 07:22:23 +00:00
Adrian Chadd
de00e5cb54 Update the rate series setup code to use the decisions already made in
ath_tx_rate_fill_rcflags().  Include setting up the TX power cap in the
rate scenario setup code being passed to the HAL.

Other things:

* add a tx power cap field in ath_rc.
* Add a three-stream flag in ath_rc.
* Delete the LDPC flag from ath_rc - it's not a per-rate flag, it's a
  global flag for the transmission.
2013-04-17 07:21:30 +00:00
Adrian Chadd
12087a0769 Use the new net80211 method to fetch the node TX power, rather than
directly referencing ni->ni_txpower.

This provides the hardware with a slightly more accurate idea of
the maximum TX power to be using.

This is part of a series to get per-packet TPC to work (better).

Tested:

* AR5416, hostap mode
2013-04-16 21:26:44 +00:00
Adrian Chadd
5d4dedadb6 Use a per-RX-queue deferred list, rather than a single deferred list for
both queues.

Since ath_rx_pkt() does multi-mbuf frame recombining based on the RX queue,
this needs to occur.

Tested:

* AR9380 (XB112), hostap mode
2013-04-16 20:21:02 +00:00
Adrian Chadd
978c5ce568 Now that the register definitions are in -HEAD, enable this. 2013-04-15 17:59:06 +00:00
Adrian Chadd
a04110a3b6 Bring over some AR9271 register definitions from the QCA HAL.
Obtained from:	Qualcomm Atheros
2013-04-15 17:58:11 +00:00
Adrian Chadd
6961e9eda4 Always enable TXOK interrupts when setting up TX queues for EDMA NICs. 2013-04-11 22:02:35 +00:00
Adrian Chadd
69cbcb210d Fix this to compile when ATH_DEBUG_ALQ is defined but ATH_DEBUG isn't. 2013-04-08 21:15:43 +00:00
Adrian Chadd
7598a108ff Add a new TX power field - it's inteded to be used where low TX power
is configured for higher rates (lower than max) but higher TX power
is configured for the lower rates, above the configured cap, to improve
long distance behaviour.
2013-04-05 09:06:39 +00:00
Adrian Chadd
9580780191 HAL additions to enable MCI Bluetooth coexistence in the AR9300 HAL.
* Add the rest of the missing GPIO output mux types;
* Add in a new debug category;
* And a new MCI btcoex configuration option in ath_hal.ah_config

Obtained from:	Qualcomm Atheros
2013-04-05 07:41:47 +00:00
Adrian Chadd
28f4a39c95 Update comments! 2013-04-04 08:57:29 +00:00
Adrian Chadd
8cc724d9be Fix the busdma logic to work with EDMA chipsets when using bounce
buffers (ie, >4GB on amd64.)

The underlying problem was that PREREAD doesn't sync the mbuf
with the DMA memory (ie, bounce buffer), so the bounce buffer may
have had stale information.  Thus it was always considering the
buffer completed and things just went off the rails.

This change does the following:

* Make ath_rx_pkt() always consume the mbuf somehow; it no longer
  passes error mbufs (eg CRC errors, crypt errors, etc) back up
  to the RX path to recycle.  This means that a new mbuf is always
  allocated each time, but it's cleaner.

* Push the RX buffer map/unmap to occur in the RX path, not
  ath_rx_pkt().  Thus, ath_rx_pkt() now assumes (a) it has to consume
  the mbuf somehow, and (b) that it's already been unmapped and
  synced.

* For the legacy path, the descriptor isn't mapped, it comes out of
  coherent, DMA memory anyway.  So leave it there.

* For the EDMA path, the RX descriptor has to be cleared before
  its passed to the hardware, so that when we check with
  a POSTREAD sync, we actually get either a blank (not finished)
  or a filled out descriptor (finished.)  Otherwise we get stale
  data in the DMA memory.

* .. so, for EDMA RX path, we need PREREAD|PREWRITE to sync the
  data -> DMA memory, then POSTREAD|POSTWRITE to finish syncing
  the DMA memory -> data.

* Whilst we're here, make sure that in EDMA buffer setup (ie,
  bzero'ing the descriptor part) is done before the mbuf is
  map/synched.

NOTE: there's been a lot of commits besides this one with regards to
tidying up the busdma handling in ath(4).  Please check the recent
commit history.

Discussed with and thanks to:	scottl

Tested:

* AR5416 (non-EDMA) on i386, with the DMA tag for the driver
  set to 2^^30, not 2^^32, STA

* AR9580 (EDMA) on i386, as above, STA

* User - tested AR9380 on amd64 with 32GB RAM.

PR:		kern/177530
2013-04-04 08:21:56 +00:00
Adrian Chadd
c23a9d98bf Mark a couple of places where I think the dmamap isn't being unmapped
before the TX path is being aborted.

Right now it's in the TDMA code and I can live with that; but it really
should get fixed.

I'll do a more thorough audit of this code soon.
2013-04-02 06:25:10 +00:00
Adrian Chadd
a91ab3c099 Some TX dmamap cleanups.
* Don't use BUS_DMA_ALLOCNOW for descriptor DMA maps; we never use
  bounce buffers for the descriptors themselves.

* Add some XXX's to mark where the ath_buf has its mbuf ripped from
  underneath it without actually cleaning up the dmamap.  I haven't
  audited those particular code paths to see if the DMA map is guaranteed
  to be setup there; I'll do that later.

* Print out a warning if the descdma tidyup code is given some descriptors
  w/ maps to free.  Ideally the owner will free the mbufs and unmap
  the descriptors before freeing the descriptor/ath_buf pairs, but
  right now that's not guaranteed to be done.

Reviewed by:	scottl (BUS_DMA_ALLOCNOW tag)
2013-04-02 06:24:22 +00:00
Adrian Chadd
18303fd833 Add a missing unmap; if we're freeing this mbuf then we must
really both sync/unmap the dmamap before freeing it.
2013-04-02 06:21:37 +00:00
Adrian Chadd
3f3a5dbd2c Ensure that we only call the busdma unmap/flush routines once, when
the buffer is being freed.

* When buffers are cloned, the original mapping isn't copied but it
  wasn't freeing the mapping until later.  To be safe, free the
  mapping when the buffer is cloned.

* ath_freebuf() now no longer calls the busdma sync/unmap routines.

* ath_tx_freebuf() now calls sync/unmap.

* Call sync first, before calling unmap.

Tested:

* AR5416, STA mode
2013-04-01 20:57:13 +00:00
Adrian Chadd
587feafb5a Remove an un-needed comment. 2013-04-01 20:44:21 +00:00
Adrian Chadd
09067b6e9a Use ATH_MAX_SCATTER rather than ATH_TXDESC.
ATH_MAX_SCATTER is used to size the ath_buf DMA segment array.
We thus should use it when checking sizes of things.
2013-04-01 20:12:21 +00:00
Adrian Chadd
80b87f1814 Only unmap the RX mbuf DMA map if there's a buffer here.
The normal RX path (ath_rx_pkt()) will sync and unmap the
buffer before passing it up the stack.  We only need to do this
if we're flushing the FIFO during reset/shutdown.
2013-04-01 20:11:19 +00:00
Adrian Chadd
b92b5f6e3a * Stop processing after HAL_EIO; this is what the reference driver does.
* If we hit an empty queue condition (which I haven't yet root caused, grr.)
  .. make sure we release the lock before continuing.
2013-03-27 00:35:45 +00:00
Adrian Chadd
92e84e43a6 Implement the replacement EDMA FIFO code.
(Yes, the previous code temporarily broke EDMA TX. I'm sorry; I should've
actually setup ATH_BUF_FIFOEND on frames so txq->axq_fifo_depth was
cleared!)

This code implements a whole bunch of sorely needed EDMA TX improvements
along with CABQ TX support.

The specifics:

* When filling/refilling the FIFO, use the new TXQ staging queue
  for FIFO frames

* Tag frames with ATH_BUF_FIFOPTR and ATH_BUF_FIFOEND correctly.
  For now the non-CABQ transmit path pushes one frame into the TXQ
  staging queue without setting up the intermediary link pointers
  to chain them together, so draining frames from the txq staging
  queue to the FIFO queue occurs AMPDU / MPDU at a time.

* In the CABQ case, manually tag the list with ATH_BUF_FIFOPTR and
  ATH_BUF_FIFOEND so a chain of frames is pushed into the FIFO
  at once.

* Now that frames are in a FIFO pending queue, we can top up the
  FIFO after completing a single frame.  This means we can keep
  it filled rather than waiting for it drain and _then_ adding
  more frames.

* The EDMA restart routine now walks the FIFO queue in the TXQ
  rather than the pending queue and re-initialises the FIFO with
  that.

* When restarting EDMA, we may have partially completed sending
  a list.  So stamp the first frame that we see in a list with
  ATH_BUF_FIFOPTR and push _that_ into the hardware.

* When completing frames, only check those on the FIFO queue.
  We should never ever queue frames from the pending queue
  direct to the hardware, so there's no point in checking.

* Until I figure out what's going on, make sure if the TXSTATUS
  for an empty queue pops up, complain loudly and continue.
  This will stop the panics that people are seeing.  I'll add
  some code later which will assist in ensuring I'm populating
  each descriptor with the correct queue ID.

* When considering whether to queue frames to the hardware queue
  directly or software queue frames, make sure the depth of
  the FIFO is taken into account now.

* When completing frames, tag them with ATH_BUF_BUSY if they're
  not the final frame in a FIFO list.  The same holding descriptor
  behaviour is required when handling descriptors linked together
  with a link pointer as the hardware will re-read the previous
  descriptor to refresh the link pointer before contiuning.

* .. and if we complete the FIFO list (ie, the buffer has
  ATH_BUF_FIFOEND set), then we don't need the holding buffer
  any longer.  Thus, free it.

Tested:

* AR9380/AR9580, STA and hostap
* AR9280, STA/hostap

TODO:

* I don't yet trust that the EDMA restart routine is totally correct
  in all circumstances.  I'll continue to thrash this out under heavy
  multiple-TXQ traffic load and fix whatever pops up.
2013-03-26 20:04:45 +00:00
Adrian Chadd
3feffbd796 Add per-TXQ EDMA FIFO staging queue support.
Each set of frames pushed into a FIFO is represented by a list of
ath_bufs - the first ath_buf in the FIFO list is marked with
ATH_BUF_FIFOPTR; the last ath_buf in the FIFO list is marked with
ATH_BUF_FIFOEND.

Multiple lists of frames are just glued together in the TAILQ as per
normal - except that at the end of a FIFO list, the descriptor link
pointer will be NULL and it'll be tagged with ATH_BUF_FIFOEND.

For non-EDMA chipsets this is a no-op - the ath_txq frame list (axq_q)
stays the same and is treated the same.

For EDMA chipsets the frames are pushed into axq_q and then when
the FIFO is to be (re) filled, frames will be moved onto the FIFO
queue and then pushed into the FIFO.

So:

* Add a new queue in each hardware TXQ (ath_txq) for staging FIFO frame
  lists.  It's a TAILQ (like the normal hardware frame queue) rather than
  the ath9k list-of-lists to represent FIFO entries.

* Add new ath_buf flags - ATH_TX_FIFOPTR and ATH_TX_FIFOEND.

* When allocating ath_buf entries, clear out the flag value before
  returning it or it'll end up having stale flags.

* When cloning ath_buf entries, only clone ATH_BUF_MGMT.  Don't clone
  the FIFO related flags.

* Extend ath_tx_draintxq() to first drain the FIFO staging queue, _then_
  drain the normal hardware queue.

Tested:

* AR9280, hostap
* AR9280, STA
* AR9380/AR9580 - hostap

TODO:

* Test on other chipsets, just to be thorough.
2013-03-26 19:46:51 +00:00
Adrian Chadd
35bec3655e Remove the mcast path calls to ath_hal_gettxdesclinkptr() for axq_link -
they're no longer needed for the legacy path and they're not wanted
for the EDMA path.

Tested:

* AR9280, hostap + CABQ
* AR9380/AR9580, hostap + CABQ
2013-03-26 04:56:54 +00:00
Adrian Chadd
b708ea2941 Remove this dead code - it's no longer relevant (as yes, we do actually
support TX on EDMA chips.)
2013-03-26 04:53:40 +00:00
Adrian Chadd
b6ef0f8ac8 Convert the CABQ queue code over to use the HAL link pointer method
instead of axq_link.

This (among a bunch of uncommitted work) is required for EDMA chips
to correctly transmit frames on the CABQ.

Tested:

* AR9280, hostap mode
* AR9380/AR9580, hostap mode (staggered beacons)

TODO:

* This code only really gets called when burst beacons are used;
  it glues multiple CABQ queues together when sending to the hardware.
* More thorough bursted beacon testing! (first requires some work with
  the beacon queue code for bursted beacons, as that currently uses the
  link pointer and will fail on EDMA chips.)
2013-03-26 04:52:16 +00:00
Adrian Chadd
9e7259a2a3 Convert the EDMA multicast queue code over to use the HAL method to set
the descriptor link pointer, rather than directly.

