By Richard Earnshaw at ARM
>
>GCC has for a number of years provides a set of pre-defined macros for
>use with determining the ISA and features of the target during
>pre-processing. However, the design was always somewhat cumbersome in
>that each new architecture revision created a new define and then
>removed the previous one. This meant that it was necessary to keep
>updating the support code simply to recognise a new architecture being
>added.
>
>The ACLE specification (ARM C Language Extentions)
>(http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.swdev/index.html)
>provides a much more suitable interface and GCC has supported this
>since gcc-4.8.
>
>This patch makes use of the ACLE pre-defines to map to the internal
>feature definitions. To support older versions of GCC a compatibility
>header is provided that maps the traditional pre-defines onto the new
>ACLE ones.
Stop using __FreeBSD_ARCH_armv6__ and switch to __ARM_ARCH >= 6 in the
couple of places in tree. clang already implements ACLE. Add a define
that says we implement version 1.1, even though the implementation
isn't quite complete.
and tgammal in libm. These functions are part of ISO/IEC 9899:1999
and their prototypes should have been moved into the appropriate
__ISO_C_VISIBLE >= 1999 section. After moving the prototypes,
remnants of r236148 can be removed.
PR: standards/191754
Reviewed by: bde
. Add s_erfl.c to building libm.
. Add MLINKS for erfl.3 and erfcl.3.
* Symbol.map:
. Move erfl and erfcl to their proper location.
* ld128/s_erfl.c:
. Implementations of erfl and erfcl in the IEEE 754 128-bit format.
* ld80/s_erfl.c:
. Implementations of erfl and erfcl in the Intel 80-bit format.
* man/erf.3:
. Document the new functions.
. While here, remove an incomplete sentence.
* src/imprecise.c:
. Remove the stupidity of mapping erfl and erfcl to erf and erfc.
* src/math.h:
. Move the declarations of erfl and erfcl to their proper place.
* src/s_erf.c:
. For architectures where double and long double are the same
floating point format, use weak references to map erfl to
erf and ercl to erfc.
Reviewed by: bde (many earlier versions)
* Update the domain and range of comments for the polynomial
approximations, including using the the correct variable names
(e.g., pp(x) instead of p(x)).
* Use hex values of the form 0x3e0375d4 instead of 0x1.06eba8p-3,
which was obtained from printf("%.6a").
* In the domain [0.84375, 1.25], qa(x) can be reduced from a 4th
order polynomial to 3rd order.
* In the domain [1.25,1/0.35], sa(x) can be reduced from a 4th
order polynomial to 3rd order.
* In the domain [1/0.35, 11], the 4th order polynomials rb(x) and
sb(x) can be reduced to 2nd and 3rd order, respectively.
from erronously constant folding expressions of the form
'1 - tiny'. This allows erf[f](x) to raise INEXACT.
* Use 0.5, 1, and 2, which are exactly representable in radix-2
floating point formats. This reduces diffs between s_erf[fl].c.
* While here, add a comment about efx and efx8.
This includes:
o All directories named *ia64*
o All files named *ia64*
o All ia64-specific code guarded by __ia64__
o All ia64-specific makefile logic
o Mention of ia64 in comments and documentation
This excludes:
o Everything under contrib/
o Everything under crypto/
o sys/xen/interface
o sys/sys/elf_common.h
Discussed at: BSDcan
* msun/man/sinh.3:
* msun/man/tanh.3:
. Fix grammar.
* msun/src/e_coshl.c:
* msun/src/e_sinhl.c:
. Fix comment.
* msun/src/s_tanhl.c:
. Remove unused variables.
. Fix location/indentation of comments.
. Use comparison involving ints instead of long double.
. Re-order polynomial evaluation on ld128 for |x| < 0.25.
For now, retain the older order in an "#if 0 ... #else" block.
. Use int comparison to short-circuit the |x| < 1.5 condition.
Requested by: bde
. Hook coshl, sinhl, and tanhl into libm.
. Create symbolic links for corresponding manpages.
. While here remove a nearby extraneous space.
* Symbol.map:
* src/math.h:
. Move coshl, sinhl, and tanhl to their proper locations.
* man/cosh.3:
* man/sinh.3:
* man/tanh.3:
. Update the manpages.
* src/e_cosh.c:
* src/e_sinh.c:
* src/s_tanh.c:
. Add weak reference for LBDL_MANT_DIG==53 targets.
* src/imprecise.c:
. Remove the coshl, sinhl, and tanhl kludge.
* src/e_coshl.c:
. ld80 and ld128 implementation of coshl().
* src/e_sinhl.c:
. ld80 and ld128 implementation of sinhl().
* src/s_tanhl.c:
. ld80 and ld128 implementation of tanhl().
Obtained from: bde (mostly), das and kargl
* ld128/k_expl.h:
. Split out a computational kernel,__k_expl(x, &hi, &lo, &k) from expl(x).
x must be finite and not tiny or huge. The kernel returns hi and lo
values for extra precision and an exponent k for a 2**k scale factor.
. Define additional kernels k_hexpl() and hexpl() that include a 1/2
scaling and are used by the hyperbolic functions.
* ld80/s_expl.c:
* ld128/s_expl.c:
. Use the __k_expl() kernel.
Obtained from: bde
* Use bit twiddling. This requires inclusion of math_private.h
and inclusion of float.h in s_roundl.c. Raise invalid exception.
* Use literal integer constants where possible. Let the compiler
do the appropriate conversion.
* In s_roundf.c, use an F suffix on float constants instead of
promoting float to double and then converting the result back
to float. In s_roundl.c, use an L suffix.
* In s_roundl.c, use the ENTERI and RETURNI macros. This requires
the inclusion of fpmath.h and on __i386__ class hardware ieeefp.h.
Reviewed by: bde
preprocessor) gives the following error:
--- Version.map ---
<stdin>:287:4: error: invalid preprocessing directive
# Implemented as weak aliases for imprecise versions
^
1 error generated.
Change the comment to a C-style one, to prevent this error.
Approved by: re (hrs)
These are weak and so can be replaced by other versions in applications
that choose to do so, and will give a linker warning when used so that
applications that rely on the extra precision can avoid them.
Note that since the C/C++ specs only guarantee that long double has
precision equal to double, code that actually relies on these functions
having greater precision is unportable at best and broken at worst.
. Use integer literal constants instead of double literal constants.
* s_erff.c:
. Use integer literal constants instead of casting double literal
constants to float.
