includes support for the NIC and TOE features of the 40G, 10G, and
1G/100M cards based on the T5.
The ASIC is mostly backward compatible with the Terminator 4 so cxgbe(4)
has been updated instead of writing a brand new driver. T5 cards will
show up as cxl (short for cxlgb) ports attached to the t5nex bus driver.
Sponsored by: Chelsio
on the fast data path) and use them instead of frobbing the adapter lock
and busy flag directly.
Other changes made while reworking all slow operations:
- Wait for the reply to a filter request (add/delete). This guarantees
that the operation is complete by the time the ioctl returns.
- Tidy up the tid_info structure.
- Do not allow the tx queue size to be set to something that's not a
power of 2.
MFC after: 1 week
- Setup multiple DDP page sizes. When the driver attempts DDP it will
try to combine physically contiguous pages into regions of these sizes.
- Set the indicate size such that the payload carried in the indicate can
be copied in the header mbuf (and the 16K rx buffer can be recycled).
- Set DDP threshold to the max payload that the chip will coalesce and
deliver to the driver (this is ~16K by default, which is also why the
offload rx queue is backed by 16K buffers). If the chip is able to
coalesce up to the max it's allowed to, it's a good sign that the peer
is transmitting in bulk without any TCP PSH.
MFC after: 2 weeks
TCB. Filters are programmed by modifying the TCB too (via a different
routine) and the reply to any TCB update is delivered via a
CPL_SET_TCB_RPL. Figure out whether the reply is for a filter-write or
something else and route it appropriately.
MFC after: 2 weeks
- Stateful TCP offload drivers for Terminator 3 and 4 (T3 and T4) ASICs.
These are available as t3_tom and t4_tom modules that augment cxgb(4)
and cxgbe(4) respectively. The cxgb/cxgbe drivers continue to work as
usual with or without these extra features.
- iWARP driver for Terminator 3 ASIC (kernel verbs). T4 iWARP in the
works and will follow soon.
Build-tested with make universe.
30s overview
============
What interfaces support TCP offload? Look for TOE4 and/or TOE6 in the
capabilities of an interface:
# ifconfig -m | grep TOE
Enable/disable TCP offload on an interface (just like any other ifnet
capability):
# ifconfig cxgbe0 toe
# ifconfig cxgbe0 -toe
Which connections are offloaded? Look for toe4 and/or toe6 in the
output of netstat and sockstat:
# netstat -np tcp | grep toe
# sockstat -46c | grep toe
Reviewed by: bz, gnn
Sponsored by: Chelsio communications.
MFC after: ~3 months (after 9.1, and after ensuring MFC is feasible)
Significantly update tcp_lro for mostly two things:
1) introduce basic support for IPv6 without extension headers.
2) try hard to also get the incremental checksum updates right,
especially also in the IPv4 case for the IP and TCP header.
Move variables around for better locality, factor things out into
functions, allow checksum updates to be compiled out, ...
Leave a few comments on further things to look at in the future,
though that is not the full list.
Update drivers with appropriate #includes as needed for IPv6 data
type in LRO.
Sponsored by: The FreeBSD Foundation
Sponsored by: iXsystems
Reviewed by: gnn (as part of the whole)
MFC After: 3 days
- Device configuration via plain text config file. Also able to operate
when not attached to the chip as the master driver.
- Generic "work request" queue that serves as the base for both ctrl and
ofld tx queues.
- Generic interrupt handler routine that can process any event on any
kind of ingress queue (via a dispatch table).
- A couple of new driver ioctls. cxgbetool can now install a firmware
to the card ("loadfw" command) and can read the card's memory
("memdump" and "tcb" commands).
- Lots of assorted information within dev.t4nex.X.misc.* This is
primarily for debugging and won't show up in sysctl -a.
- Code to manage the L2 tables on the chip.
- Updates to cxgbe(4) man page to go with the tunables that have changed.
- Updates to the shared code in common/
- Updates to the driver-firmware interface (now at fw 1.4.16.0)
MFC after: 1 month
queues. Try to have a set of these per port when possible, fall back
to sharing a common pool between all ports otherwise.
- One control queue per port (used to be one per hardware channel).
- t4_eth_rx now handles Ethernet rx only.
- sysctls to display pidx/cidx for some queues.
MFC after: 1 week
filters working. (All other filters - switch without L2 info rewrite,
steer, and drop - were already fully-functional).
Some contrived examples of "switch" filters with L2 rewriting:
# cxgbetool t4nex0 iport 0 dport 80 action switch vlan +9 eport 3
Intercept all packets received on physical port 0 with TCP port 80 as
destination, insert a vlan tag with VID 9, and send them out of port 3.
# cxgbetool t4nex0 sip 192.168.1.1/32 ivlan 5 action switch \
vlan =9 smac aa:bb:cc:dd:ee:ff eport 0
Intercept all packets (received on any port) with source IP address
192.168.1.1 and VLAN id 5, rewrite the VLAN id to 9, rewrite source mac
to aa:bb:cc:dd:ee:ff, and send it out of port 0.
MFC after: 1 week
now a suitable base for all kinds of egress queues.
- Add control queues (sge_ctrlq) and allocate one of these per hardware
channel. They can be used to program filters and steer traffic (and
more).
MFC after: 1 week
down. The ingress queue lock was unused and has been removed as part of
these changes.
- An in-flight egress update from the SGE must be handled before the
queue that requested it is destroyed. Wait for the update to arrive.
- Interrupt handlers must stop processing rx events for a queue before
the queue is destroyed. Events that have not yet been processed
should be ignored once the queue disappears.
MFC after: 1 week
queue has its own interrupt. If the exact number that we need is not a
power of 2 and we're using MSI, then switch to interrupt multiplexing.
While here, replace the magic numbers with something more readable.
MFC after: 3 days
- everything related to LRO should be in #ifdef INET blocks
- reorder sge_iq's fields so that the most frequently used are all together
- pull all rx code into t4_intr_data directly
- let go of the ingress queue lock when passing up data
- refill the freelist only if it is short of at least 32 buffers