This is needed on AR9380 and later (ie, EDMA) NICs so the multicast queue
has a chance in hell of being put together right.

Tested:

* AR9380, AR9580 in hostap mode, CABQ traffic (but with other patches..)
2013-03-26 04:48:58 +00:00
Adrian Chadd
0891354cd2 Migrate the multicast queue assembly code to not use the axq_link pointer
and instead use the HAL method to set the link pointer.

Tested:

* AR9280, hostap mode, CABQ frames being queued and transmitted
2013-03-26 04:47:40 +00:00
Adrian Chadd
1f6b3ed63c Add new regulatory domain.
Obtained from:	Qualcomm Atheros
2013-03-24 04:42:56 +00:00
Adrian Chadd
56a859789f Move the TXQ lock earlier in this routine - so to correctly protect the
link pointer check.
2013-03-24 04:09:54 +00:00
Adrian Chadd
0acf45ed86 Fix the locking changes due to the TXQ change drive-by.
Tested:

* AR9580, STA mode
2013-03-24 04:09:29 +00:00
Adrian Chadd
b837332d0a Overhaul the TXQ locking (again!) as part of some beacon/cabq timing
related issues.

Moving the TX locking under one lock made things easier to progress on
but it had one important side-effect - it increased the latency when
handling CABQ setup when sending beacons.

This commit introduces a bunch of new changes and a few unrelated changs
that are just easier to lump in here.

The aim is to have the CABQ locking separate from other locking.
The CABQ transmit path in the beacon process thus doesn't have to grab
the general TX lock, reducing lock contention/latency and making it
more likely that we'll make the beacon TX timing.

The second half of this commit is the CABQ related setup changes needed
for sane looking EDMA CABQ support.  Right now the EDMA TX code naively
assumes that only one frame (MPDU or A-MPDU) is being pushed into each
FIFO slot.  For the CABQ this isn't true - a whole list of frames is
being pushed in - and thus CABQ handling breaks very quickly.

The aim here is to setup the CABQ list and then push _that list_ to
the hardware for transmission.  I can then extend the EDMA TX code
to stamp that list as being "one" FIFO entry (likely by tagging the
last buffer in that list as "FIFO END") so the EDMA TX completion code
correctly tracks things.

Major:

* Migrate the per-TXQ add/removal locking back to per-TXQ, rather than
  a single lock.

* Leave the software queue side of things under the ATH_TX_LOCK lock,
  (continuing) to serialise things as they are.

* Add a new function which is called whenever there's a beacon miss,
  to print out some debugging.  This is primarily designed to help
  me figure out if the beacon miss events are due to a noisy environment,
  issues with the PHY/MAC, or other.

* Move the CABQ setup/enable to occur _after_ all the VAPs have been
  looked at.  This means that for multiple VAPS in bursted mode, the
  CABQ gets primed once all VAPs are checked, rather than being primed
  on the first VAP and then having frames appended after this.

Minor:

* Add a (disabled) twiddle to let me enable/disable cabq traffic.
  It's primarily there to let me easily debug what's going on with beacon
  and CABQ setup/traffic; there's some DMA engine hangs which I'm finally
  trying to trace down.

* Clear bf_next when flushing frames; it should quieten some warnings
  that show up when a node goes away.

Tested:

* AR9280, STA/hostap, up to 4 vaps (staggered)
* AR5416, STA/hostap, up to 4 vaps (staggered)

TODO:

* (Lots) more AR9380 and later testing, as I may have missed something here.
* Leverage this to fix CABQ hanling for AR9380 and later chips.
* Force bursted beaconing on the chips that default to staggered beacons and
  ensure the CABQ stuff is all sane (eg, the MORE bits that aren't being
  correctly set when chaining descriptors.)
2013-03-24 00:03:12 +00:00
Adrian Chadd
49ddabc4bd CABQ calculation changes to try and fix some weird corner cases leading
to stuck beacons.

* Set the cabq readytime (ie, how long to burst for) to 50% of the total
  beacon interval time
* fix the cabq adjustment calculation based on how the beacon offset is
  calculated (the SWBA/DBA time offset.)

This is all still a bit magic voodoo but it does seem to have further
quietened issues with missed/stuck beacons under my local testing.
In any case, it better matches what the reference HAL implements.

Obtained from:	Qualcomm Atheros
2013-03-23 23:51:11 +00:00
Adrian Chadd
9cda8c8082 Fix the EDMA CABQ handling - for now, the CABQ takes a descriptor chain
like the legacy chips expect.
2013-03-20 05:44:03 +00:00
Adrian Chadd
f0db652cf6 Break out the RX completion path into "FIFO check / refill" and
"complete RX frames."

The 128 entry RX FIFO is really easy to fill up and miss refilling
when it's done in the ath taskq - as that gets blocked up doing
RX completion, TX completion and other random things.

So the 128 entry RX FIFO now gets emptied and refilled in the ath_intr()
task (and it grabs / releases locks, so now ath_intr() can't just be
a FAST handler yet!) but the locks aren't held for very long. The
completion part is done in the ath taskqueue context.

Details:

* Create a new completed frame list - sc->sc_rx_rxlist;
* Split the EDMA RX process queue into two halves - one that
  processes the RX FIFO and refills it with new frames; another
  that completes the completed frame list;
* When tearing down the driver, flush whatever is in the deferred
  queue as well as what's in the FIFO;
* Create two new RX methods - one that processes all RX queues,
  one that processes the given RX queue.  When MSI is implemented,
  we get told which RX queue the interrupt came in on so we can
  specifically schedule that.  (And I can do that with the non-MSI
  path too; I'll figure that out later.)
* Convert the legacy code over to use these new RX methods;
* Replace all the instances of the RX taskqueue enqueue with a call
  to a relevant RX method to enqueue one or all RX queues.

Tested:

* AR9380, STA
* AR9580, STA
* AR5413, STA
2013-03-19 19:32:28 +00:00
Adrian Chadd
74ea88c379 Add more TODO items. 2013-03-19 17:55:36 +00:00
Adrian Chadd
378a752f59 Now that the tx map field is correctly populated for both edma and
legacy chips, just use that.
2013-03-19 17:54:37 +00:00
Adrian Chadd
1ab002f461 Print out the current fifo queue depth correctly - not just the max
queue depth.

Silly hat to me.
2013-03-18 02:29:57 +00:00
Adrian Chadd
eefc93a947 Dump out information about the RX descriptor free list and FIFO information. 2013-03-18 01:12:36 +00:00
Adrian Chadd
d50e882ab9 Log some more information when the RX buffer allocation failed. 2013-03-18 01:11:52 +00:00
Adrian Chadd
cd4f1ba89f Why'd I keep this here? remove it entirely now. 2013-03-15 20:22:20 +00:00
Adrian Chadd
302868d914 Fix two bugs:
* when pulling frames off of the TID queue, the ATH_TID_REMOVE()
  macro decrements the axq_depth field.  So don't do it twice.

* in ath_tx_comp_cleanup_aggr(), bf wasn't being reset to bf_first
  before walking the buffer list to complete buffers; so those buffers
  will leak.
2013-03-15 20:00:08 +00:00
Adrian Chadd
8454d32107 Remove a now incorrect comment.
This comment dates back to my initial stab at TX aggregation completion,
where I didn't even bother trying to do software retries.
2013-03-15 04:43:27 +00:00
Adrian Chadd
5f2f0e616b Add locking around the new holdingbf code.
Since this is being done during buffer free, it's a crap shoot whether
the TX path lock is held or not.  I tried putting the ath_freebuf() code
inside the TX lock and I got all kinds of locking issues - it turns out
that the buffer free path sometimes is called with the lock held and
sometimes isn't. So I'll go and fix that soon.

Hence for now the holdingbf buffers are protected by the TXBUF lock.
2013-03-15 02:52:37 +00:00
Adrian Chadd
629ce2188a Implement "holding buffers" per TX queue rather than globally.
When working on TDMA, Sam Leffler found that the MAC DMA hardware
would re-read the last TX descriptor when getting ready to transmit
the next one.  Thus the whole ATH_BUF_BUSY came into existance -
the descriptor must be left alone (very specifically the link pointer
must be maintained) until the hardware has moved onto the next frame.

He saw this in TDMA because the MAC would be frequently stopping during
active transmit (ie, when it wasn't its turn to transmit.)

Fast-forward to today.  It turns out that this is a problem not with
a single MAC DMA instance, but with each QCU (from 0->9).  They each
maintain separate descriptor pointers and will re-read the last
descriptor when starting to transmit the next.

So when your AP is busy transmitting from multiple TX queues, you'll
(more) frequently see one QCU stopped, waiting for a higher-priority QCU
to finsh transmitting, before it'll go ahead and continue.  If you mess
up the descriptor (ie by freeing it) then you're short of luck.

Thanks to rpaulo for sticking with me whilst I diagnosed this issue
that he was quite reliably triggering in his environment.

This is a reimplementation; it doesn't have anything in common with
the ath9k or the Qualcomm Atheros reference driver.

Now - it in theory doesn't apply on the EDMA chips, as long as you
push one complete frame into the FIFO at a time.  But the MAC can DMA
from a list of frames pushed into the hardware queue (ie, you concat
'n' frames together with link pointers, and then push the head pointer
into the TXQ FIFO.)  Since that's likely how I'm going to implement
CABQ handling in hostap mode, it's likely that I will end up teaching
the EDMA TX completion code about busy buffers, just to be "sure"
this doesn't creep up.

Tested - iperf ap->sta and sta->ap (with both sides running this code):

* AR5416 STA
* AR9160/AR9220 hostap

To validate that it doesn't break the EDMA (FIFO) chips:

* AR9380, AR9485, AR9462 STA

Using iperf with the -S <tos byte decimal value> to set the TCP client
side DSCP bits, mapping to different TIDs and thus different TX queues.

TODO:

* Make this work on the EDMA chips, if we end up pushing lists of frames
  to the hardware (eg how we eventually will handle cabq in hostap/ibss
  mode.)
2013-03-14 06:20:02 +00:00
Adrian Chadd
0639c54a67 Use the correct antenna configuration variable here. "diversity" just
controls whether it's on or off.

Found by:	clang
2013-03-12 03:03:24 +00:00
Adrian Chadd
0e168bb8e3 Add a few new fields to the RX vendor radiotap header:
* a flags field that lets me know what's going on;
* the hardware ratecode, unmolested by conversion to a bitrate;
* the HAL rs_flags field, useful for debugging;
* specifically mark aggregate sub-frames.

This stuff sorely needs tidying up - it's missing some important
stuff (eg numdelims) and it would be nice to put the flags at the
beginning rather than at the end.

Tested:

* AR9380, STA mode, 2x2 HT40, monitoring RSSI and EVM values
2013-03-11 06:54:58 +00:00
Adrian Chadd
6b3ba411d3 Bump the EVM array size up to fit the AR9380 EVM entries. 2013-03-11 06:01:00 +00:00
Adrian Chadd
1896b0880a Add three-stream EVM values. 2013-03-11 04:19:10 +00:00
Adrian Chadd
ba8d066231 Add another register definition bit - whether to populate EVM or PLCP
data in the RX status descriptor.

Obtained from:	Qualcomm Atheros
2013-03-10 09:43:01 +00:00
Adrian Chadd
b3420862a7 Disable the hw TID != buffer TID check.
I can 100% reliably trigger this on TID 1 traffic by using iperf -S 32
<client fields> to create traffic that maps to TID 1.

The reference driver doesn't do this check.
2013-03-09 08:50:17 +00:00
Adrian Chadd
9d2a962bf3 Print out the queue flags during a TX DMA shutdown. 2013-03-09 06:11:58 +00:00
Adrian Chadd
bdb9fa5c87 add a method to set/clear the VMF field in the TX descriptor.
Obtained from:	Qualcomm Atheros
2013-03-04 07:40:49 +00:00
Adrian Chadd
87c176d272 Add missing flags. 2013-02-28 23:39:38 +00:00
Adrian Chadd
7a27f0a338 Oops - fix an incorrect test. 2013-02-28 23:39:22 +00:00
Adrian Chadd
5612990623 Don't enable the HT flags for legacy rates.
I stumbled across this whilst trying to debug another weird hang reported
on the freebsd-wireless list.

Whilst here, add in the STBC check to ath_rateseries_setup().

Whilst here, fix the short preamble flag to be set only for legacy rates.

Whilst here, comment that we should be using the full set of decisions
made by ath_rateseries_setup() rather than recalculating them!
2013-02-28 23:31:23 +00:00
Adrian Chadd
ee563d630b I give up - just throw the EWMA update into the normal update_stats()
routine.

There were still corner cases where the EWMA update stats are being
called on a rix which didn't have an intermediary stats update; thus
no packets were counted against it.  Sigh.

This should fix the crashes I've been seeing on recent -HEAD.
2013-02-27 04:33:06 +00:00
Adrian Chadd
1a3a560767 Enable STBC for the given rate series if it's negotiated:
* If both ends have negotiated (at least) one stream;
* Only if it's a single stream rate (MCS0-7);
* Only if there's more than one TX chain enabled.