. Update the threshold values from those carried over from erf() to
values appropriate for float.
. New sets of polynomial coefficients for the rational approximations.
These coefficients have little, but positive, effect on the maximum
error in ULP in the four intervals, but do improve the overall
speed of execution.
. Remove redundant GET_FLOAT_WORD(ix,x) as hx already contained the
contents that is packed into ix.
. Update the mask that is used to zero-out lower-order bits in x in
the intervals [1.25, 2.857143] and [2.857143, 12]. In tests on
amd64, this change improves the maximum error in ULP from 6.27739
and 63.8095 to 3.16774 and 2.92095 on these intervals for erffc().
Reviewed by: bde
as a fairly faithful implementation of the algorithm found in
PTP Tang, "Table-driven implementation of the Expm1 function
in IEEE floating-point arithmetic," ACM Trans. Math. Soft., 18,
211-222 (1992).
Over the last 18-24 months, the code has under gone significant
optimization and testing.
Reviewed by: bde
Obtained from: bde (most of the optimizations)
* Use integral numerical constants, and let the compiler do the
conversion to long double.
ld128/s_expl.c:
* Use integral numerical constants, and let the compiler do the
conversion to long double.
* Use the ENTERI/RETURNI macros, which are no-ops on ld128. This
however makes the ld80 and ld128 identical.
Reviewed by: bde (as part of larger diff)
* In the special case x = -Inf or -NaN, use a micro-optimization
to eliminate the need to access u.xbits.man.
* Fix an off-by-one for small arguments |x| < 0x1p-65.
ld128/s_expl.c:
* In the special case x = -Inf or -NaN, use a micro-optimization
to eliminate the need to access u.xbits.manh and u.xbits.manl.
* Fix an off-by-one for small arguments |x| < 0x1p-114.
Obtained from: bde
* Update the evaluation of the polynomial. This allows the removal
of the now unused variables t23 and t45.
ld128/s_expl.c:
* Update the evaluation of the polynomial and the intermediate
result t. This update allows several numerical constants to be
written as double rather than long double constants. Update
the constants as appropriate.
Obtained from: bde
and use macros to access the e component of the unions. This allows
the portions of the code in ld80 to be identical to the ld128 code.
Obtained from: bde
The names now coincide with the name used in PTP Tang's paper.
* Rename the variable from s to tbl to better reflect that
this is a table, and to be consistent with the naming scheme
in s_exp2l.c
Reviewed by: bde (as part of larger diff)
* Update Copyright years to include 2013.
ld128/s_expl.c:
* Correct and update Copyright years. This code originated from
the ld80 version, so it should reflect the same time period.
Reviewed by: bde (as part of larger diff)
* Use ENTERI/RETURNI to allow the use of FP_PE on i386 target.
Reviewed by: das (and bde a long time ago)
Approved by: das (mentor)
Obtained from: bde (polynomial coefficients)
are workarounds for various symptoms of the problem described in clang
bugs 3929, 8100, 8241, 10409, and 12958.
The regression tests did their job: they failed, someone brought it
up on the mailing lists, and then the issue got ignored for 6 months.
Oops. There may still be some regressions for functions we don't have
test coverage for yet.
libc.a and libc_p.a. In addition, define isnan in libm.a and libm_p.a,
but not in libm.so.
This makes it possible to statically link executables using both isnan
and isnanf with libc and libm.
Tested by: kargl
MFC after: 1 week
table and the requirement on trailing zero bits.
* Remove the __aligned() compiler directives as these were found
to have a negative effect on the produced code.
Submitted by: bde
Approved by: das (mentor)
. Change the API for the LD80C by removing the explicit passing
of the sign bit. The sign can be determined from the last
parameter of the macro.
. On i386, load long double by bit manipulations to work around
at least a gcc compiler issue. On non-i386 ld80 architectures,
use a simple assignment.
* ld80/s_expl.c:
. Update the only consumer of LD80C.
Submitted by: bde
Approved by: das (mentor)
. Fix the threshold for expl(x) where |x| is small.
. Also update the previously incorrect comment to match the
new threshold.
* ld128/s_expl.c:
. Re-order logic in exceptional cases to match the logic used in
other long double functions.
. Fix the threshold for expl(x) where is |x| is small.
. Also update the previously incorrect comment to match the
new threshold.
Submitted by: bde
Approved by: das (mentor)
. Guard a comment from reformatting by indent(1).
. Re-order variables in declarations to alphabetical order.
. Remove a banal comment.
* ld128/s_expl.c:
. Add a comment to point to ld80/s_expl.c for implementation details.
. Move the #define of INTERVAL to reduce the diff with ld80/s_expl.c.
. twom10000 does not need to be volatile, so move its declaration.
. Re-order variables in declarations to alphabetical order.
. Add a comment that describes the argument reduction.
. Remove the same banal comment found in ld80/s_expl.c.
Reviewed by: bde
Approved by: das (mentor)
Also, update the comment to describe the choice of using
a high and low decomposition of 2^(i/INTERNVAL) for
0 <= i <= INTERVAL in preparation for an implementation of
expm1l.
* Move the #define of INTERVAL above the comment, because the
comment refers to INTERVAL.
Reviewed by: bde
Approved by: das (mentor)
only affects i386. The double case was intentionally left broken
as an optimization, but we are getting closer to supporting
applications and/or kernels that change the (FreeBSD i386) default
rounding precision from FP_PD to FP_PE and never change it back,
and this requires the STRICT_ALIGN()s that were added to support
FP_PE to actually work in all precisions.
* Remove an extraneous semicolon at the end of a macro that was
supposed to be function-like.
Submitted by: bde
Approved by: das (mentor)
they need to refer to static constants, which C99 does not allow for
extern inline functions.
While here, change a comment in e_rem_pio2f.c to mention the correct
number of bits.
Reviewed by: bde
MFC after: 1 week
compatibility with the INTERVALS macro used in the soon-to-be-commmitted
expm1l() and someday-to-be-committed log*l() functions.
Add a comment into ld128/s_expl.c noting at gcc issue that was
deleted when rewriting ld80/e_expl.c as ld128/s_expl.c.
Requested by: bde
Approved by: das (mentor)
. Remove a few #ifdefs that should have been removed in the initial
commit.
. Sort fpmath.h to its rightful place.
* ld128/s_expl.c:
. Replace EXPMASK with its actual value.
. Sort fpmath.h to its rightful place.
