* If we fall through from an ANI command (eg because it's out of range,
or it's disabled) then fall through to the next ANI command rather then
being stuck there.
* Fix some off-by-one comparisons, meaning the final level in some parameters
were never tweaked.
Obtained from: Atheros
Sponsored by: Hobnob, Inc.
This forces a full reset of the baseband/radio and seems needed to clear
some issues (with Merlin at least) when the baseband gets confused in a
very noisy environment.
Sponsored by: Hobnob, Inc.
RX clear, RX extension clear.
This is useful for estimating channel business.
The same routines should be written for AR5210->AR5212 where appopriate.
Obtained from: Atheros
some unmerged interrupt status debugging code from my branch.
* Add ah_intrstate[8] which will have the record of the last
call to ath_hal_getintr().
* Wrap the KTR code behind ATH_KTR_INTR_DEBUG.
* Add the HAL interrupt debugging behind AH_INTERRUPT_DEBUGGING.
This is only done for the AR5416 and later NICs but it will be
trivial to add to the earlier NICs if required.
Neither are enabled by default, although to minimise HAL binary
API differences, the ah_intrstate[] array is always compiled into
the ath_hal struct.
for Atheros AR5416 and later wireless devices.
This is a very large commit - the complete history can be
found in the user/adrian/if_ath_tx branch.
Legacy (ie, pre-AR5416) devices also use the per-software
TXQ support and (in theory) can support non-aggregation
ADDBA sessions. However, the net80211 stack doesn't currently
support this.
In summary:
TX path:
* queued frames normally go onto a per-TID, per-node queue
* some special frames (eg ADDBA control frames) are thrown
directly onto the relevant hardware queue so they can
go out before any software queued frames are queued.
* Add methods to create, suspend, resume and tear down an
aggregation session.
* Add in software retransmission of both normal and aggregate
frames.
* Add in completion handling of aggregate frames, including
parsing the block ack bitmap provided by the hardware.
* Write an aggregation function which can assemble frames into
an aggregate based on the selected rate control and channel
configuration.
* The per-TID queues are locked based on their target hardware
TX queue. This matches what ath9k/atheros does, and thus
simplified porting over some of the aggregation logic.
* When doing TX aggregation, stick the sequence number allocation
in the TX path rather than net80211 TX path, and protect it
by the TXQ lock.
Rate control:
* Delay rate control selection until the frame is about to
be queued to the hardware, so retried frames can have their
rate control choices changed. Frames with a static rate
control selection have that applied before each TX, just
to simplify the TX path (ie, not have "static" and "dynamic"
rate control special cased.)
* Teach ath_rate_sample about aggregates - both completion and
errors.
* Add an EWMA for tracking what the current "good" MCS rate is
based on failure rates.
Misc:
* Introduce a bunch of dirty hacks and workarounds so TID mapping
and net80211 frame inspection can be kept out of the net80211
layer. Because of the way this code works (and it's from Atheros
and Linux ath9k), there is a consistent, 1:1 mapping between
TID and AC. So we need to ensure that frames going to a specific
TID will _always_ end up on the right AC, and vice versa, or the
completion/locking will simply get very confused. I plan on
addressing this mess in the future.
Known issues:
* There is no BAR frame transmission just yet. A whole lot of
tidying up needs to occur before BAR frame TX can occur in the
"correct" place - ie, once the TID TX queue has been drained.
* Interface reset/purge/etc results in frames in the TX and RX
queues being removed. This creates holes in the sequence numbers
being assigned and the TX/RX AMPDU code (on either side) just
hangs.
* There's no filtered frame support at the present moment, so
stations going into power saving mode will simply have a number
of frames dropped - likely resulting in a traffic "hang".
* Raw frame TX is going to just not function with 11n aggregation.
Likely this needs to be modified to always override the sequence
number if the frame is going into an aggregation session.
However, general raw frame injection currently doesn't work in
general in net80211, so let's just ignore this for now until
this is sorted out.
* HT protection is just not implemented and won't be until the above
is sorted out. In addition, the AR5416 has issues RTS protecting
large aggregates (anything >8k), so the work around needs to be
ported and tested. Thus, this will be put on hold until the above
work is complete.
* The rate control module 'sample' is the only currently supported
module; onoe/amrr haven't been tested and have likely bit rotted
a little. I'll follow up with some commits to make them work again
for non-11n rates, but they won't be updated to handle 11n and
aggregation. If someone wishes to do so then they're welcome to
send along patches.
* .. and "sample" doesn't really do a good job of 11n TX. Specifically,
the metrics used (packet TX time and failure/success rates) isn't as
useful for 11n. It's likely that it should be extended to take into
account the aggregate throughput possible and then choose a rate
which maximises that. Ie, it may be acceptable for a higher MCS rate
with a higher failure to be used if it gives a more acceptable
throughput/latency then a lower MCS rate @ a lower error rate.
Again, patches will be gratefully accepted.
Because of this, ATH_ENABLE_11N is still not enabled by default.
Sponsored by: Hobnob, Inc.
Obtained from: Linux, Atheros
preparation for TX aggregation.
* Add in logic which calls ath_buf bf->bf_comp if it's set.
This allows for AMPDU (and RIFS, and FF, if someone desires) code
to handle completion - which includes freeing subframes, retransmitting
subframes, etc.
* Break out the buffer free, buffer busy/unbusy default completion handler
code into separate functions. This allows bf_comp methods to free and
unbusy each subframe ath_buf as required.
* Break out the statistics update code into a separate function, just
to clean up the TX completion path a little.