Tested:

* AR9280 STA mode -> Atheros AP; tested both MCS2 (STBC) and MCS12 (no STBC.)
  Verified using athalq to inspect the TX descriptors.

TODO:

* Test AR5416 - no STBC should be enabled;
* Test AR9280 with one TX chain enabled - no STBC should be enabled.
2013-02-27 00:49:32 +00:00
Adrian Chadd
6606ba811c Add in the STBC TX/RX capability support into the HAL and driver.
The HAL already included the STBC fields; it just needed to be exposed
to the driver and net80211 stack.

This should allow single-stream STBC TX and RX to be negotiated; however
the driver and rate control code currently don't do anything with it.
2013-02-27 00:25:44 +00:00
Adrian Chadd
38fda92679 Update the EWMA statistics for each intermediary rate as well as the final
rate.

This fixes two things:

* The intermediary rates now also have their EWMA values changed;
* The existing code was using the wrong value for longtries - so the
  EWMA stats were only adjusted for the first rate and not subsequent
  rates in a MRR setup.

TODO:

* Merge the EWMA updates into update_stats() now..
2013-02-26 10:24:49 +00:00
Adrian Chadd
6322256b83 Part #2 of the TX chainmask changes:
* Remove ar5416UpdateChainmasks();
* Remove the TX chainmask override code from the ar5416 TX descriptor
  setup routines;
* Write a driver method to calculate the current chainmask based on the
  operating mode and update the driver state;
* Call the HAL chainmask method before calling ath_hal_reset();
* Use the currently configured chainmask in the TX descriptors rather than
  the hardware TX chainmasks.

Tested:

* AR5416, STA/AP mode - legacy and 11n modes
2013-02-25 22:45:02 +00:00
Adrian Chadd
d2a72d673f Begin adding support to explicitly set the current chainmask.
Right now the only way to set the chainmask is to set the hardware
configured chainmask through capabilities.  This is fine for forcing
the chainmask to be something other than what the hardware is capable
of (eg to reduce TX/RX to one connected antenna) but it does change what
the HAL hardware chainmask configuration is.

For operational mode changes, it (may?) make sense to separately control
the TX/RX chainmask.

Right now it's done as part of ar5416_reset.c - ar5416UpdateChainMasks()
calculates which TX/RX chainmasks to enable based on the operating mode.
(1 for legacy and whatever is supported for 11n operation.)  But doing
this in the HAL is suboptimal - the driver needs to know the currently
configured chainmask in order to correctly enable things for each
TX descriptor.  This is currently done by overriding the chainmask
config in the ar5416 TX routines but this has to disappear - the AR9300
HAL support requires the driver to dynamically set the TX chainmask based
on the TX power and TX rate in order to meet mini-PCIe slot power
requirements.

So:

* Introduce a new HAL method to set the operational chainmask variables;
* Introduce null methods for the previous generation chipsets;
* Add new driver state to record the current chainmask separate from
  the hardware configured chainmask.

Part #2 of this will involve disabling ar5416UpdateChainMasks() and moving
it into the driver; as well as properly programming the TX chainmask
based on the currently configured HAL chainmask.

Tested:

* AR5416, STA mode - both legacy (11a/11bg) and 11n rates - verified
  that AR_SELFGEN_MASK (the chainmask used for self-generated frames like
  ACKs and RTSes) is correct, as well as the TX descriptor contents is
  correct.
2013-02-25 22:42:43 +00:00
Adrian Chadd
ffdc8f48dd Add a workaround for AR5416, AR9130 and AR9160 chipsets - work around
an incorrectly calculated RTS duration value when transmitting aggregates.

These earlier 802.11n NICs incorrectly used the ACK duration time when
calculating what to put in the RTS of an aggregate frame.  Instead it
should have used the block-ack time.  The result is that other stations
may not reserve enough time and start transmitting _over_ the top of
the in-progress blockack field.  Tsk.

This workaround is to popuate the burst duration field with the delta
between the ACK duration the hardware is using and the required duration
for the block-ack.  The result is that the RTS field should now contain
the correct duration for the subsequent block-ack.

This doesn't apply for AR9280 and later NICs.

Obtained from:	Qualcomm Atheros
2013-02-22 07:07:11 +00:00
Adrian Chadd
ce597531f2 Disable debugging entries about BAW issues. I haven't seen any issues
to do with BAW tracking in the last 9 months or so.
2013-02-21 21:47:35 +00:00
Adrian Chadd
de2d9111ec Be slightly more paranoid with the TX DMA buffer maximum threshold.
Specifically - never jack the TX FIFO threshold up to the absolute
maximum; always leave enough space for two DMA transactions to
appear.

This is a paranoia from the Linux ath9k driver.  It can't hurt.

Obtained from:	Linux ath9k
2013-02-21 08:42:40 +00:00
Adrian Chadd
a54ecf784a Add an option to allow the minimum number of delimiters to be tweaked.
This is primarily for debugging purposes.

Tested:

* AR5416, STA mode
2013-02-21 06:38:49 +00:00
Adrian Chadd
4a502c332a Add a new option to limit the maximum size of aggregates.
The default is to limit them to what the hardware is capable of.

Add sysctl twiddles for both the non-RTS and RTS protected aggregate
generation.

Whilst here, add some comments about stuff that I've discovered during
my exploration of the TX aggregate / delimiter setup path from the
reference driver.
2013-02-21 06:18:40 +00:00
Adrian Chadd
054eace83f Remove this unneeded printf(), sorry! 2013-02-21 02:52:13 +00:00
Adrian Chadd
d7cc11edce Configure larger TX FIFO default and maximum level values.
This has reduced the number of TX delimiter and data underruns when
doing large UDP transfers (>100mbit).

This stops any HAL_INT_TXURN interrupts from occuring, which is a good
sign!

Obtained from:	Qualcomm Atheros
2013-02-20 12:14:49 +00:00
Adrian Chadd
71d6fe723e If any of the TX queues have underrun reporting enabled, enable
HAL_INT_TXURN in the interrupt mask register.

This should now allow for TXURN interrupts to be posted.
2013-02-20 11:24:11 +00:00
Adrian Chadd
f274e91f67 A couple of quick tidyups:
* Delete this debugging print - I used it when debugging the initial
  TX descriptor chaining code.  It now works, so let's toss it.
  It just confuses people if they enable TX descriptor debugging as they
  get two slightly different versions of the same descriptor.

* Indenting.
2013-02-20 11:22:44 +00:00
Adrian Chadd
69930f8794 Enable TX FIFO underrun interrupts. This allows the TX FIFO threshold
adjustment code to now run.

Tested:

* AR5416, STA

TODO:

* Much more thorough testing on the other chips, AR5210 -> AR9287
2013-02-20 11:20:51 +00:00
Adrian Chadd
bab336db27 oops, tab! 2013-02-20 11:17:29 +00:00
Adrian Chadd
a26f33276f Post interrupts in the ath alq trace. 2013-02-20 11:17:03 +00:00
Adrian Chadd
158cb431db CFG_ERR, DATA_UNDERRUN and DELIM_UNDERRUN are all flags, rather than
part of ts_status. Thus:

* make sure we decode them from ts_flags, rather than ts_status;
* make sure we decode them regardless of whether there's an error or not.

This correctly exposes descriptor configuration errors, TX delimiter
underruns and TX data underruns.
2013-02-20 11:14:55 +00:00
Adrian Chadd
feb043c69c Fix an incorrect sizeof()
PR:		kern/176238
Submitted by:	Christoph Mallon <christoph.mallon@gmx.de>
2013-02-18 18:39:15 +00:00
Adrian Chadd
d97c06b3a4 Add a new ATH KTR debug method to log the interrupt status. 2013-02-18 04:10:38 +00:00
Adrian Chadd
1844ff169f * Reduce the PCU lock overhead a little by only re-acquiring it if we
actually do have to reinitialise the RX side of things after an RX
  descriptor EOL error.

* Revert a change of mine from quite a while ago - don't shortcut the
  RX initialisation path.  There's a RX FIFO bug in the earlier chips
  (I'm not sure when it was fixed in this series, but it's fixed
  with the AR9380 and later) which causes the same RX descriptor to
  be written to over and over.  This causes the descriptor to be
  marked as "done", and this ends up causing the whole RX path to
  go very strange.  This should fixed the "kickpcu; handled X packets"
  message spam where "X" is consistently small.
2013-02-16 19:11:57 +00:00
Adrian Chadd
1a85141ad4 Pull out the if_transmit() work and revert back to ath_start().
My changed had some rather significant behavioural changes to throughput.
The two issues I noticed:

* With if_start and the ifnet mbuf queue, any temporary latency
  would get eaten up by some mbufs being queued.  With ath_transmit()
  queuing things to ath_buf's, I'd only get 512 TX buffers before I
  couldn't queue any further frames.

* There's also some non-zero latency involved with TX being pushed
  into a taskqueue via direct dispatch.  Any time the scheduler didn't
  immediately schedule the ath TX task would cause extra latency.
  Various 1ge/10ge drivers implement both direct dispatch (if the TX
  lock can be acquired) and deferred task transmission (if the TX lock
  can't be acquired), with frames being pushed into a drbd queue.
  I'll have to do this at some point, but until I figure out how to
  deal with 802.11 fragments, I'll have to wait a while longer.

So what I saw:

* lots of extra latency, specially under load - if the taskqueue
  wasn't immediately scheduled, things went pear shaped;

* any extra latency would result in TX ath_buf's taking their sweet time
  being replenished, so any further calls to ath_transmit() would drop
  mbufs.

* .. yes, there's no explicit backpressure here - things are just dropped.
  Eek.

With this, the general performance has gone up, but those subtle if_start()
related race conditions are back.  For some reason, this is doubly-obvious
with the AR5416 NIC and I don't quite understand why yet.

There's an unrelated issue with AR5416 performance in STA mode (it's
fine in AP mode when bridging frames, weirdly..) that requires a little
further investigation.  Specifically - it works fine on a Lenovo T40
(single core CPU) running a March 2012 9-STABLE kernel, but a Lenovo T60
(dual core) running an early November 2012 kernel behaves very poorly.
The same hardware with an AR9160 or AR9280 behaves perfectly.
2013-02-13 05:32:19 +00:00
Adrian Chadd
53a835d2db Put this back into the ath taskqueue rather than the ath TX taskqueue.
This now should mean all the entry points into the software TX
scheduler are back in the same taskqueue.
2013-02-11 07:49:40 +00:00
Adrian Chadd
a40880ade4 Go back to direct-dispatch of the software queue and frame TX paths
when they're being called from the TX completion handler.

Going (back) through the taskqueue is just adding extra locking and
latency to packet operations.  This improves performance a little bit
on most NICs.

It still hasn't restored the original performance of the AR5416 NIC
but the AR9160, AR9280 and later NICs behave very well with this.

Tested:

* AR5416 STA (still tops out at ~ 70mbit TCP, rather than 150mbit TCP..)
* AR9160 hostap (good for both TX and RX)
* AR9280 hostap (good for both TX and RX)
2013-02-11 07:48:26 +00:00
Adrian Chadd
81561d0459 Extend the timestamp to be a timeval, rather than ticks.
This makes it easier to see TX and RX buffer latencies.
2013-02-11 02:48:49 +00:00
Adrian Chadd
650da23095 The encryption type field needs to be preserved for each descriptor
making up a frame, in both a sub-frame and for all frames in an
aggregate.

Tested:

* AR5416, STA mode
2013-02-09 02:42:01 +00:00
Adrian Chadd
d03904f1db Fix a corner case that I noticed with the AR5416 (and it's currently
crappy 802.11n performance, sigh.)

With the AR5416, aggregates need to be limited to 8KiB if RTS/CTS is
enabled.  However, larger aggregates were going out with RTSCTS enabled.
The following was going on:

* The first buffer in the list would have RTS/CTS enabled in
  bf->bf_state.txflags;
* The aggregate would be formed;
* The "copy over the txflags from the first buffer" logic that I added
  blanked the RTS/CTS TX flags fields, and then copied the bf_first
  RTS/CTS flags over;
* .. but that'd cause bf_first to be blanked out! And thus the flag
  was cleared;
* So the rest of the aggregate formation would run with those flags
  cleared, and thus > 8KiB aggregates were formed.

The driver is now (again) correctly limiting aggregate formation for
the AR5416 but there are still other pending issues to resolve.

Tested:

* AR5416, STA mode
2013-02-08 09:07:03 +00:00
Adrian Chadd
1b3502e5a1 Create a new TX lock specifically for queuing frames.
This now separates out the act of queuing frames from the act of running
TX and TX completion.
2013-02-07 07:50:16 +00:00
Adrian Chadd
21bca442b9 Methodize the process of adding the software TX queue to the taskqueue.
Move it (for now) to the TX taskqueue.
2013-02-07 02:15:25 +00:00
Adrian Chadd
b8f355bf50 Work around some rather unfortunate race conditions inside net80211.
Right now, ic_curchan seems to be updated rather quickly (ie, during
the ioctl) and before the driver gets notified of what's going on.
So what I was seeing was:

* NIC was in channel X;
* It generates PHY errors for channel X;
* an ioctl comes along from userland and changes things to channel Y;
* .. this updates ic_curchan, but hasn't yet reset the hardware;
* in parallel, RX is occuring and it looks at ic_curchan;
* .. which is channel Y, so events get stamped with that now.