Requested by: bde
Approved by: das (mentor)
format. These implementations are based on
PTP Tang, "Table-driven implementation of the exponential function
in IEEE floating-point arithmetic," ACM Trans. Math. Soft., 15,
144-157 (1989).
PR: standards/152415
Submitted by: kargl
Reviewed by: bde, das
Approved by: das (mentor)
quotation. Also make sure we have the same amount of columns in each row as
the number of columns we specify in the head arguments.
Reviewed by: brueffer
correct sign when the remainder was 0.
Fix a separate bug in remquo alone, in which the remainder and
quotient were both off by a bit in certain cases involving subnormal
remainders.
The bugs affected all platforms except amd64 and i386, on which the
routines are implemented in assembly.
PR: 166463
Submitted by: Ilya Burylov
MFC after: 2 weeks
the function bodies require only 2 to 10 instructions. However, it
leads to application binaries that refer to a private ABI, namely, the
softfloat innards in libc. This could complicate future changes in
the implementation of the floating-point emulation layer, so it seems
best to have programs refer to the official fe* entry points in libm.
use softfloat.
Thanks to Ian Lepore for testing and debugging this patch. The fenv
regression tests pass (at least for Ian's arm chip) with this change.
- Handle cases where exp(x) would overflow, but ccosh(x) ~= exp(x) / 2
shouldn't.
- Use the ccosh(x) ~= exp(x) / 2 approximation to simplify the calculation
when x is large.
Similarly for csinh(). Also fixed the return value of csinh(-Inf +- 0i).
exp(x) scaled down by some factor, and the challenge is doing this
accurately when exp(x) would overflow. This change replaces all of
the tricks we've been using with common __ldexp_exp() and
__ldexp_cexp() routines that handle all the scaling.
bde plans to improve on this further by moving the guts of exp() into
k_exp.c and handling the scaling in a more direct manner. But the
current approach is simple and adequate for now.
library," since complex.h, tgmath.h, and fenv.h are also part of the
math library. Replace the outdated sentence with some references to
the other parts.
- Rename __kernel_log() to k_log1p().
- Move some of the work that was previously done in the kernel log into
the callers. This enables further refactoring to improve accuracy or
speed, although I don't recall the details.
- Use extra precision when adding the final scaling term, which improves
accuracy.
- Describe and work around compiler problems that break some of the
multiprecision calculations.
A fix for a small bug is also included:
- Add a special case for log*(1). This is needed to ensure that log*(1) == +0
instead of -0, even when the rounding mode is FE_DOWNWARD.
Submitted by: bde
no longer "fast" on sparc64. (It really wasn't to begin with, since
the old implementation was using long doubles, and long doubles are
emulated in software on sparc64.)
round-to-nearest mode when the result, rounded to twice machine
precision, was exactly halfway between two machine-precision
values. The essence of the fix is to simulate a "sticky bit" in
the pathological cases, which is how hardware implementations
break the ties.
MFC after: 1 month
fenv.h that are currently inlined.
The definitions are provided in fenv.c via 'extern inline'
declaractions. This assumes the compiler handles 'extern inline' as
specified in C99, which has been true under FreeBSD since 8.0.
The goal is to eventually remove the 'static' keyword from the inline
definitions in fenv.h, so that non-inlined references all wind up
pointing to the same external definition like they're supposed to.
I am deferring the second step to provide a window where
newly-compiled apps will still link against old math libraries.
(This isn't supported, but there's no need to cause undue breakage.)
Reviewed by: stefanf, bde
on i386-class hardware for sinl and cosl. The hand-rolled argument
reduction have been replaced by e_rem_pio2l() implementations. To
preserve history the following commands have been executed:
svn cp src/e_rem_pio2.c ld80/e_rem_pio2l.h
mv ${HOME}/bde/ld80/e_rem_pio2l.c ld80/e_rem_pio2l.h
svn cp src/e_rem_pio2.c ld128/e_rem_pio2l.h
mv ${HOME}/bde/ld128/e_rem_pio2l.c ld128/e_rem_pio2l.h
The ld80 version has been tested by bde, das, and kargl over the
last few years (bde, das) and few months (kargl). An older ld128
version was tested by das. The committed version has only been
compiled tested via 'make universe'.
Approved by: das (mentor)
Obtained from: bde
with r219571 and re-enable building of cbrtl.
Implement the long double version for the cube root function, cbrtl.
The algorithm uses Newton's iterations with a crude estimate of the
cube root to converge to a result.
Reviewed by: bde
Approved by: das
implementing accurate logarithms in different bases. This is based
on an approach bde coded up years ago.
This function should always be inlined; it will be used in only a few
places, and rudimentary tests show a 40% performance improvement in
implementations of log2() and log10() on amd64.
The kernel takes a reduced argument x and returns the same polynomial
approximation as e_log.c, but omitting the low-order term. The low-order
term is much larger than the rest of the approximation, so the caller of
the kernel function can scale it to the appropriate base in extra precision
and obtain a much more accurate answer than by using log(x)/log(b).
Explanation by Steve:
jn[f](n,x) for certain ranges of x uses downward recursion to compute
the value of the function. The recursion sequence that is generated is
proportional to the actual desired value, so a normalization step is
taken. This normalization is j0[f](x) divided by the zeroth sequence
member. As Bruce notes, near the zeros of j0[f](x) the computed value
can have giga-ULP inaccuracy. I found for the 1st zero of j0f(x) only
the leading decimal digit is correct. The solution to the issue is
fairly straight forward. The zeros of j0(x) and j1(x) never coincide,
so as j0(x) approaches a zero, the normalization constant switches to
j1[f](x) divided by the 2nd sequence member. The expectation is that
j1[f](x) is a more accurately computed value.
PR: bin/144306
Submitted by: Steven G. Kargl <kargl@troutmask.apl.washington.edu>
Reviewed by: bde
MFC after: 7 days
and one under lib/msun/amd64. This avoids adding the identifiers to the
.text section, and moves them to the .comment section instead.
Suggested by: bde
Approved by: rpaulo (mentor)
macro expand to __isnanf() instead of isnanf() for float arguments.
This change is needed because isnanf() isn't declared in strict POSIX
or C99 mode.
Compatibility note: Apps using isnan(float) that are compiled after
this change won't link against an older libm.
Reported by: Florian Forster <octo@verplant.org>
bottom of the manpages and order them consistently.
GNU groff doesn't care about the ordering, and doesn't even mention
CAVEATS and SECURITY CONSIDERATIONS as common sections and where to put
them.
