If KSTACK_PAGES was changed to anything alse than the default,
the value from param.h was taken instead in some places and
the value from KENRCONF in some others. This resulted in
inconsistency which caused corruption in SMP envorinment.
Ensure all places where KSTACK_PAGES are used the opt_kstack_pages.h
is included.
The file opt_kstack_pages.h could not be included in param.h
because was breaking the toolchain compilation.
Reviewed by: kib
Obtained from: Semihalf
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.freebsd.org/D3094
On armv4 these are defined as synonyms right now, but it's a bit ambiguous
what NOCACHE means (is buffering/write-combining also enabled or not?); this
is a first step towards replacing PTE_NOCACHE with a less ambiguous name.
to the actual handler routine. All the pointers are static-intialized to
the only handlers available, and yet various platform-specific inits still
set those pointers (to the values they're already initialized to). Begin
to drain the swamp by removing all the redundant external declarations and
runtime setting of the pointers that's scattered around various places.
communicate the kernel's physical load address from where it's known in
initarm() into cpu_mp_start() which is called from non-arm code and
takes no parameters.
This adds the global variable and ensures that all the various copies
of initarm() set it. It uses the variable in cpu_mp_start(), eliminating
the last uses of KERNPHYSADDR outside of locore.S (where we can now
calculate it instead of relying on the constant).
a new physmem.c file. The new code provides helper routines that can be
used by legacy SoCs and newer FDT-based systems. There are routines to
add one or more regions of physically contiguous ram, and exclude one or
more physically contiguous regions of ram. Ram can be excluded from crash
dumps, from being given over to the vm system for allocation management,
or both. After all the included and excluded regions have been added,
arm_physmem_init_kernel_globals() processes the regions into the global
dump_avail and phys_avail arrays and realmem and physmem variables that
communicate memory configuration to the rest of the kernel.
Convert all existing SoCs to use the new helper code.
devices. This is a nop, except for what's reported by atmelbus for the
resources.
It would be nice if we could dymanically allocated these things, but
the pmap_mapdev panics if we don't keep the static mappings, so we
still need to play the carefully allocate VA space between all
supported SoC game.
User's with their own devices may need to make adjustments.
vm_max_virtual_address to be KERNVIRTADDR + 256MB. This allows some
future shock protection since the KVA requirements have gone up since
the unmapped changes have gone in, as well as preventing us from
overlapping with the hardware devices, which we map at 0xd0000000,
which we'd hit with anything more than 85MB...
MFC after: 3 days
new devmap.[ch] files. Emphasize the MD nature of these things by using
the prefix arm_devmap_ on the function and type names (already a few of
these things found their way into MI code, hopefully it will be harder to
do by accident in the future).
On single core devices set_stackptrs is only ever called with cpu = 0 in
initarm and will be identical to the existing function. On SMP this needs
to be implemented for sys/arm/mp_machdep.c, but the implementations are
identical for each SoC.
Cummulative patch of changes that are not vendor-specific:
- ARMv6 and ARMv7 architecture support
- ARM SMP support
- VFP/Neon support
- ARM Generic Interrupt Controller driver
- Simplification of startup code for all platforms
having the CPU device that's a child of atmelarm that does stuff.
o Create a linker_set for the support fucntions for the SoCs.
o Rename soc_data to soc_info.
o Move the delay and reset function pointers to new soc_data struct
o Create elements for all known SoCs
o Add lookup of the SoC we found, and print a warning if it isn't one
we know about.
arm platform. Add all the atmel boards to the ATMEL kernel for
testing purposes. Until boot loader arg parsing of baord type
is done, this won't actually be able to do the runtime selection.
aren't very pretty yet, but this takes DELAY and cpu_reset and makes
them pointers.
# I worry that these are set too late in the boot, especially cpu_reset.
this array either from Linux boot data, when enabled, or in the
typical way that most ports do it. arm_pyhs_avail_init is coming
soon since it must be a separate function.
the boot parameters from initarm first thing. parse_boot_param parses
the boot arguments and converts them to the /boot/loader metadata the
rest of the kernel uses. parse_boot_param is a weak alias to
fake_preload_metadata, which all the platforms use now, but may become
more extensive in the future.
Since it is a weak symbol, specific boards may define their own
parse_boot_param to interface to custom boot loaders.
Reviewed by: cognet@, Ian Lapore
SoC variants. Fold the AT91SAM9XE chips into the AT91SAM9260
handling, where appropriate. The following SoCs/SoC families are recognized:
at91cap9, at91rm9200, at91sam9260, at91sam9261, at91sam9263,
at91sam9g10, at91sam9g20, at91sam9g45, at91sam9n12, at91sam9rl,
at91sam9x5
and the following variations are also recognized:
at91rm9200_bga, at91rm9200_pqfp, at91sam9xe, at91sam9g45, at91sam9m10,
at91sam9g46, at91sam9m11, at91sam9g15, at91sam9g25, at91sam9g35,
at91sam9x25, at91sam9x35
This is only the identification routine: no additional Atmel devices
are supported at this time.
# With these changes, I'm able to boot to the point of identification
# on a few different Atmel SoCs that we don't yet support using the
# KB920X config file -- someday tht will be an ATMEL config file...
structure with the first 4 registers to allow a wider range of boot
loaders to work. Future commits will make use of this to centralize
support for the different loaders.
console so initialized will work upon return from cninit. While this
is the very next line, other platforms setup all this stuff before
calling cninit. Also, initialize the SDRAM base register in the inner
block in at91_ramsize().
compiled into the kernel. This allows us to boot the same kernel on
machines with different master clock frequencies, so long as we can
determine the main clock frequency accurately. Cleanup the pmc clock
init function so it can be called in early boot so we can use the
serial port just after we call cninit.
# We have two calls to at91_pmc_clock_init for reasons unknown, that will
# be fixed later -- it is harmless for now.