Sigh.
2013-01-31 00:14:25 +00:00
Pedro F. Giffuni
646a7fea0c Clean some 'svn:executable' properties in the tree.
Submitted by:	Christoph Mallon
MFC after:	3 days
2013-01-26 22:08:21 +00:00
Adrian Chadd
f28a552089 Migrate the TX sending code out from under the ath0 taskq and into
the separate ath0 TX taskq.

Whilst here, make sure that the TX software scheduler is also
running out of the TX task, rather than the ath0 taskqueue.

Make sure that the tx taskqueue is blocked/unblocked as necessary.

This allows for a little more parallelism on multi-core machines,
as well as (eventually) supporting a higher task priority for TX
tasks, allowing said TX task to preempt an already running RX or
TX completion task.

Tested:

* AR5416, AR9280 hostap and STA modes
2013-01-26 00:14:34 +00:00
Adrian Chadd
f74d878fda Fix this routine to acutally break out and not set clrdmask if any
of the TIDs are currently marked as "filtered."
2013-01-21 07:50:38 +00:00
Adrian Chadd
4f25ddbbe6 Migrate CLRDMASK to be a per-node flag, rather than a per-TID flag.
This is easily possible now that the TX is protected by a single
lock, rather than a per-TXQ (and thus per-TID) lock.

Only set CLRDMASK if none of the destinations are filtered.
This likely will need some tuning when it comes time to do UASPD/PS-POLL
TX, however at that point it should be manually set anyway.

Tested:

* AR9280, STA mode

TODO:

* More thorough testing in AP mode
* test other chipsets, just to be safe/sure.
2013-01-21 04:06:04 +00:00
Adrian Chadd
a74ebfe59e Fix hangs (exposed by spectral scan activity) in STA mode when the
chip hangs.

* Always do a reset in ath_bmiss_proc(), regardless of whether the
  hardware is "hung" or not.  Specifically, for spectral scan, there's
  likely a whole bunch of potential hangs that we don't (yet) recognise
  in the HAL.  So to avoid staying RX deaf persisting until the station
  disassociates, just do a no-loss reset.

* Set sc_beacons=1 in STA mode.  During a reset, the beacon programming
  isn't done.  (It's likely I need to set sc_syncbeacons during a hang
  reset, but I digress.)  Thus after a reset, there's no beacon timer
  programming to send a BMISS interrupt if beacons aren't heard ..
  thus if the AP disappears, you won't get notified and you'll have to
  reset your interface.

This hasn't yet fixed all of the hangs that I've seen when debugging
spectral scan, but it's certainly reduced the hang frequency and it
should improve general STA stability in very noisy environments.

Tested:

* AR9280, STA mode, spectral scan off/on

PR:		kern/175227
2013-01-17 16:43:59 +00:00
Adrian Chadd
61cd9692bb Add a quick work-around if ath_beacon_config() to not die if it's called
when an interface is going down.

Right now it's quite possible (but very unlikely!) that ath_reset()
or similar is called, leading to a beacon config call, in parallel with
the last VAP being destroyed.

This likely should be fixed by making sure the bmiss/bstuck/watchdog
taskqueues are canceled whenever the last VAP is destroyed.
2013-01-17 16:26:40 +00:00
Adrian Chadd
c5239edb98 Implement frame (data) transmission using if_transmit(), rather than
if_start().

This removes the overlapping data path TX from occuring, which
solves quite a number of the potential TX queue races in ath(4).
It doesn't fix the net80211 layer TX queue races and it doesn't
fix the raw TX path yet, but it's an important step towards this.

This hasn't dropped the TX performance in my testing; primarily
because now the TX path can quickly queue frames and continue
along processing.

This involves a few rather deep changes:

* Use the ath_buf as a queue placeholder for now, as we need to be
  able to support queuing a list of mbufs (ie, when transmitting
  fragments) and m_nextpkt can't be used here (because it's what is
  joining the fragments together)

* if_transmit() now simply allocates the ath_buf and queues it to
  a driver TX staging queue.

* TX is now moved into a taskqueue function.

* The TX taskqueue function now dequeues and transmits frames.

* Fragments are handled correctly here - as the current API passes
  the fragment list as one mbuf list (joined with m_nextpkt) through
  to the driver if_transmit().

* For the couple of places where ath_start() may be called (mostly
  from net80211 when starting the VAP up again), just reimplement
  it using the new enqueue and taskqueue methods.

What I don't like (about this work and the TX code in general):

* I'm using the same lock for the staging TX queue management and the
  actual TX.  This isn't required; I'm just being slack.

* I haven't yet moved TX to a separate taskqueue (but the taskqueue is
  created); it's easy enough to do this later if necessary.  I just need
  to make sure it's a higher priority queue, so TX has the same
  behaviour as it used to (where it would preempt existing RX..)

* I need to re-review the TX path a little more and make sure that
  ieee80211_node_*() functions aren't called within the TX lock.
  When queueing, I should just push failed frames into a queue and
  when I'm wrapping up the TX code, unlock the TX lock and
  call ieee80211_node_free() on each.

* It would be nice if I could hold the TX lock for the entire
  TX and TX completion, rather than this release/re-acquire behaviour.
  But that requires that I shuffle around the TX completion code
  to handle actual ath_buf free and net80211 callback/free outside
  of the TX lock.  That's one of my next projects.

* the ic_raw_xmit() path doesn't use this yet - so it still has
  sequencing problems with parallel, overlapping calls to the
  data path.  I'll fix this later.

Tested:

* Hostap - AR9280, AR9220
* STA - AR5212, AR9280, AR5416
2013-01-15 18:01:23 +00:00
Adrian Chadd
233af52df2 If we're doing a kickpcu, make sure we flush the whole RX list rather than
stopping after 128 frames.

Whilst here, add in some code that lets me optionally flip back to the
original behaviour of calling ath_startrecv().
2013-01-13 22:41:58 +00:00
Adrian Chadd
4c2f84b119 Place-holders for enable/active parameter flags. 2013-01-11 02:25:39 +00:00
Adrian Chadd
3aa1b9569d Fix format size. 2013-01-08 22:42:15 +00:00
Adrian Chadd
e1c562d83a Add support for triggering spectral scan upon a channel reset/change.
This is intended to support reporting FFT results during active channel
scans, for users who would like to fiddle around with writing applications
that do both FFT visualisation _and_ AP scanning.

* add a new ioctl to enable/trigger spectral scan at channel change/reset;
* set do_spectral consistently if it's enabled, so a channel set/reset
  will carry forth the correct PHY error configuration so frames
  are actually received;
* for NICs that don't do spectral scan, don't bother checking the
  spectral scan state on channel change/reset.

Tested:

* AR9280 - STA and scanning;
* AR5416 - STA, ensured that the SS code doesn't panic
2013-01-08 22:15:13 +00:00
Adrian Chadd
f29c6bdec5 If spectral scan is enabled, ensure radar report PHY errors are also
enabled.
2013-01-08 22:12:45 +00:00
Adrian Chadd
55caa1df93 For PHY error frames, populate the configured channel flags rather than
based on the received frame.

PHY errors don't have the relevant HT or 40MHz MCS flag set.
2013-01-04 06:28:34 +00:00
Adrian Chadd
5da4cc48ba Don't call the spectral methods for NICS that don't implement them. 2013-01-03 19:03:03 +00:00
Adrian Chadd
9af351f9e8 Add a new (skeleton) spectral mode manager module. 2013-01-02 03:59:02 +00:00
Adrian Chadd
bcd2a42f0b Fix the short repeat option code to not flip the option to 0 when
we call this w/ NOVAL set.
2013-01-02 03:56:20 +00:00
Adrian Chadd
1535a81e5e Add spectral HAL accessor methods. 2013-01-02 01:40:23 +00:00
Adrian Chadd
c9b690d37a Add a method to explicitly disable radar reporting if required. 2013-01-02 01:36:10 +00:00
Adrian Chadd
973d40776c Bring over the basic spectral scan framework code from Qualcomm Atheros.
This includes the HAL routines to setup, enable/activate/disable spectral
scan and configure the relevant registers.

This still requires driver interaction to enable spectral scan reporting.
Specifically:

* call ah_spectralConfigure() to configure and enable spectral scan;
* .. there's currently no way to disable spectral scan... that will have
  to follow.
* call ah_spectralStart() to force start a spectral report;
* call ah_spectralStop() to force stop an active spectral report.

The spectral scan results appear as PHY errors (type 0x5 on the AR9280,
same as radar) but with the spectral scan bit set (0x10 in the last byte
of the frame) identifying it as a spectral report rather than a radar
FFT report.

Caveats:

* It's likely quite difficult to run spectral _and_ radar at the same
  time.  Enabling spectral scan disables the radar thresholds but
  leaves radar enabled.  Thus, the driver (for now) needs to ensure
  that only one or the other is enabled.

* .. it needs testing on HT40 mode.

Tested:

* AR9280 in STA mode, HT/20 only

TODO:

* Test on AR9285, AR9287;
* Test in both HT20 and HT40 modes;
* .. all the driver glue.

Obtained from:	Qualcomm Atheros
2013-01-02 00:38:01 +00:00
Adrian Chadd
29dbc48349 Add the initial HAL glue for the spectral analysis support.
* Finish adding the HAL capability to announce whether a NIC supports
  spectral scan or not;
* Add spectral scan methods to the HAL structure;
* Add HAL_SPECTRAL_PARAM for configuration of the spectral scan logic.

The capability ID and HAL_SPECTRAL_PARAM struct are from Qualcomm
Atheros.
2012-12-30 06:48:12 +00:00
Adrian Chadd
9cbc6f1595 Add spectral scan capability. 2012-12-30 06:46:11 +00:00
Baptiste Daroussin
661c81c3d6 Fix typo in comment.
Submitted by:	Christoph Mallon <christoph.mallon@gmx.de>
2012-12-28 21:59:47 +00:00
Adrian Chadd
2720a0cbd9 Add the AR9280 and later spectral scan register definitions.
Obtained from:	Linux ath9k, Qualcomm Atheros (datasheet)
2012-12-28 08:00:31 +00:00
Adrian Chadd
00ba39c988 Add radar_bin_thresh_sel (bit 24:26), which defines when
to consider the radar FFT report bins as "strong".
2012-12-28 07:49:45 +00:00
Adrian Chadd
a5e67727fb Note why fast frames is disabled for 802.11n NICs now.
It actually works, but net80211 handles A-MPDU and Fast frames
incorrectly; it tries enabling both in some instances, with tragic
results.
2012-12-21 04:28:05 +00:00
Adrian Chadd
fc56c9c5e2 There's no need to use a TXQ pointer here; we specifically need the
hardware queue ID when queuing to EDMA descriptors.

This is a small part of trying to reduce the size of ath_buf entries.
2012-12-11 04:19:51 +00:00
Adrian Chadd
2992cd2231 Add XC900 SKU mapping. 2012-12-07 06:38:30 +00:00
Gleb Smirnoff
c6499eccad Mechanically substitute flags from historic mbuf allocator with
malloc(9) flags in sys/dev.
2012-12-04 09:32:43 +00:00
Adrian Chadd
e89812c379 Methodise the BT diversity configuration function; so the AR9285
can correctly override it.

This was missed in the previous commit.
2012-12-04 00:02:46 +00:00
Adrian Chadd
96b59d60c8 Override the BT coex parameter function for the AR9285. 2012-12-04 00:01:42 +00:00
Adrian Chadd
87a85d8a49 Reformat/reindent. 2012-12-04 00:01:24 +00:00
Adrian Chadd
24a8406b99 Add and tie in the AR5416 bluetooth coexistence methods into the HAL. 2012-12-03 23:45:06 +00:00
Adrian Chadd
974185bb13 Don't grab the PCU lock inside the TX lock. 2012-12-02 06:50:27 +00:00
Adrian Chadd
375307d411 Delete the per-TXQ locks and replace them with a single TX lock.
I couldn't think of a way to maintain the hardware TXQ locks _and_ layer
on top of that per-TXQ software queuing and any other kind of fine-grained
locks (eg per-TID, or per-node locks.)

So for now, to facilitate some further code refactoring and development
as part of the final push to get software queue ps-poll and u-apsd handling
into this driver, just do away with them entirely.

I may eventually bring them back at some point, when it looks slightly more
architectually cleaner to do so.  But as it stands at the present, it's
not really buying us much:

* in order to properly serialise things and not get bitten by scheduling
  and locking interactions with things higher up in the stack, we need to
  wrap the whole TX path in a long held lock.  Otherwise we can end up
  being pre-empted during frame handling, resulting in some out of order
  frame handling between sequence number allocation and encryption handling
  (ie, the seqno and the CCMP IV get out of sequence);

* .. so whilst that's the case, holding the lock for that long means that
  we're acquiring and releasing the TXQ lock _inside_ that context;

* And we also acquire it per-frame during frame completion, but we currently
  can't hold the lock for the duration of the TX completion as we need
  to call net80211 layer things with the locks _unheld_ to avoid LOR.