Found by: mdocml lint run
Reviewed by: ru
argument for fnstsw. Explicitely specify sizes for the XMM control and
status word and X87 control and status words.
Reviewed by: das
Tested by: avg
MFC after: 2 weeks
The amd64-specific bits of msun use an undocumented constraint, which is
less likely to be supported by other compilers (such as Clang). Change
the code to use a more common machine constraint.
Obtained from: /projects/clangbsd/
FPA floating-point format is identical to the VFP format,
but is always stored in big-endian.
Introduce _IEEE_WORD_ORDER to describe the byte-order of
the FP representation.
Obtained from: Juniper Networks, Inc
#pragma STDC CX_LIMITED_RANGE ON
the "ON" needs to be in caps. gcc doesn't understand this pragma
anyway and assumes it is always on in any case, but icc supports
it and cares about the case.
conj() instead of using expressions like z * I. The latter is bad for
several reasons:
1. It is implemented using arithmetic, which is unnecessary, and can
generate floating point exceptions, contrary to the requirements on
these functions.
2. gcc implements complex multiplication using a formula that breaks
down for infinities, e.g., it gives INFINITY * I == nan + inf I.
- When y/x is huge, it's faster and more accurate to return pi/2
instead of pi - pi/2.
- There's no need for 3 lines of bit fiddling to compute -z.
- Fix a comment.
at compile time regardless of the dynamic precision, and there's
no way to disable this misfeature at compile time. Hence, it's
impossible to generate the appropriate tables of constants for the
long double inverse trig functions in a straightforward way on i386;
this change hacks around the problem by encoding the underlying bits
in the table.
Note that these functions won't pass the regression test on i386,
even with the FPU set to extended precision, because the regression
test is similarly damaged by gcc. However, the tests all pass when
compiled with a modified version of gcc.
Reported by: bde
- Adjust several constants for float precision. Some thresholds
that were appropriate for double precision were never changed
when these routines were converted to float precision. This
has an impact on performance but not accuracy. (Submitted by bde.)
- Reduce the degrees of the polynomials used. A smaller degree
suffices for float precision.
- In asinf(), use double arithmetic in part of the calculation to
avoid a corner case and some complicated arithmetic involving a
division and some buggy constants. This improves performance and
accuracy.
Max error (ulps):
asinf acosf atanf
before 0.925 0.782 0.852
after 0.743 0.804 0.852
As bde points out, it's cheaper for asin*() and acos*() to use
polynomials instead of rational functions, but that's a task for
another day.
spurious optimizations. gcc doesn't support FENV_ACCESS, so when it
folds constants, it assumes that the rounding mode is always the
default and floating point exceptions never matter.
1. architecture-specific files
2. long double format-specific files
3. bsdsrc
4. src
5. man
The original order was virtually the opposite of this.
This should not cause any functional changes at this time. The
difference is only significant when one wants to override, say, a
generic foo.c with a more specialized foo.c (as opposed to foo.S).
- fma(x, y, z) returns z, not NaN, if z is infinite, x and y are finite,
x*y overflows, and x*y and z have opposite signs.
- fma(x, y, z) doesn't generate an overflow, underflow, or inexact exception
if z is NaN or infinite, as per IEEE 754R.
- If the rounding mode is set to FE_DOWNWARD, fma(1.0, 0.0, -0.0) is -0.0,
not +0.0.
This makes little difference in float precision, but in double
precision gives a speedup of about 30% on amd64 (A64 CPU) and i386
(A64). This depends on fabs[f]() being inline and efficient. The
bit fiddling (or any use of SET_HIGH_WORD(), which libm does too
much because it was best on old 32-bit machines) always causes
packing overheads and sometimes causes stalls in the packing, since
it operates on only part of a variable in the double precision case.
It apparently did cause stalls in a critical path here.
fabs(x+0.0)+fabs(y+0.0) when mixing NaNs. This improves
consistency of the result by making it harder for the compiler to reorder
the operands. (FP addition is not necessarily commutative because the
order of operands makes a difference on some machines iff the operands are
both NaNs.)
e_rem_pio2.c:
This case goes up to about 2**20pi/2, but the comment about it said that
it goes up to about 2**19pi/2.
It went too far above 2**pi/2, giving a multiplier fn with 21 significant
bits in some cases. This would be harmful except for a numerical
accident. It happens that the terms of the approximation to pi/2,
when rounded to 33 bits so that multiplications by 20-bit fn's are
exact, happen to be rounded to 32 bits so multiplications by 21-bit
fn's are exact too, so the bug only complicates the error analysis (we
might lose a bit of accuracy but have bits to spare).
e_rem_pio2f.c:
The bogus comment in e_rem_pio2.c was copied and the code was changed
to be bug-for-bug compatible with it, except the limit was made 90
ulps smaller than necessary. The approximation to pi/2 was not
modified except for discarding some of it.
The same rough error analysis that justifies the limit of 2**20pi/2
for double precision only justifies a limit of 2**18pi/2 for float
precision. We depended on exhaustive testing to check the magic numbers
for float precision. More exaustive testing shows that we can go up
to 2**28pi/2 using a 53+25 bit approximation to pi/2 for float precision,
with a the maximum error for cosf() and sinf() unchanged at 0.5009
ulps despite the maximum error in rem_pio2f being ~0.25 ulps. Implement
this.
gives an average speedup of about 12 cycles or 17% for
9pi/4 < |x| <= 2**19pi/2 and a smaller speedup for larger x, and a
small speeddown for |x| <= 9pi/4 (only 1-2 cycles average, but that
is 4%).
Inlining this is less likely to bust caches than inlining the float
version since it is much smaller (about 220 bytes text and rodata) and
has many fewer branches. However, the float version was already large
due to its manual inlining of the branches and also the polynomial
evaluations.
__kernel_rem_pio2(). This simplifies analysis of aliasing and thus
results in better code for the usual case where __kernel_rem_pio2()
is not called. In particular, when __ieee854_rem_pio2[f]() is inlined,
it normally results in y[] being returned in registers. I couldn't
get this to work using the restrict qualifier.
In float precision, this saves 2-3% in most cases on amd64 and i386
(A64) despite it not being inlined in float precision yet. In double
precision, this has high variance, with an average gain of 2% for
amd64 and 0.7% for i386 (but a much larger gain for usual cases) and
some losses.
this function and its callers cosf(), sinf() and tanf() don't waste time
converting values from doubles to floats and back for |x| > 9pi/4.