* .. the other places were grab that lock are reset/flush, which don't happen
  often.

My eventual aim is to change the TX path so all rejected frame transmissions
and all frame completions result in any ieee80211_free_node() calls to occur
outside of the TX lock; then I can cut back on the amount of locking that
goes on here.

There may be some LORs that occur when ieee80211_free_node() is called when
the TX queue path fails; I'll begin to address these in follow-up commits.
2012-12-02 06:24:08 +00:00
Adrian Chadd
e5d63a99bc Add a new HAL capability - check and enforce whether the NIC supports
enforcing the TXOP and TBTT limits:

* Frames which will overlap with TBTT will not TX;
* Frames which will exceed TXOP will be filtered.

This is not enabled by default; it's intended to be enabled by the
TDMA code on 802.11n capable chipsets.
2012-12-01 03:48:11 +00:00
Adrian Chadd
8bf4020830 Call if_free() with the correct vnet context if and only if ifp_vnet
isn't NULL.

If the attach fails prematurely and there's no if_vnet context, calling
CURVNET_SET(ifp->if_vnet) is going to dereference a NULL pointer.
2012-11-28 07:12:08 +00:00
Adrian Chadd
491e124856 Until I figure out what to do here, remind myself that this needs some
rate control 'adjustment' when NOACK is set.
2012-11-28 06:55:34 +00:00
Adrian Chadd
7c783791c8 Pull out the debugging code from the critical path and make sure it
happens _after_ all of the time delta calculations.
2012-11-28 01:55:22 +00:00
Adrian Chadd
821311ea59 * Fix another culprit of my "committed from the wrong directory" nonsense;
now this works for non-debug and debug builds.

* Add a comment reminding me (or someone) to audit all of the relevant
  math to ensure there's no weird wrapping issues still lurking about.

But yes, this does seem to be mostly working.

Pointy-hat-to:	adrian, yet again
2012-11-27 11:30:39 +00:00
Adrian Chadd
4fd97455a3 Correct some debugging output. 2012-11-27 08:40:48 +00:00
Adrian Chadd
584295fca4 Fix build 2012-11-27 05:52:08 +00:00
Adrian Chadd
4bda23f95b Improve the TDMA debugging:
* add some further debugging prints, which are quite nice to have
* add in ALQ hooks (optional!) to allow for the TDMA information to be
  logged in-line with the TX and RX descriptor information.
2012-11-27 02:27:30 +00:00
Adrian Chadd
11f07b7b52 Add in specific TDMA logging types. 2012-11-27 02:24:05 +00:00
Adrian Chadd
e6f1a34af4 Fix the TDMA nexttbtt programming for 802.11n chips.
The existing logic wrapped programming nexttbtt at 65535 TU.
This is not good enough for the 11n chips, whose nexttbtt register
(GENERIC_TIMER_0) has an initial value from 0..2^31-1 TSF.
So converting the TU to TSF had the counter wrap at (65535 << 10) TSF.

Once this wrap occured, the nexttbtt value was very very low, much
lower than the current TSF value.  At this point, the nexttbtt timer
would constantly fire, leading to the TX queue being constantly gated
open.. and when this occured, the sender was not correctly transmitting
in its slot but just able to continuously transmit.  The master would
then delay transmitting its beacon until after the air became free
(which I guess would be after the burst interval, before the next burst
interval would quickly follow) and that big delta in master beacon TX
would start causing big swings in the slot timing adjustment.

With this change, the nexttbtt value is allowed to go all the way up
to the maximum value permissable by the 32 bit representation.
I haven't yet tested it to that point; I really should.  The AR5212
HAL now filters out values above 65535 TU for the beacon configuration
(and the relevant legal values for SWBA, DBA and NEXTATIM) and the
AR5416 HAL just dutifully programs in what it should.

With this, TDMA is now useful on the 802.11n chips.

Tested:

* AR5416, AR9280 TDMA slave
* AR5413 TDMA slave
2012-11-27 02:23:45 +00:00
Adrian Chadd
a52b6c396b Add a note about the magic values here; don't change them. 2012-11-27 02:19:35 +00:00
Adrian Chadd
2cb6e9834f When programming the beacon timer configuration, be very explicit about
what the maximum legal values are.

The current beacon timer configuration from TDMA wraps things at
HAL_BEACON_PERIOD-1 TU.  For the 11a chips this is fine, but for
the 11n chips it's not enough resolution.  Since the 11a chips have a
limit on what's "valid", just enforce this so when I do write larger
values in, they get suitably wrapped before programming.

Tested:

* AR5413, TDMA slave

Todo:

* Run it for a (lot) longer on a clear channel, ensure that no strange
  slippages occur.
* Re-validate this on STA configurations, just to be sure.
2012-11-27 02:18:41 +00:00
Adrian Chadd
6dd853a77a Add a comment which covers what's going on with the 64 bit TSF write.
After chatting with the MAC team, the TSF writes (at least on the 11n
MACs, I don't know about pre-11n MACs) are done as 64 bit writes that
can take some time.  So, doing a 32 bit TSF write is definitely not
supported.  Leave a comment here which explains that.

Whilst here, add a comment which outlines that after a reset or TSF
write, the TSF write may take a while (up to 50uS) to update.
A write or reset shouldn't be done whilst the previous one is in
flight.  Also (and this isn't currently done) a read shouldn't
occur until the SLEEP32_TSF_WRITE_STAT is clear.  Right now we're
not doing that, mostly because we haven't been doing lots of TSF
resets/writes until recently.
2012-11-24 02:41:18 +00:00
Adrian Chadd
84dd5933b5 Use a 64 bit TSF write to update the TSF adjust, rather than a 32 bit
TSF write.

The TSF_L32 update is fine for the AR5413 (and later, I guess) 11abg NICs
however on the 11n NICs this didn't work.  The TSF writes were causing
a much larger time to be skipped, leading to the timing to never
converge.

I've tested this 64 bit TSF read, adjust and write on both the
11n NICs and the AR5413 NIC I've been using for testing.  It works
fine on each.

This patch allows the AR5416/AR9280 to be used as a TDMA member.
I don't yet know why the AR9280 is ~7uS accurate rather than ~3uS;
I'll look into it soon.

Tested:

* AR5413, TDMA slave (~ 3us accuracy)
* AR5416, TDMA slave (~ 3us accuracy)
* AR9280, TDMA slave (~ 7us accuracy)
2012-11-23 05:52:22 +00:00
Adrian Chadd
ddee921170 Fix up the nexttbtt -> TSF delta calculation to not wrap ridiculously
on the 802.11n NICs.

The 802.11n NICs return a TBTT value that continues far past the 16 bit
HAL_BEACON_PERIOD time (in TU.)  The code would constrain nextslot to
HAL_BEACON_PERIOD, but it wasn't constraining nexttbtt - the pre-11n
NICs would only return TU values from 0 -> HAL_BEACON_PERIOD.  Thus,
when nexttbtt exceeded 64 milliseconds, it would not wrap (but nextslot
did) which lead to a huge tsfdelta.

So until the slot calculation is converted to work in TSF rather than
a mix of TSF and TU, "make" the nexttbtt values match the TU assumptions
for pre-11n NICs.

This fixes the crazy deltatsf calculations but it doesn't fix the
non-convergent tsfdelta issue.  That'll be fixed in a subsequent commit.
2012-11-23 05:38:38 +00:00
Adrian Chadd
02a9696b0a Add the HAL wrapper for settsf64. 2012-11-23 05:33:01 +00:00
Adrian Chadd
c83ba0b9bf Implement a HAL method to set a 64 bit TSF value.
TODO: implement it (and test) for the AR5210/AR5211.
2012-11-23 05:32:24 +00:00
Adrian Chadd
cc637103f6 Don't allocate or program a key for the AR5210.
The AR5210 doesn't support HAL_CIPHER_CLR ('clear encryption' keycache
slots), so don't bother - just map them to slot 0 and never program them.
2012-11-19 23:54:05 +00:00
Adrian Chadd
143cfad710 Disable WEP hardware encryption on the AR5210, in order to allow other
encryption types.

The AR5210 only has four WEP key slots, in contrast to what the
later MACs have (ie, the keycache.)  So there's no way to store a "clear"
key.

Even if the driver is taught to not allocate CLR key entries for
the AR5210, the hardware will actually attempt to decode the encrypted
frames with the (likely all 0!) WEP keys.

So for now, disable the hardware encryption entirely and just so it
all in software.  That allows both WEP -and- WPA to actually work.

If someone wishes to try and make hardware WEP _but_ software WPA work,
they'll have to create a HAL capability to enable/disable hardware
encryption based on the current STA/Hostap mode. However, making
multi-vap work with one WEP and one WPA VAP will require hardware
encryption to be disabled anyway.
2012-11-19 23:42:46 +00:00
Adrian Chadd
73f81b5b19 Remove this include, it isn't needed. 2012-11-18 20:41:46 +00:00
Adrian Chadd
875d039e0a Correctly populate the RTS field.
Tested:
	* AR5210, STA mode, RTS enabled
2012-11-17 02:39:37 +00:00
Adrian Chadd
3a4d0022de * Remove ah_desc.h, it's not needed
* Add some shifts that I'm using in userspace (athalq.)

However, this exposes a fun little bug..
2012-11-17 02:39:09 +00:00
Adrian Chadd
93cad1bdbd .. include ah_desc.h here now. 2012-11-17 02:02:36 +00:00
Adrian Chadd
f8af1be8f8 Remove the ah_desc.h reference; it's not needed.
I'm using these descriptor header files in userland and I'm trying to
avoid populating a compatibility ah_desc.h file.
2012-11-17 02:00:33 +00:00
Adrian Chadd
69f33b13d1 I'm not sure why ah_desc.h was required here, but it doesn't _need_
to be. So, just toss it.

There's no options or ah_desc fields in here.

Whilst I'm here, fix up the #ifdef and #define to mach.
2012-11-16 20:04:45 +00:00
Adrian Chadd
e3f0668803 * Remove a duplicate TX ALQ post routine!
* For CABQ traffic, I -can- chain them together using the next pointer
  and just push that particular chain head to the CABQ.  However, this
  doesn't magically make EDMA TX CABQ work - I have to do some further
  hoop jumping.
2012-11-16 19:58:15 +00:00
Adrian Chadd
bb327d284b ALQ logging enhancements:
* upon setup, tell the alq code what the chip information is.
* add TX/RX path logging for legacy chips.
* populate the tx/rx descriptor length fields with a best-estimate.
  It's overly big (96 bytes when AH_SUPPORT_AR5416 is enabled)
  but it'll do for now.

Whilst I'm here, add CURVNET_RESTORE() here during probe/attach as a
partial solution to fixing crashes during attach when the attach fails.
There are other attach failures that I have to deal with; those'll come
later.
2012-11-16 19:57:16 +00:00
Adrian Chadd
956d4fb965 ath(4) ALQ logging improvements.
* Add a new method which allows the driver to push the MAC/phy/hal info
  into the logging stream.
* Add a new ALQ logging entry which logs the mac/phy/hal information.
* Modify the ALQ startup path to log the MAC/phy/hal information
  so the decoder knows which HAL/chip is generating this information.
* Convert the header and mac/phy/hal information to use be32, rather than
  host order.  I'd like to make this stuff endian-agnostic so I can
  decode MIPS generated logs on a PC.

This requires some further driver modifications to correctly log the
right initial chip information.

Also - although noone bar me is currently using this, I've shifted the
debug bitmask around a bit.  Consider yourself warned!
2012-11-16 19:39:29 +00:00
Adrian Chadd
bbdf3df1c4 Make sure the final descriptor in an aggregate has rate control information.
This was broken by me when merging the 802.11n aggregate descriptor chain
setup with the default descriptor chain setup, in preparation for supporting
AR9380 NICs.

The corner case here is quite specific - if you queue an aggregate frame
with >1 frames in it, and the last subframe has only one descriptor making
it up, then that descriptor won't have the rate control information
copied into it. Look at what happens inside ar5416FillTxDesc() if
both firstSeg and lastSeg are set to 1.

Then when ar5416ProcTxDesc() goes to fill out ts_rate based on the
transmit index, it looks at the rate control fields in that descriptor
and dutifully sets it to be 0.

It doesn't happen for non-aggregate frames - if they have one descriptor,
the first descriptor already has rate control info.

I removed the call to ath_hal_setuplasttxdesc() when I migrated the
code to use the "new" style aggregate chain routines from the HAL.
But I missed this particular corner case.

This is a bit inefficient with MIPS boards as it involves a few redundant
writes into non-cachable memory.  I'll chase that up when it matters.

Tested:

 * AR9280 STA mode, TCP iperf traffic
 * Rui Paulo <rpaulo@> first reported this and has verified it on
   his AR9160 based AP.