All these functions were optimized a few years ago to mostly use doubles
internally and across the __kernel*() interfaces but not across the
__ieee754_rem_pio2f() interface.
This saves about 40 cycles in cosf(), sinf() and tanf() for |x| > 9pi/4
on amd64 (A64), and about 20 cycles on i386 (A64) (except for cosf()
and sinf() in the upper range). 40 cycles is about 35% for |x| < 9pi/4
<= 2**19pi/2 and about 5% for |x| > 2**19pi/2. The saving is much
larger on amd64 than on i386 since the conversions are not easy to
optimize except on i386 where some of them are automatic and others
are optimized invalidly. amd64 is still about 10% slower in cosf()
and tanf() in the lower range due to conversion overhead.
This also gives a tiny speedup for |x| <= 9pi/4 on amd64 (by simplifying
the code). It also avoids compiler bugs and/or additional slowness
in the conversions on (not yet supported) machines where double_t !=
double.
e_rem_pio2.c:
Float and double precision didn't work because init_jk[] was 1 too small.
It needs to be 2 larger than you might expect, and 1 larger than it was
for these precisions, since its test for recomputing needs a margin of
47 bits (almost 2 24-bit units).
init_jk[] seems to be barely enough for extended and quad precisions.
This hasn't been completely verified. Callers now get about 24 bits
of extra precision for float, and about 19 for double, but only about
8 for extended and quad. 8 is not enough for callers that want to
produce extra-precision results, but current callers have rounding
errors of at least 0.8 ulps, so another 1/2**8 ulps of error from the
reduction won't affect them much.
Add a comment about some of the magic for init_jk[].
e_rem_pio2.c:
Double precision worked in practice because of a compensating off-by-1
error here. Extended precision was asked for, and it executed exactly
the same code as the unbroken double precision.
e_rem_pio2f.c:
Float precision worked in practice because of a compensating off-by-1
error here. Double precision was asked for, and was almost needed,
since the cosf() and sinf() callers want to produce extra-precision
results, at least internally so that their error is only 0.5009 ulps.
However, the extra precision provided by unbroken float precision is
enough, and the double-precision code has extra overheads, so the
off-by-1 error cost about 5% in efficiency on amd64 and i386.
variations (e500 currently), this provides a gcc-level FPU emulation and is an
alternative approach to the recently introduced kernel-level emulation
(FPU_EMU).
Approved by: cognet (mentor)
MFp4: e500
fabs(), a conditional branch, and sign adjustments of 3 variables for
x < 0 when the branch is taken. In double precision, even when the
branch is perfectly predicted, this saves about 10 cycles or 10% on
amd64 (A64) and i386 (A64) for the negative half of the range, but
makes little difference for the positive half of the range. In float
precision, it also saves about 4 cycles for the positive half of the
range on i386, and many more cycles in both halves on amd64 (28 in the
negative half and 11 in the positive half for tanf), but the amd64
times for float precision are anomalously slow so the larger
improvement is only a side effect.
Previous commits arranged for the x < 0 case to be handled simply:
- one part of the rounding method uses the magic number 0x1.8p52
instead of the usual 0x1.0p52. The latter is required for large |x|,
but it doesn't work for negative x and we don't need it for large |x|.
- another part of the rounding method no longer needs to add `half'.
It would have needed to add -half for negative x.
- removing the "quick check no cancellation" in the double precision
case removed the need to take the absolute value of the quadrant
number.
Add my noncopyright in e_rem_pio2.c
FP-to-FP method to round to an integer on all arches, and convert this
to an int using FP-to-integer conversion iff irint() is not available.
This is cleaner and works well on at least ia64, where it saves 20-30
cycles or about 10% on average for 9Pi/4 < |x| <= 32pi/2 (should be
similar up to 2**19pi/2, but I only tested the smaller range).
After the previous commit to e_rem_pio2.c removed the "quick check no
cancellation" non-optimization, the result of the FP-to-integer
conversion is not needed so early, so using irint() became a much
smaller optimization than when it was committed.
An earlier commit message said that cos, cosf, sin and sinf were equally
fast on amd64 and i386 except for cos and sin on i386. Actually, cos
and sin on amd64 are equally fast to cosf and sinf on i386 (~88 cycles),
while cosf and sinf on amd64 are not quite equally slow to cos and sin
on i386 (average 115 cycles with more variance).
9pi/2 < |x| < 32pi/2 since it is only a small or negative optimation
and it gets in the way of further optimizations. It did one more
branch to avoid some integer operations and to use a different
dependency on previous results. The branches are fairly predictable
so they are usually not a problem, so whether this is a good
optimization depends mainly on the timing for the previous results,
which is very machine-dependent. On amd64 (A64), this "optimization"
is a pessimization of about 1 cycle or 1%; on ia64, it is an
optimization of about 2 cycles or 1%; on i386 (A64), it is an
optimization of about 5 cycles or 4%; on i386 (Celeron P2) it is an
optimization of about 4 cycles or 3% for cos but a pessimization of
about 5 cycles for sin and 1 cycle for tan. I think the new i386
(A64) slowness is due to an pipeline stall due to an avoidable
load-store mismatch (so the old timing was better), and the i386
(Celeron) variance is due to its branch predictor not being too good.
the the double to int conversion operation which is very slow on these
arches. Assume that the current rounding mode is the default of
round-to-nearest and use rounding operations in this mode instead of
faking this mode using the round-towards-zero mode for conversion to
int. Round the double to an integer as a double first and as an int
second since the double result is needed much earler.
Double rounding isn't a problem since we only need a rough approximation.
We didn't support other current rounding modes and produce much larger
errors than before if called in a non-default mode.
This saves an average about 10 cycles on amd64 (A64) and about 25 on
i386 (A64) for x in the above range. In some cases the saving is over
25%. Most cases with |x| < 1000pi now take about 88 cycles for cos
and sin (with certain CFLAGS, etc.), except on i386 where cos and sin
(but not cosf and sinf) are much slower at 111 and 121 cycles respectivly
due to the compiler only optimizing well for float precision. A64
hardware cos and sin are slower at 105 cycles on i386 and 110 cycles
on amd64.
the same as lrint() except it returns int instead of long. Though the
extern lrint() is fairly fast on these arches, it still takes about
12 cycles longer than the inline version, and 12 cycles is a lot in
applications where [li]rint() is used to avoid slow conversions that
are only a couple of times slower.
This is only for internal use. The libm versions of *rint*() should
also be inline, but that would take would take more header engineering.
Implementing irint() instead of lrint() also avoids a conflict with
the extern declaration of the latter.
on i386 (A64), 5 cycles on amd64 (A64), and 3 cycles on ia64). gcc
tends to generate very bad code for accessing floating point values
as bits except when the integer accesses have the same width as the
floating point values, and direct accesses to bit-fields (as is common
only for long double precision) always gives such accesses. Use the
expsign access method, which is good for 80-bit long doubles and
hopefully no worse for 128-bit long doubles. Now the generated code
is less bad. There is still unnecessary copying of the arg on amd64
and i386 and mysterious extra slowness on amd64.
pi/4 <= |x| <= 3pi/4. Use the same branch ladder as for float precision.
Remove the optimization for |x| near pi/2 and don't do it near the
multiples of pi/2 in the newly optimized range, since it requires
fairly large code to handle only relativley few cases. Ifdef out
optimization for |x| <= pi/4 since this case can't occur because it
is done in callers.
On amd64 (A64), for cos() and sin() with uniformly distributed args,
no cache misses, some parallelism in the caller, and good but not great
CC and CFLAGS, etc., this saves about 40 cycles or 38% in the newly
optimized range, or about 27% on average across the range |x| <= 2pi
(~65 cycles for most args, while the A64 hardware fcos and fsin take
~75 cycles for half the args and 125 cycles for the other half). The
speedup for tan() is much smaller, especially relatively. The speedup
on i386 (A64) is slightly smaller, especially relatively. i386 is
still much slower than amd64 here (unlike in the float case where it
is slightly faster).
saves an average of about 8 cycles or 5% on A64 (amd64 and i386 --
more in cycles but about the same percentage on i386, and more with
old versions of gcc) with good CFLAGS and some parallelism in the
caller. As usual, it takes a couple more multiplications so it will
be slower on old machines.
Convert to __FBSDID().
optimization of about 10% for cos(x), sin(x) and tan(x) on
|x| < 2**19*pi/2. We didn't do this before because __ieee754__rem_pio2()
is too large and complicated for gcc-3.3 to inline very well. We don't
do this for float precision because it interferes with optimization
of the usual (?) case (|x| < 9pi/4) which is manually inlined for float
precision only.
This has some rough edges:
- some static data is duplicated unnecessarily. There isn't much after
the recent move of large tables to k_rem_pio2.c, and some static data
is duplicated to good affect (all the data static const, so that the
compiler can evaluate expressions like 2*pio2 at compile time and
generate even more static data for the constant for this).
- extern inline is used (for the same reason as in previous inlining of
k_cosf.c etc.), but C99 apparently doesn't allow extern inline
functions with static data, and gcc will eventually warn about this.
Convert to __FBSDID().
Indent __ieee754_rem_pio2()'s declaration consistently (its style was
made inconsistent with fdlibm a while ago, so complete this).
Fix __ieee754_rem_pio2()'s return type to match its prototype. Someone
changed too many ints to int32_t's when fixing the assumption that all
ints are int32_t's.
Bruce for putting lots of effort into these; getting them right isn't
easy, and they went through many iterations.
Submitted by: Steve Kargl <sgk@apl.washington.edu> with revisions from bde
|x| or |y| and b is |y| or |x|) when mixing NaN arg(s).
hypot*() had its own foot shooting for mixing NaNs -- it swaps the
args so that |x| in bits is largest, but does this before quieting
signaling NaNs, so on amd64 (where the result of adding NaNs depends
on the order) it gets inconsistent results if setting the quiet bit
makes a difference, just like a similar ia64 and i387 hardware comparison.
The usual fix (see e_powf.c 1.13 for more details) of mixing using
(a+0.0)+-(b+0.0) doesn't work on amd64 if the args are swapped (since
the rder makes a difference with SSE). Fortunately, the original args
are unchanged and don't need to be swapped when we let the hardware
decide the mixing after quieting them, but we need to take their
absolute value.
hypotf() doesn't seem to have any real bugs masked by this non-bug.
On amd64, its maximum error in 2^32 trials on amd64 is now 0.8422 ulps,
and on i386 the maximum error is unchanged and about the same, except
with certain CFLAGS it magically drops to 0.5 (perfect rounding).
Convert to __FBSDID().
be into 12+24 bits of precision for extra-precision multiplication,
but was into 13+24 bits. On i386 with -O1 the bug was hidden by
accidental extra precision, but on amd64, in 2^32 trials the bug
caused about 200000 errors of more than 1 ulp, with a maximum error
of about 80 ulps. Now the maximum error in 2^32 trials on amd64
is 0.8573 ulps. It is still 0.8316 ulps on i386 with -O1.
The nearby decomposition of 1/ln2 and the decomposition of 2/(3ln2) in
the double precision version seem to be sub-optimal but not broken.
This uses 2 tricks to improve consistency so that more serious problems
aren't hidden in simple regression tests by noise for the NaNs:
- for a signaling NaN, adding 0.0 generates the invalid exception and
converts to a quiet NaN, and doesn't have too many effects for other
types of args (it converts -0 to +0 in some rounding modes, but that
hopefully doesn't change the result after adding the NaN arg). This
avoids some inconsistencies on i386 and ia64. On these arches, the
result of an operation on 2 NaNs is apparently the largest or the
smallest of the NaNs as bits (consistently largest or smallest for
each arch, but the opposite). I forget which way the comparison
goes and if the sign bit affects it. The quiet bit is is handled
poorly by not always setting it before the comparision or ignoring
it. Thus if one of the args was originally a signaling NaN and the
other was originally a quiet NaN, then the result depends too much
on whether the signaling NaN has been quieted at this point, which
in turn depends on optimizations and promotions. E.g., passing float
signaling NaNs to double functions must quiet them on conversion;
on i387, loading a signaling NaN of type float or double (but not
long double) into a register involves a conversion, so it quiets
signaling NaNs, so if the addition has 2 register operands than it
only sees quiet NaNs, but if the addition has a memory operand then
it sees a signaling NaN iff it is in the memory operand.
- subtraction instead of addition is used to avoid a dubious optimization
in old versions of gcc. For SSE operations, mixing of NaNs apparently
always gives the target operand. This is not as good as the i387
and ia64 behaviour. It doesn't mix NaNs at all, and makes addition
not quite commutative. Old versions of gcc sometimes rewrite x+y
to y+x and thus give different results (in bits) for NaNs. gcc-3.3.3
rewrites x+y to y+x for one of pow() and powf() but not the other,
so starting from float NaN args x and y, powf(x, y) was almost always
different from pow(x, y).