PR:		kern/173636
2012-11-15 03:00:49 +00:00
Adrian Chadd
5f9fe65d64 Place 'dev.ath.X.debug' back under ATH_DEBUG, rather than ATH_DEBUG_ALQ. 2012-11-13 19:45:13 +00:00
Adrian Chadd
7d9dd2ac96 Add some debugging to try and catch an invalid TX rate (0x0) that is
being reported.
2012-11-13 06:28:57 +00:00
Adrian Chadd
603280386b Correctly fix the 'scan during STA mode' crash. 2012-11-11 21:58:18 +00:00
Adrian Chadd
58c82ec453 Remove this; i incorrectly committed the wrong (debug) changes in my
previous commit.
2012-11-11 21:57:18 +00:00
Adrian Chadd
04cdca73d9 Don't call av_set_tim() if it's NULL.
This happens during a scan in STA mode; any queued data frames will
be power save queued but as there's no TIM in STA mode, it panics.

This was introduced by me when I disabled my driver-aware power save
handling support.
2012-11-11 00:34:10 +00:00
Adrian Chadd
3345c65be0 Correct some rather weird and broken behaviour observed when doing
actual traffic with an AR9380/AR9382/AR9485.

The sample rate control stats would show impossibly large numbers for
"successful packets transmitted."  The number was a tad under 2^^64-1.
So after a bit of digging, I found that the sample rate control code
was making 'tries' turn into a negative number.. and this was because
ts_longretry was too small.

The hardware returns "ts_longretry" at the current rate selection,
not overall for that TX descriptor.  So if you setup four TX rate
scenarios and the second one works, ts_longretry is only set for
the number of attempts at that second rate scenario.  The FreeBSD HAL
code does the correction in ath_hal_proctxdesc() - however, this isn't
possible with EDMA.

EDMA TX completion is done separate from the original TX descriptor.
So the real solution is to split out "find ts_rate and ts_longretry"
from "complete TX descriptor".  Until that's done, put a hack in
the EDMA TX path that uses the rate scenario information in the ath_buf.

Tested: AR9380, AR9382, AR9485 STA mode
2012-11-10 22:37:06 +00:00
Kevin Lo
f78d5b7e8a s/ATH_DEBUG/ATH_DEBUG_ALQ 2012-11-10 15:21:39 +00:00
Kevin Lo
9fc1923565 Fix the build. 2012-11-10 08:34:40 +00:00
Adrian Chadd
a64438faed Fix a very incorrect description. 2012-11-09 01:28:11 +00:00
Adrian Chadd
bbee93a84e Fix the build - fix up the ath_alq code to not compile by default. 2012-11-08 23:11:59 +00:00
Adrian Chadd
b69b0dcc24 Add some hooks into the driver to attach, detach and record EDMA descriptor
events.

This is primarily for the TX EDMA and TX EDMA completion. I haven't yet
tied it into the EDMA RX path or the legacy TX/RX path.

Things that I don't quite like:

* Make the pointer type 'void' in ath_softc and have if_ath_alq*()
  return a malloc'ed buffer.  That would remove the need to include
  if_ath_alq.h in if_athvar.h.
* The sysctl setup needs to be cleaned up.
2012-11-08 18:11:31 +00:00
Adrian Chadd
2a2441c9fa Add my initial cut at driver-layer ALQ support.
I'm using this to debug EDMA TX and RX descriptors and it's really helpful
to have a non-printf() way to decode frames.

I won't link this into the build until I've tidied it up a little more.

This will eventually be behind ATH_DEBUG_ALQ.
2012-11-08 18:07:29 +00:00
Adrian Chadd
174484b17a Oops, fix bogus spacing. 2012-11-08 17:46:27 +00:00
Adrian Chadd
ae3815fd18 Implement the ATH_RESET_NOLOSS path for TX stop and start; this is needed
for 802.11n TX device restarting.

Remove the debug printf()s; they're no longer needed here.
2012-11-08 17:43:58 +00:00
Adrian Chadd
d4c0d5d0d9 Convert this to a debug printf; it's working fine now. 2012-11-08 17:32:55 +00:00
Adrian Chadd
89d2e576a4 Don't compile in my (not yet committed) ath_alq code unless ATH_DEBUG_ALQ
is defined.

This will unbreak ATH_DEBUG builds.
2012-11-07 16:34:09 +00:00
Adrian Chadd
bdbb6e5b8c Disable my software queue TIM and PS handling for now.
ps-poll is totally broken in its current form.

This should unbreak things enough to let people use PS-POLL devices,
but leave it in place for me to finish PS-POLL handling.
2012-11-07 06:29:45 +00:00
Adrian Chadd
7877ac644e Add new HAL configuration features for the updated AR9300 HAL. 2012-11-07 06:23:23 +00:00
Adrian Chadd
6e84772f4d Convert the aggregate descriptor path over to use the same API as
the non-aggregate path.

I "cheated" by using some TX setup code in our HAL that isn't present
in the atheros HAL (or Linux ath9k.)

The old path for forming aggregates was:

* setup the rate control in the first descriptor;
* call chaintxdesc() on all the frames;
* call setupfirsttxdesc() on the first descrpitor in the first
  frame;
* call setuplasttxdesc() on the last descriptor in the last frame.

The new path for forming aggregates looks like the non-aggregate path:

* call setuptxdesc() on the first descriptor in the first frame;
* setup the rate control in the first descriptor;
* call filltxdesc() on each descriptor in the frame;
* if it's an aggregate - call set11n_aggr_{first, middle, last} as
  appropriate (see the code for a description of what is "appropriate".)

Now, this is done primarily for the AR9300 HAL - it doesn't implement
the first set of aggregate functions.  It just has the older methods
and the "first/middle/last" aggregate methods.  So, let's convert the
code to use these.

Note: the AR5416 HAL in FreeBSD had that code (from me, a while ago)
and a previous commit brought it up to behave the same as the AR9300
HAL routines.

There's some further tidyups to be done - specifically, avoid doing
multiple calls to the 11n descriptor functions. I shouldn't call
clr11n_aggr(), then set11n_aggr_middle(), then also set11n_aggr_first().
On (at least MIPS) the TX descriptors are in non-cachable memory and
this will cause multiple slow writes.

I'll debug/tidy that up in a future commit.

Tested:

* AR9280, STA
* AR9280/AR9160, AP
* AR9380, STA (using a local, closed source HAL, sorry!)
2012-11-06 06:19:11 +00:00
Dimitry Andric
29658c96ce Remove duplicate const specifiers in many drivers (I hope I got all of
them, please let me know if not).  Most of these are of the form:

static const struct bzzt_type {
	[...list of members...]
} const bzzt_devs[] = {
	[...list of initializers...]
};

The second const is unnecessary, as arrays cannot be modified anyway,
and if the elements are const, the whole thing is const automatically
(e.g. it is placed in .rodata).

I have verified this does not change the binary output of a full kernel
build (except for build timestamps embedded in the object files).

Reviewed by:	yongari, marius
MFC after:	1 week
2012-11-05 19:16:27 +00:00
Adrian Chadd
c19a2a1a9f Clear IFF_DRV_OACTIVE if any slots were completed.
This unblocks TX EDMA under high load.
2012-11-05 09:27:47 +00:00
Adrian Chadd
bc919a54b2 TX EDMA debugging fixes:
* Do the calculation for each ath_buf, rather than just the first
* Correct the calculation in the first place.
2012-11-05 07:08:45 +00:00
Adrian Chadd
4c5038c7b5 Oops - conditionalise that. 2012-11-04 00:46:01 +00:00
Adrian Chadd
d40c846abf EDMA TX tweaks:
* don't poke ath_hal_txstart() if nothing was pushed into the FIFO during
  the refill process;

* shuffle around the TX debugging output a little so it's logged at
  TX hardware enqueue;

* Add logging of the TX status processing.
2012-11-03 22:54:42 +00:00
Adrian Chadd
64dbfc6d92 For AR9380 NICs - the non-enterprise versions don't support RTS protection
of small (< 256 byte) aggregate frames.

This needs to be done or 11n aggregation TX just simply doesn't work
on these NICs.

Whilst here, extend some debug printing; I was using this whilst
debugging the TX power setup in the TX descriptor(s) on the AR9380.
2012-11-03 22:13:42 +00:00
Adrian Chadd
5540369b93 Add a new HAL call to extract out the HAL enterprise bits from the
AR9300 HAL.
2012-11-03 22:12:35 +00:00
Adrian Chadd
b90559c429 HAL API updates, from the previous couple of HAL commits. 2012-11-03 04:56:08 +00:00
Adrian Chadd
f74b406ddd HAL API changes!
* introduce a new HAL API method to pull out the TX status descriptor
  contents.

* Add num_delims to the 11n first aggr method.  This isn't used by the
  driver at the moment so it won't affect anything.
2012-11-03 04:55:43 +00:00
Adrian Chadd
70ee90299b Add a debug method to dump the EDMA TX status descriptor contents out.
This requires some HAL API changes to be useful, as there's no way
right now to pull out the TX status descriptor contents.
2012-11-03 04:53:44 +00:00
Adrian Chadd
aff98f17c6 Since the PLL changes aren't in here yet for the AR9130 half/quarter
rate support, disable it.
2012-10-31 21:14:25 +00:00
Adrian Chadd
b0245b90ba Oops - this was incorrectly removed in a previous commit. 2012-10-31 21:06:55 +00:00
Adrian Chadd
9bb63aa8ff Oops - missing from the last commit - add ANI immunity levels for AR9160.
Obtained from:	Qualcomm Atheros
2012-10-31 21:04:23 +00:00
Adrian Chadd
adadb6074d HAL updates!
* Add some more ANI spur immunity levels.
* For AR5111 radios attached to an AR5212, limit the 5GHz channels
  that are available. A later revision of the AR5111 supports the 4.9GHz
  PSB channels but right now there's no check in place for the radio
  revision.

  If someone wants PSB support on AR5212+AR5111 radios then please let
  me know and I'll add the relevant version check.

Obtained from:	Qualcomm Atheros
2012-10-31 21:03:55 +00:00
Adrian Chadd
3631c3f200 Add in the last random assortment of missing bits for the AR9380 HAL.
Obtained from:	Qualcomm Atheros
2012-10-31 21:00:01 +00:00
Adrian Chadd
321e63ddee Add the emulation PCI device id - these days, 0xabcd shows up all over
the internet as "AR9380 and later which didn't get its PCI ID written
in at power-on", so it's hardly an unknown constant.

Obtained from:	Qualcomm Atheros
2012-10-31 20:58:24 +00:00
Adrian Chadd
bf57b7b2ce I've had some feedback that CCK rates are more reliable than MCS 0
in some very degenerate conditions.

However, until ath_rate_form_aggr() is taught to not form aggregates
if ANY selected rate is non-MCS, this can't yet be enabled.

So, just add a comment.
2012-10-31 06:35:50 +00:00
Adrian Chadd
1b5c5f5ad0 I give up - introduce a TX lock to serialise TX operations.
I've tried serialising TX using queues and such but unfortunately
due to how this interacts with the locking going on elsewhere in the
networking stack, the TX task gets delayed, resulting in quite a
noticable throughput loss:

* baseline TCP for 2x2 11n HT40 is ~ 170mbit/sec;
* TCP for TX task in the ath taskq, with the RX also going on - 80mbit/sec;
* TCP for TX task in a separate, second taskq - 100mbit/sec.

So for now I'm going with the Linux wireless stack approach - lock tx
early.  The linux code does in the wireless stack, before the 802.11
state stuff happens and before it's punted to the driver.
But TX locking needs to also occur at the driver layer as the TX
completion code _also_ begins to drain the ifnet TX queue.

Whilst I'm here, add some KTR traces for the TX path.

Note:

* This really should be done at the net80211 layer (as well, at least.)
  But that'll have to wait for a little more thought to happen.
2012-10-31 06:27:58 +00:00
Adrian Chadd
548a605d0d Begin fleshing out some software queue awareness for TIM handling with
the power save queue.

* introduce some new ATH_NODE lock protected fields, tracking the
  net80211 psq and TIM state;
* when doing buffer transitions - ie, when sending and completing
  buffers - check the state of the SWQ and update the TIM appropriately.
* when clearing the TIM bit, if the SWQ is not empty then delay clearing
  it.

This is racy, but it's no less racy than the current net80211 power
save queue management code.  Specifically, with multiple TX threads,
it's quite plausible that parallel state updates will race and the
TIM will be left in an inconsistent state.  I'll address that in
a follow-up commit.
2012-10-28 21:13:12 +00:00
Adrian Chadd
a93c5097c9 Add a temporary (for values of "temporary") work around for hotplug
support with ath(4) and VIMAGE.

Right now the VIMAGE code doesn't supply a default vnet context during:

* hotplug attach;
* any device detach.

It special cases kldload/boot time probing (by setting the context to
vnet0) but that doesn't occur when probing devices during a bus rescan -
eg, adding a cardbus card.

These will eventually go away when the VIMAGE support extends to providing
default contexts to hotplug attach/detach.
2012-10-28 18:46:06 +00:00
Adrian Chadd
9572684af7 Since it's not immediately obvious whether the current TX path handles
fragment rate lookups correctly, add a comment describing exactly that.

The assumption in the fragment duration code is the duration of the next
fragment will match the rate used by the current fragment.  But I think
a rate lookup is being done for _each_ fragment.  For older pre-sample
rate control this would almost always be the case, but for sample
it may be incorrect more often then correct.
2012-10-26 16:31:12 +00:00
Adrian Chadd
cf0c92d600 Track the total number of software queued frames in an atomic variable
stashed away in ath_node.