These tricks won't give consistency of 2-arg float and double functions
with long double ones on amd64, since long double ones use the i387
which has different semantics from SSE.
Convert to __FBSDID().
and trunc() to the corresponding long double functions. This is not
just an optimization for these arches. The full long double functions
have a wrong value for `huge', and the arches without full long doubles
depended on it being wrong.
This has the side effect of confusing gcc-4.2.1's optimizer into more
often doing the right thing. When it does the wrong thing here, it
seems to be mainly making too many copies of x with dependency chains.
This effect is tiny on amd64, but in some cases on i386 it is enormous.
E.g., on i386 (A64) with -O1, the current version of exp2() should
take about 50 cycles, but took 83 cycles before this change and 66
cycles after this change. exp2f() with -O1 only speeded up from 51
to 47 cycles. (exp2f() should take about 40 cycles, on an Athlon in
either i386 or amd64 mode, and now takes 42 on amd64). exp2l() with
-O1 slowed down from 155 cycles to 123 for some args; this is unimportant
since the i386 exp2l() is a fake; the wrong thing for it seems to
involve branch misprediction.
faster on all machines tested (old Celeron (P2), A64 (amd64 and i386)
and ia64) except on ia64 when compiled with -O1. It takes 2 more
multiplications, so it will be slower on old machines. The speedup
is about 8 cycles = 17% on A64 (amd64 and i386) with best CFLAGS
and some parallelism in the caller.
Move the evaluation of 2**k up a bit so that it doesn't compete too
much with the new polynomial evaluation. Unlike the previous
optimization, this rearrangement cannot change the result, so compilers
and CPU schedulers can do it, but they don't do it quite right yet.
This saves a whole 1 or 2 cycles on A64.
when the result is +-0. IEEE754 requires (in all rounding modes) that
if the result is +-0 then its sign is the same as that of the first
arg, but in round-towards-minus-infinity mode an uncorrected implementation
detail always reversed the sign. (The detail is that x-x with x's
sign positive gives -0 in this mode only, but the algorithm assumed
that x-x always has positive sign for such x.)
remquo() and remquof() seem to need the same fix, but I cannot test them
yet.
Use long doubles when mixing NaN args. This trick improves consistency
of results on at least amd64, so that more serious problems like the
above aren't hidden in simple regression tests by noise for the NaNs.
On amd64, hardware remainder should be used since it is about 10 times
faster than software remainder and is already used for remquo(), but
it involves using the i387 even for floats and doubles, and the i387
does NaN mixing which is better than but inconsistent with SSE NaN mixing.
Software remainder() would probably have been inconsistent with
software remainderl() for the same reason if the latter existed.
Signaling NaNs cause further inconsistencies on at least ia64 and i386.
Use __FBSDID().
exp2(i/TBLSIZE) * p(z) instead of only for the final multiplication
and addition. This fixes the code to match the comment that the maximum
error is 0.5010 ulps (except on machines that evaluate float expressions
in extra precision, e.g., i386's, where the evaluation was already
in extra precision).
Fix and expand the comment about use of double precision.
The relative roundoff error from evaluating p(z) in non-extra precision
was about 16 times larger than in exp2() because the interval length
is 16 times smaller. Its maximum was at least P1 * (1.0 ulps) *
max(|z|) ~= log(2) * 1.0 * 1/32 ~= 0.0217 ulps (1.0 ulps from the
addition in (1 + P1*z) with a cancelation error when z ~= -1/32). The
actual final maximum was 0.5313 ulps, of which 0.0303 ulps must have
come from the additional roundoff error in p(z). I can't explain why
the additional roundoff error was almost 3/2 times larger than the rough
estimate.
precision. The new polynomial has degree 4 instead of 10, and a maximum
error of 2**-30.04 ulps instead of 2**-33.15. This doesn't affect the
final error significantly; the maximum error was and is about 0.5015
ulps on i386 -O1, and the number of cases with an error of > 0.5 ulps
is increased from 13851 to 14407.
Note that the error is only this close to 0.5 ulps due to excessive
extra precision caused by compiler bugs on i386. The extra precision
could be obtained intentionally, and is useful for keeping the error
of the hyperbolic float functions below 1 ulp, since these functions
are implemented using expm1f. My recent change for scaling by 2**k
had the unintentional side effect of retaining extra precision for
longer, so callers of expm1f see errors of more like 0.0015 ulps than
0.5015 ulps, and for the hyperbolic functions this reduces the maximum
error from nearly about 2 ulps to about 0.75 ulps.
This is about 10% faster on i386 (A64). expm1* is still very slow,
but now the float version is actually significantly faster. The
algorithm is very sophisticated but not very good except on machines
with fast division.
exponent bits of the reduced result, construct 2**k (hopefully in
parallel with the construction of the reduced result) and multiply by
it. This tends to be much faster if the construction of 2**k is
actually in parallel, and might be faster even with no parallelism
since adjustment of the exponent requires a read-modify-wrtite at an
unfortunate time for pipelines.
In some cases involving exp2* on amd64 (A64), this change saves about
40 cycles or 30%. I think it is inherently only about 12 cycles faster
in these cases and the rest of the speedup is from partly-accidentally
avoiding compiler pessimizations (the construction of 2**k is now
manually scheduled for good results, and -O2 doesn't always mess this
up). In most cases on amd64 (A64) and i386 (A64) the speedup is about
20 cycles. The worst case that I found is expf on ia64 where this
change is a pessimization of about 10 cycles or 5%. The manual
scheduling for plain exp[f] is harder and not as tuned.
Details specific to expm1*:
- the saving is closer to 12 cycles than to 40 for expm1* on i386 (A64).
For some reason it is much larger for negative args.
- also convert to __FBSDID().
exponent bits of the reduced result, construct 2**k (hopefully in
parallel with the construction of the reduced result) and multiply by
it. This tends to be much faster if the construction of 2**k is
actually in parallel, and might be faster even with no parallelism
since adjustment of the exponent requires a read-modify-wrtite at an
unfortunate time for pipelines.
In some cases involving exp2* on amd64 (A64), this change saves about
40 cycles or 30%. I think it is inherently only about 12 cycles faster
in these cases and the rest of the speedup is from partly-accidentally
avoiding compiler pessimizations (the construction of 2**k is now
manually scheduled for good results, and -O2 doesn't always mess this
up). In most cases on amd64 (A64) and i386 (A64) the speedup is about
20 cycles. The worst case that I found is expf on ia64 where this
change is a pessimization of about 10 cycles or 5%. The manual
scheduling for plain exp[f] is harder and not as tuned.