As much as I tried to stuff that behind the ATH_NODE lock, unfortunately
the locking is just too plain hairy (for me! And I wrote it!) to do
cleanly. Hence using atomics here instead of a lock. The ATH_NODE lock
just isn't currently used anywhere besides the rate control updates.

If in the future everything gets migrated back to using a single ATH_NODE
lock or a single global ATH_TX lock (ie, a single TX lock for all TX and
TX completion) then fine, I'll remove the atomics.
2012-10-15 00:07:18 +00:00
Adrian Chadd
13aa9ee5c2 Stop abusing the ATH_TID_*() queue macros for filtered frames and give
them their own macro set.
2012-10-14 23:52:30 +00:00
Adrian Chadd
8e7393944d Push the actual TX processing into the ath taskqueue, rather than having
it run out of multiple concurrent contexts.

Right now the ath(4) TX processing is a bit hairy. Specifically:

* It was running out of ath_start(), which could occur from multiple
  concurrent sending processes (as if_start() can be started from multiple
  sending threads nowdays.. sigh)

* during RX if fast frames are enabled (so not really at the moment, not
  until I fix this particular feature again..)

* during ath_reset() - so anything which calls that

* during ath_tx_proc*() in the ath taskqueue - ie, TX is attempted again
  after TX completion, as there's now hopefully some ath_bufs available.

* Then, the ic_raw_xmit() method can queue raw frames for transmission
  at any time, from any net80211 TX context. Ew.

This has caused packet ordering issues in the past - specifically,
there's absolutely no guarantee that preemption won't occuring _during_
ath_start() by the TX completion processing, which will call ath_start()
again. It's a mess - 802.11 really, really wants things to be in
sequence or things go all kinds of loopy.

So:

* create a new task struct for TX'ing;
* make the if_start method simply queue the task on the ath taskqueue;
* make ath_start() just be called by the new TX task;
* make ath_tx_kick() just schedule the ath TX task, rather than directly
  calling ath_start().

Now yes, this means that I've taken a step backwards in terms of
concurrency - TX -and- RX now occur in the same single-task taskqueue.
But there's nothing stopping me from separating out the TX / TX completion
code into a separate taskqueue which runs in parallel with the RX path,
if that ends up being appropriate for some platforms.

This fixes the CCMP/seqno concurrency issues that creep up when you
transmit large amounts of uni-directional UDP traffic (>200MBit) on a
FreeBSD STA -> AP, as now there's only one TX context no matter what's
going on (TX completion->retry/software queue,
userland->net80211->ath_start(), TX completion -> ath_start());
but it won't fix any concurrency issues between raw transmitted frames
and non-raw transmitted frames (eg EAPOL frames on TID 16 and any other
TID 16 multicast traffic that gets put on the CABQ.)  That is going to
require a bunch more re-architecture before it's feasible to fix.

In any case, this is a big step towards making the majority of the TX
path locking irrelevant, as now almost all TX activity occurs in the
taskqueue.

Phew.
2012-10-14 20:44:08 +00:00
Adrian Chadd
516f67965a Break the RX processing up into smaller chunks of 128 frames each.
Right now processing a full 512 frame queue takes quite a while (measured
on the order of milliseconds.) Because of this, the TX processing ends up
sometimes preempting the taskqueue:

* userland sends a frame
* it goes in through net80211 and out to ath_start()
* ath_start() will end up either direct dispatching or software queuing a
  frame.

If TX had to wait for RX to finish, it would add quite a few ms of
additional latency to the packet transmission.  This in the past has
caused issues with TCP throughput.

Now, as part of my attempt to bring sanity to the TX/RX paths, the first
step is to make the RX processing happen in smaller 'parts'. That way
when TX is pushed into the ath taskqueue, there won't be so much latency
in the way of things.

The bigger scale change (which will come much later) is to actually
process the frames in the ath_intr taskqueue but process _frames_ in
the ath driver taskqueue.  That would reduce the latency between
processing and requeuing new descriptors. But that'll come later.

The actual work:

* Add ATH_RX_MAX at 128 (static for now);
* break out of the processing loop if npkts reaches ATH_RX_MAX;
* if we processed ATH_RX_MAX or more frames during the processing loop,
  immediately reschedule another RX taskqueue run.  This will handle
  the further frames in the taskqueue.

This should have very minimal impact on the general throughput case,
unless the scheduler is being very very strange or the ath taskqueue
ends up spending a lot of time on non-RX operations (such as TX
completion.)
2012-10-14 20:31:38 +00:00
Adrian Chadd
b1dddc280f Fix the non-TDMA build. 2012-10-13 06:27:34 +00:00
Adrian Chadd
3e6cc97fd6 Migrate the TID TXQ accesses to a new set of macros, rather than reusing
the ATH_TXQ_* macros.

* Introduce the new macros;
* rename the TID queue and TID filtered frame queue so the compiler
  tells me I'm using the wrong macro.

These should correspond 1:1 to the existing code.
2012-10-07 23:45:19 +00:00
Adrian Chadd
943e37a120 Initialise an uninitialised variable. 2012-10-05 16:44:00 +00:00
Adrian Chadd
e9472a9f88 Implement the quarter rate fractional channel programming for the
AR5416 and AR9280, but leave it disabled by default.

TL;DR: don't enable this code at all unless you go through the process
of getting the NIC re-certified.  This is purely to be used as a
reference and NOT a certified solution by any stretch of the imagination.

The background:

The AR5112 RF synth right up to the AR5133 RF synth (used on the AR5416,
derivative is used for the AR9130/AR9160) only implement down to 2.5MHz
channel spacing in 5GHz.  Ie, the RF synth is programmed in steps of 2.5MHz
(or 5, 10, 20MHz.) So they can't represent the quarter rate channels
in the 4.9GHz PSB (which end in xxx2MHz and xxx7MHz).  They support
fractional spacing in 2GHz (1MHz spacing) (or things wouldn't work,
right?)

So instead of doing this, the RF synth programming for the AR5112 and
later code will round to the nearest available frequency.

If all NICs were RF5112 or later, they'll inter-operate fine - they all
program the same. (And for reference, only the latest revision of the
RF5111 NICs do it, but the driver doesn't yet implement the programming.)

However:

* The AR5416 programming didn't at all implement the fractional synth
  work around as above;
* The AR9280 programming actually programmed the accurate centre frequency
  and thus wouldn't inter-operate with the legacy NICs.

So this patch:

* Implements the 4.9GHz PSB fractional synth workaround, exactly as the
  RF5112 and later code does;
* Adds a very dirty workaround from me to calculate the same channel
  centre "fudge" to the AR9280 code when operating on fractional frequencies
  in 5GHz.

HOWEVER however:

It is disabled by default.  Since the HAL didn't implement this feature,
it's highly unlikely that the AR5416 and AR928x has been tested in these
centre frequencies.  There's a lot of regulatory compliance testing required
before a NIC can have this enabled - checking for centre frequency,
for drift, for synth spurs, for distortion and spectral mask compliance.
There's likely a lot of other things that need testing so please don't
treat this as an exhaustive, authoritative list.  There's a perfectly good
process out there to get a NIC certified by your regulatory domain, please
go and engage someone to do that for you and pay the relevant fees.

If a company wishes to grab this work and certify existing 802.11n NICs
for work in these bands then please be my guest.  The AR9280 works fine
on the correct fractional synth channels (49x2 and 49x7Mhz) so you don't
need to get certification for that. But the 500KHz offset hack may have
the above issues (spur, distortion, accuracy, etc) so you will need to
get the NIC recertified.

Please note that it's also CARD dependent.  Just because the RF synth
will behave correctly doesn't at all mean that the card design will also
behave correctly.  So no, I won't enable this by default if someone
verifies a specific AR5416/AR9280 NIC works.  Please don't ask.

Tested:

I used the following NICs to do basic interoperability testing at
half and quarter rates.  However, I only did very minimal spectrum
analyser testing (mostly "am I about to blow things up" testing;
not "certification ready" testing):

* AR5212 + AR5112 synth
* AR5413 + AR5413 synth
* AR5416 + AR5113 synth
* AR9280
2012-10-04 15:42:45 +00:00
Adrian Chadd
0eb8162623 Pause and unpause the software queues for a given node based on the
net80211 node power save state.

* Add an ATH_NODE_UNLOCK_ASSERT() check
* Add a new node field - an_is_powersave
* Pause/unpause the queue based on the node state
* Attempt to handle net80211 concurrency issues so the queue
  doesn't get paused/unpaused more than once at a time from
  the net80211 power save code.

Whilst here (and breaking my usual rule), set CLRDMASK when a queue
is unpaused, regardless of whether the queue has some pending traffic.
This means the first frame from that TID (now or later) will hvae
CLRDMASK set.

Also whilst here, bump the swretrymax counters whenever the
filtered frames code expires a frame.  Again, breaking my rule, but
this is just a statistics thing rather than a functional change.

This doesn't fix ps-poll (but it doesn't break it too much worse
than it is at the present) or correcting the TID updates.
That's next on the list.

Tested:
	* AR9220 AP (Atheros AP96 reference design)
	* Macbook Pro and LG Optimus 1 Android phone, both setting
	  and clearing power save state (but not using PS-POLL.)
2012-10-03 23:23:45 +00:00
Adrian Chadd
08977788d5 Track the last ANI TX/RX sample correctly.
This doesn't specifically fix the issue(s) i'm seeing in this 2GHz
environment (where setting/increasing spur immunity causes OFDM restart
errors to skyrocket through the roof; but leaving it at 0 would leave
the environment cleaner..)

Pointy-hat-to:	me, for committing this broken code in the first place.
2012-09-27 06:05:54 +00:00
Adrian Chadd
7403d1b9b2 Map the non-QoS TID to the voice queue, in order to ensure important
things like EAPOL frames make it out.

After a whole bunch of hacking/testing, I discovered that they weren't
being early-dropped by the stack (but I should look at ensuring that
later..) but were even making to the hardware transmit queue.
They were mostly even being received by the remote end.  However, the
remote end was completely ignoring them.

This didn't happen under 150-170MBit TCP tests as I'm guessing the TX
queue stayed very busy and the STA didn't do any scanning. However, when
doing 100Mbit/s of TCP traffic, the STA would do background scanning -
which involves it coming in and out of powersave mode with the AP.

Now, this is a total and utter hack around the real problems, which are:

* I need to implement proper power save handling and integrate it into
  the filtered frames support, so the driver/stack doesn't send frames
  whilst the station is actually in sleep;

* .. but frames were actually making it to the STA (macbook pro) and
  the AP did receive an ACK; but a tcpdump on the receiving side showed
  the EAPOL frame never made it. So the stack was dropping it for
  some reason;

* Importantly - the EAPOL frames are currently going into the non-QoS
  TID, which maps to the BE queue and is susceptible to that queue being
  busy doing other things, but;

* There's other traffic going on in the non-QoS TID from other contexts
  when scanning is going on and it's possible there's some races causing
  sequence number/IV issues, but;

* Importantly importantlly, I think the interaction with TID 16 multicast
  traffic in power save mode is causing issues - since I -believe- the
  sequence number space being used by the EAPOL frames on TID 16 overlaps
  with the multicast frames that have sequence numbers allocated and
  are then stuffed on the cabq.  Since with EAPOL frames being in TID 16
  and queued to the BE queue, it's going to be waiting to be serviced
  with all of the aggregate traffic going on - and if the CABQ gets
  emptied beforehand, those TID 16 multicast frames with sequence numbers
  will go out beforehand.

Now, there's quite likely a bunch of "stuff happening slightly out of
sequence" going on due to the nature of the TX path (read: lots of
overlapping and concurrent ath_start() and ath_raw_xmit() calls going
on, sigh) but I thought I had caught them all and stuffed each TID TX
behind a lock (that lasted as long as it needed to in order to get
the frame onto the relevant destination queue - thus keeping things
in order.)

Unfortunately the last problem is the big one and I'm going to stare at
it some more.  If it _is_

So this is a work around for now to ensure that EAPOL frames actually
make it out before any other stuff in the non-QoS TID and HOPEFULLY
before the CABQ gets active.

I'm now going to spend a little time in the TX path figuring out exactly
why the sender is rejecting things. There's two (well, three if you count
EAPOL contents invalid) possibilities:

* The sequence number is out of order (ie, something else like the multicast
  traffic on CABQ) is going out first on TID 16;
* The CCMP IV is out of order (similar to above - but less likely,  as the
  TX key for multicast traffic is different to unicast traffic);
* EAPOL contents strangely invalid.

AP: Ubiquiti RSPRO, AR9160/AR9220 NICs
STA: Macbook Pro, Broadcom 11n NIC
2012-09-26 03:45:42 +00:00
Adrian Chadd
0a54471901 Oops - don't do the clrdmask check in ath_tx_xmit_normal() - the wrong
lock may be held.

Kim reported that the TID lock wasn't held when ath_tx_update_clrdmask()
was called. Well, the underlying hardware TXQ for that TID.