This change ld128/s_exp2l.c has not been tested.
that is specialized for float precision. The new polynomial has degree
5 instead of 11, and a maximum error of 2**-27.74 ulps instead
of 2**-30.64. This doesn't affect the final error significantly; the
maximum error was and is about 0.9101 ulps on amd64 -01 and the number
of cases with an error of > 0.5 ulps is actually reduced by epsilon
despite the larger error in the polynomial.
This is about 15% faster on amd64 (A64), i386 (A64) and ia64. The asm
version is still used instead of this on i386 since it is faster and
more accurate.
cases which are used mainly by regression tests.
As usual, the cutoff for tiny args was not correctly translated to
float precision. It was 2**-54 but 2**-24 works. It must be about
2**-precision, since the error from approximating log(1+x) by x is
about the same as |x|. Exhaustive testing shows that 2**-24 gives
perfect rounding in round-to-nearest mode.
Similarly for the cutoff for being small, except this is not used by
so many other functions. It was 2**-29 but 2**-15 works. It must be
a bit smaller than sqrt(2**-precision), since the error from
approximating log(1+x) by x-x*x/2 is about the same as x*x. Exhaustive
testing shows that 2**-15 gives a maximum error of 0.5052 ulps in
round-to-nearest-mode. The algorithm for the general case is only good
for 0.8388 ulps, so this is sufficient (but it loses slightly on i386 --
then extra precision gives 0.5032 ulps for the general case).
While investigating this, I noticed that optimizing the usual case by
falling into a middle case involving a simple polynomial evaluation
(return x-x*x/2 instead of x here) is not such a good idea since it
gives an enormous pessimization of tinier args on machines for which
denormals are slow. Float x*x/2 is denormal when |x| ~< 2**-64 and
x*x/2 is evaluated in float precision, so it can easily be denormal
for normal x. This is even more interesting for general polynomial
evaluations. Multiplying out large powers of x is normally a good
optimization since it reduces dependencies, but it creates denormals
starting with quite large x.
forget to translate "float" to "double".
ucbtest didn't detect the bug, but exhaustive testing of the float
case relative to the double case eventually did. The bug only affects
args x with |x| ~> 2**19*(pi/2) on non-i386 (i386 is broken in a
different way for large args).
it should never have existed and it has not been used for many years
(floats are reduced faster using doubles). All relevant changes (just
the workaround for broken assignment) have been merged to the double
version.
there is a problem with non-floats (when i386 defaults to extra
precision). This essentially restores yesterday's behaviour for doubles
on i386 (since generic rint() isn't used and everywhere else assumed
working assignment), but for arches that use the generic rint() it
finishes restoring some of 1995's behaviour (don't waste time doing
unnecessary store/load).
variable hack for exp2f() only.
The volatile variable had a surprisingly large cost for exp2f() -- 19
cycles or 15% on i386 in the worst case observed. This is only partly
explained by there being several references to the variable, only one
of which benefited from it being volatile. Arches that have working
assignment are likely to benefit even more from not having any volatile
variable.
exp2() now has a chance of working with extra precision on i386.
exp2() has even more references to the variable, so it would have been
pessimized more by simply declaring the variable as volatile. Even
the temporary volatile variable for STRICT_ASSIGN costs 5-10% on i386,
(A64) so I will change STRICT_ASSIGN() to do an ordinary assignment
until i386 defaults to extra precision.
instead of a volatile cast hack for the float version only. The cast
hack broke with gcc-4, but this was harmless since the float version
hasn't been used for a few years. Merge from the float version so
that the double version has a chance of working on i386 with extra
precision.
See k_rem_pio2f.c rev.1.8 for the original hack.
Convert to _FBSDID().
hack for log1pf() only. The cast hack broke with gcc-4, resulting in
~1 million errors of more than 1 ulp, with a maximum error of ~1.5 ulps.
Now the maximum error for log1pf() on i386 is 0.5034 ulps again (this
depends on extra precision), and log1p() has a chance of working with
extra precision.
See s_log1pf.c 1.8 for the original hack. (It claims only 62343 large
errors).
Convert to _FBSDID(). Another thing broken with gcc-4 is the static
const hack used for rcsids.
around assignments not working for gcc on i386. Now volatile hacks
for rint() and rintf() don't needlessly pessimize so many arches
and the remaining pessimizations (for arm and powerpc) can be avoided
centrally.
This cleans up after s_rint.c 1.3 and 1.13 and s_rintf.c 1.3 and 1.9:
- s_rint.c 1.13 broke 1.3 by only using a volatile cast hack in 1 place
when it was needed in 2 places, and the volatile cast hack stopped
working with gcc-4. These bugs only affected correctness tests on
i386 since i386 normally uses asm rint() and doesn't support the
extra precision mode that would break assignments of doubles.
- s_rintf.c 1.9 improved(?) on 1.3 by using a volatile variable hack
instead of an extra-precision variable hack, but it declared 2
variables as volatile when only 1 variable needed to be volatile.
This only affected speed tests on i386 since i386 uses asm rintf().
long doubles (i386, amd64, ia64) and one for machines with 128-bit
long doubles (sparc64). Other platforms use the double version.
I've only done runtime testing on i386.
Thanks to bde@ for helpful discussions and bugfixes.
assignments and casts don't clip extra precision, if any. The
implementation is to assign to a temporary volatile variable and read
the result back to assign to the original lvalue.
lib/msun currently 2 different hard-coded hacks to avoid the problem
in just a few places and needs it in a few more places. One variant
uses volatile for the original lvalue. This works but is slower than
necessary. Another temporarily casts the lvalue to volatile. This
broke with gcc-4.2.1 or earlier (gcc now stores to the lvalue but
doesn't load from it).
my original implementation made both use the same code. Unfortunately,
this meant libm depended on a vendor header at compile time and previously-
unexposed vendor bits in libc at runtime.
Hence, I just wrote my own version of the relevant vendor routine. As it
turns out, mine has a factor of 8 fewer of lines of code, and is a bit more
readable anyway. The strtod() and *scanf() routines still use vendor code.
Reviewed by: bde
someone thought it would be a good idea to copy z_abs() to libm in 1994.
However, it's never been declared or documented anywhere, and I'm
reasonably confident that nobody uses it.
Discussed with: bde, deischen, kan