I'm betting it's the cabq stuff. ath_tx_xmit_normal() can be called
for both real and software cabq.  For software cabq, the real destination
txq is different to the txq. So, the lock check will fail.

Reported by:	Kim Culhan <w8hdkim@gmail.com>
2012-09-25 20:41:43 +00:00
Adrian Chadd
23f44d2b30 Call ath_tx_tid_unsched() after the node has been flushed, so the
state can be printed correctly.
2012-09-25 05:56:59 +00:00
Adrian Chadd
0368251456 Migrate the ath(4) KTR logging to use an ATH_KTR() macro.
This should eventually be unified with ATH_DEBUG() so I can get both
from one macro; that may take some time.

Add some new probes for TX and TX completion.
2012-09-24 20:35:56 +00:00
Adrian Chadd
6d24c7dbab Debugging output fixes:
* use the correct frame status - although the completion descriptor is
  the _last_ in the frame/aggregate, the status is currently stored in
  the _first_ buffer.

* Print out ath_buf specific fields once, not per descriptor in an ath_buf.
2012-09-24 19:48:41 +00:00
Adrian Chadd
0c54de88e6 Prepare for software retransmission of non-aggregate frames but ensure
it's disabled.

The previous commit to enable CLRDMASK setting didn't do it at all
correctly for non-aggregate sessions - so the CLRDMASK bit would be
cleared and never re-set.

* move ath_tx_update_clrdmask() to be called by functions that setup
  descriptors and queue frames to the hardware, rather than scattered
  everywhere.

* Force CLRDMASK to be set on all non-aggregate session frames being
  transmitted.

* Use ath_tx_normal_comp() now on non-aggregate sessoin frames
  that are queued via ath_tx_xmit_normal().  That way the TID hwq is
  updated and they can trigger (eventual) filter frame queue resets
  and software retransmits.

There's still a bit more work to do in this area to reverse the silly
short-sightedness on my part, however it's likely going to be better
to fix this now than just reverting the patch.

Thanks to people on the freebsd-wireless@ mailing list for promptly
pointing this out.
2012-09-24 06:42:20 +00:00
Adrian Chadd
94eefcf1dc In (eventual) preparation for supporting disabling the whole 11n/software
retry path - add some code to make it obvious (to me!) how to disable
the software tx path.
2012-09-24 06:00:51 +00:00
Adrian Chadd
4e81f27c59 Introduce the CLRDMASK gating based on tid->clrdmask, enabling filtered
frames to occur.

* Create a new function which will set the bf_flags CLRDMASK bit
  if required.
* For raw frames, always set CLRDMASK.
* For BAR, ADDBA frames, always set CLRDMASK.
* For everything else, check if CLRDMASK needs to be set before
  calling tx_setds() or tx_setds11n().
* When unpausing a queue or drain/resetting it, set tid->clrdmask=1
  just to ensure traffic starts flowing.

What I need to do:

* Modify that function to _clear_ the CLRDMASK if it's not required,
  or retried frames may have CLRDMASK set when they don't need to.
  (Which isn't a huge deal, but..)

Whilst I'm here:

* ath_tx_normal_xmit() should really act like the AMPDU session TX
  functions - any incomplete frames will end up being assigned
  ath_tx_normal_comp() which will decrement tid->hwq_depth - but that
  won't have been incremented.

  So whilst I'm here, add a comment to do that.

* Fix the debug print function to be slightly clearer about things;
  it's not a good sign when I can't interpret my own debugging output.

I've done some testing on AR9280/AR5416/AR9160 STA and AP modes.
2012-09-20 03:13:20 +00:00
Adrian Chadd
d05b576d61 Place the comment where it should be. 2012-09-20 03:04:19 +00:00
Adrian Chadd
088d8b81f3 Add a work-around for some strange net80211 BAR races in the wireless
stack.

There are unfortunately quite a few odd cases in BAR TX and BAR TX
retransmission that I haven't yet fully diagnosed.  So for now, add
this work-around so the resume() function isn't called too often,
decrementing pause to -1 (and causing things to stay paused.)
2012-09-20 03:03:01 +00:00
Adrian Chadd
0aa5c1bbf5 Oops - take a copy of ath_tx_status from the buffer before the TX processing
is done.

The aggregate path was definitely accessing 'ts' before it was actually
being assigned.

This had the side effect of over-filtering frames, since occasionally that
bit would be '1'.

Whilst here, do the same thing in the non-aggregate completion function -
as calling the filter function may also invalidate bf.

Pointy hat to: adrian, for not noticing this over many, many code reviews.
2012-09-18 20:33:04 +00:00
Adrian Chadd
f1bc738ece Implement my first cut at filtered frames in aggregation sessions.
The hardware can optionally "filter" frames if successive transmissions
to a given node (ie, "entry in the keycache") fail.  That way the hardware
can implement a kind of early abort of all the other frames queued to
that destination, rather than simply trying to TX each frame to that
destination (and failing.)

The background:

* If a frame comes back as being filtered, the hardware didn't try to
  TX it (or it was outside the TX burst opportunity.) So, take it as a hint
  that some (but not all, see below) frames to the destination may be
  filtered.

* If the CLRDMASK bit is set in a TX descriptor, the "filter to this
  destination" bit in the keycache entry is cleared and TX to that host
  will be unconditionally retried.

* Right now everything has the CLRDMASK bit set, so filtered frames
  tend to be aggregates and frames that fall outside of the WME burst
  window. It was a bit worse in the past as I had messed up the TX
  flags and CLRDMASK wasn't being set on aggregate frames.

The annoying bits:

* It's easy (ish) to do for aggregate session frames - firstly, they
  can be retried in any order as long as they're within the BAW, and
  there's already a bunch of infrastructure tracking how many frames
  the TID has queued to the hardware (tid->hwq_depth.) However, for
  frames that bypassed the software queue, hwq_depth doesn't get
  incremented. I'll fix that in a subsequent commit.

* For non-aggregate session frames, the only retries that can occur
  are ones for sequence numbers that hvaen't successfully been TXed yet.
  Since there's no re-ordering going on in non-aggregate sessions, if any
  subsequent seqno frames make it out, any filtered frames before that
  seqno need to be dropped.

  Hence why this initially is just for aggregate session frames.

* Since there may be intermediary frames to the destination that
  have CLRDMASK set - for example, any directly dispatched management
  frames to that destination - it's possible that there will be some
  filtered frames followed up by some non filtered frames.  Thus,
  it can't be assumed that once you see a filtered frame for the given
  destination node, all subsequent frames for all TIDs will be filtered.

Ok, with that in mind:

* Create a per-TID filtered frame queue for frames that the hardware
  returns as filtered.

* Track filtered frames per-tid, rather than per-node.  It just makes
  the locking much easier.

* When a filtered frame appears in the completion function, the node
  transitions to "filtered", and all subsequent completed error frames
  (filtered or otherwise) are put on the filtered frame queue.  The TID
  is paused once (during the transition from non-filtered to filtered).

* If a filtered frame retry count exceeds SWMAX_RETRIES, a BAR should be
  sent.

* Once all the frames queued to the hardware for the given filtered frame
  TID, transition back from filtered frame to non-filtered frame, which
  means pre-pending all the filtered frames onto the head of the software
  queue, clearing the filtered frame state and unpausing the TID.

Things get quite hairy around handling completion (aggr, non-aggr, norm,
direct-dispatched frames to a hardware queue); whether it's an "error",
"cleanup" or "BAR" state as well as filtered, which order to do things
in (eg do filtered BEFORE checking for BAR, as the filter completion
may be needed to actually transmit a BAR frame.)

This work has definitely reminded me that I have to tidy up all the locking
and remove some of the ridiculous lock/unlock/lock/unlock going on in the
completion functions.

It's also reminded me that I should really split out TID versus hardware TXQ
locking, even if the underlying locking is still the destination hardware TXQ.

Finally, this is all pre-requisite for working on AP mode power save support
(PS-POLL, uAPSD) as well as improving performance to misbehaving nodes (as
they can transition into filter mode, stopping any TX until everything has
caught up.)

Finally (ish) - this should also be done for non-aggregate sessions as
there are still plenty of laptops and mobile devices that don't speak
802.11n but do wish for stable, useful power save AP support where packets
aren't simply dropped.  This requires software retransmission for
non-aggregate sessions to be implemented, which includes the caveats I've
mentioned above.

Finally finally - this doesn't yet do anything about the CLRDMASK bit in the
TX descriptor.  That's still unconditionally set to 1.  I'll debug the
current work (mostly ensuring I haven't busted up the hairy transitions
between BAR, filtered, error (all frames in an aggregate failing) and
cleanup (when transitioning from aggregation -> non-aggregation.))

Finally finally finally - this is all original work by yours truely, rather
than ported from the Atheros internal driver codebase or Linux ath9k.

Tested:
 * AR9280, AR5416 in STA mode
 * AR9280, AR9130 in hostap mode
 * Lots and lots of iperf testing in very marginal and non-marginal conditions,
   complete with inducing filtered frames + BAR TX conditions.
2012-09-18 10:14:17 +00:00
Adrian Chadd
8122c3163f Add a couple of accessor inline functions for state that exists in net80211.
Obtained from:	Qualcomm Atheros
2012-09-18 01:27:24 +00:00
Adrian Chadd
d94f2d7f34 Rename AH_MIMO_MAX_CHAINS to AH_MAX_CHAINS, for compatibility with
internal atheros HAL code.
2012-09-17 23:24:45 +00:00
Adrian Chadd
c6e9cee205 Take credit for the work I've done in this source file. 2012-09-17 03:17:42 +00:00
Adrian Chadd
de8e4d6436 Add a per-TID filter queue and filter state bits.
These are intended for software TX filtering support, where the NIC
decides there has been too many successive failues to a destination
and will filter it.

Although the filtering is done per-destination (via the keycache),
the state and queue is kept per-TID for now.  It simplifies the overall
architecture design and locking.

Whilst here, add ATH_TID_UNLOCK_ASSERT().
2012-09-17 01:21:55 +00:00
Adrian Chadd
355cae39e9 Add a debug bit for TX destination filtering. 2012-09-17 01:18:47 +00:00
Adrian Chadd
e69db8df7d Improve performance of the Sample rate algorithm on 802.11n networks.
* Don't treat high percentage failures as "sucessive failures" - high
  MCS rates are very picky and will quite happily "fade" from low
  to high failure % and back again within a few seconds.  If they really
  don't work, the aggregate will just plain fail.

* Only sample MCS rates +/- 3 from the current MCS.  Sample will back off
  quite quickly, so there's no need to sample _all_ MCS rates between
  a high MCS rate and MCS0; there may be a lot of them.

* Modify the smoothing rate to be 75% rather than 95% - it's more adaptive
  but it comes with a cost of being slightly less stable at times.
  A per-node, hysterisis behaviour would be nicer.
2012-09-17 01:09:17 +00:00
Adrian Chadd
9b967f5d12 Don't use AR_PHY_MODE to setup half/quarter rate.
I'm not sure where in the deep, distant past I found the AR_PHY_MODE
registers for half/quarter rate mode, but unfortunately that doesn't
seem to work "right" for non-AR9280 chips.

Specifically:

* don't touch AR_PHY_MODE
* set the PLL bits when configuring half/quarter rate

I've verified this on the AR9280 (5ghz fast clock) and the AR5416.

The AR9280 works in both half/quarter rate; the AR5416 unfortunately
only currently works at half rate.  It fails to calibrate on quarter rate.
2012-09-13 18:24:13 +00:00
Adrian Chadd
03a51ef8f4 Enable fractional 5G mode on half/quarter rate channels.
Obtained from:	Linux ath9k
2012-09-13 07:25:41 +00:00
Adrian Chadd
77ffc4c1fc Flip on half/quarter rate support.
No, this isn't HT/5 and HT/10 support.  This is the 11a half/quarter
rate support primarily used by the 4.9GHz and GSM band regulatory
domains.

This is definitely a work in progress.

TODO:

* everything in the last commit;
* lots more interoperability testing with the AR5212 half/quarter rate
  support for the relevant chips;
* Do some interop testing on half/quarter rate support between _all_
  the 11n chips - AR5416, AR9160, AR9280 (and AR9285/AR9287 when 2GHz
  half/quarter rate support is coded up.)
2012-09-13 07:24:14 +00:00
Adrian Chadd
ce801478d2 Introduce an AR5416 flavour of the IFS and mac usec/timing configuration
used when running the chips in half/quarter rate.

This sets up some default parameters which are then overridden by the
driver (which manually configures things like slot timing at interface
start time.)

Although this is a copy-and-modify from the AR5212 HAL, I did peek
at the reference HAL and the ath9k driver to see what they did.
Ath9k in particular doesn't hard-code this - instead, their version
of ar5416InitUserSettings() does all of the relevant math.

TODO:

* do the math, not hard code things!
* fix the mac clock calculation for the AR9287; since it runs the
  MAC clock at a higher rate, requiring all the duration calculations
  to change;
* Do a whole lot more validation for half/quarter rates.

Obtained from:	Qualcomm Atheros, Linux ath9k
2012-09-13 07:22:40 +00:00