Sponsored by: Hobnob, Inc.
descriptor, rather than using the maths involving bf_desc[bf_nseg - 1].
When doing TX aggregation, the status will be updated in the -final-
descriptor of the -final- subframe in an aggregate. Thus bf_lastds
may point to the last descriptor in a completely different ath_buf.
Sponsored by: Hobnob, Inc.
* Immediately return NULL if a buffer isn't available;
* Track the "buffers not available" count;
* Clear some fields used for tx aggregation;
* Add ath_buf_clone() which clones the majority of buffer state.
This is needed when retransmission of a "busy" buffer is required.
Sponsored by: Hobnob, Inc.
Add some code (which is currently disabled) which modifies the group
multicast key cache behaviour. I haven't yet figured out what the
exact/correct behaviour is so I'm leaving it disabled. It's worth
investigating and "correcting", especially for future work with
mesh/ibss and encryption.
Sponsored by: Hobnob, Inc.
* When doing software TX queue handling and flush, it's possible
that the deletion of a VAP (eg a STA shutdown) will queue a
"STA Disassociate" frame whilst the interface is being deleted.
The VAP is then deleted, and the frame ends up being queued
to a node that is freed before it can be TX'ed. Things go awry
at this point.
There's no way at the present to avoid freeing the underlying node
when the vap is being deleted. It's too late in the game.
I suspect the real fix is to make sure the frame is software
queued with no completion information somehow, so it doesn't
link back to a node whose underlying VAP has been freed.
For now, we'll just have to do this.
* Add some comments showing what's going on.
* Move an instance of the ATH_LOCK() around to protect the interrupt
set. I'll worry about changing that to a PCU lock later on once
the 11n code is in the tree.
Sponsored by: Hobnob, Inc.
and interface resets to be marked as ATH_RESET_DEFAULT, ATH_RESET_FULL,
ATH_RESET_NOLOSS.
Currently a reset is still a reset - ie, all tx/rx frames in the hardware
queues are purged. This means that those frames will be lost to the 11n TX
and RX aggregation state tracking, breaking AMPDU sessions.
The (eventual) new semantics:
* ATH_RESET_DEFAULT:
full reset, this is the default for reset situations
which I haven't yet figured out what they should be.
* ATH_RESET_FULL:
A full reset - for things such as channel changes.
* ATH_RESET_NOLOSS:
Don't flush TX/RX queues - handle pending RX frames and leave TX
frames where they are; restart TX DMA from where it was.
* Change ath_rx_proc() to ath_rx_tasklet(); make that the taskqueue function.
This way (eventually) ath_rx_proc() can be called from elsewhere in the
packet reset/processing queue so frames aren't just "flushed" during
interface resets/reconfigure. This breaks 802.11n RX aggregation tracking.
* Extend ath_tx_proc() to take a 'resched' flag, which marks whether to
reschedule further RX PCU reads or not.
* Change ath_tx_processq() to take a "dosched" flag, which will eventually
be used to indicate whether to reschedule the software TX scheduler.
Sponsored by: Hobnob, Inc.
allocator with UMA backed jumbo allocator by default. Previously
ti(4) used sf_buf(9) interface for jumbo buffers but it was broken
at this moment such that enabling jumbo frame caused instant panic.
Due to the nature of sf_buf(9) it heavily relies on VM changes but
it seems ti(4) was not received much blessing from VM gurus. I
don't understand VM magic and implications used in driver either.
Switching to UMA backed jumbo allocator like other network drivers
will make jumbo frame work on ti(4).
While I'm here, fully allocate all RX buffers. This means ti(4) now
uses 512 RX buffer and 1024 mini RX buffers.
To use sf_buf(9) interface for jumbo buffers, introduce a new
'options TI_SF_BUF_JUMBO'. If it is proven that sf_buf(9) is better
for jumbo buffers, interesting developers can fix the issue in
future.
ti(4) still needs more bus_dma(9) cleanups and should use separate
DMA tag/map for each ring(standard, jumbo, mini, command, event
etc) but it should work on all platforms except PAE.
Special thanks to Jay[1] who provided complete remote debugging
access.
Tested by: Jay Borkenhagen <jayb <> braeburn dot org > [1]
* Close down some of the kickpcu races, where the interrupt handler
can and will run concurrently with the taskqueue.
* Close down the TXQ active/completed race between the interrupt
handler and the concurrently running tx completion taskqueue
function.
* Add some tx and rx interrupt count tracking, for debugging.
* Fix the kickpcu logic in ath_rx_proc() to not simply drain and
restart the TX queue - instead, assume the hardware isn't
(too) confused and just restart RX DMA. This may break on
previous chipsets, so if it does I'll add a HAL flag and
conditionally handle this (ie, for broken chipsets, I'll
just restore the "stop PCU / flush things / restart PCU"
logic.)
* Misc stuff
Sponsored by: Hobnob, Inc.
A bunch of the 11n TX aggregation logic wants to traverse lists of buffers
in various ways. In order to provide O(1) behaviour in this instance,
use TAILQs.
This does blow out the memory footprint and CPU cycles slightly for some
of these operations. I may convert some of these back to STAILQs once
the rest of the software transmit queue handling has been stabilised.
Sponsored by: Hobnob, Inc.
* Use 64 bit integer types for the sample rate statistics.
When TX'ing 11n aggregates, a 32 bit counter will overflow in a few
hours due to the high packet throughput.
* Create a default label of "" rather than defaulting to "Mb" - that way
if a rate hasn't yet been selected, it won't say "-1 Mb".
Sponsored by: Hobnob, Inc.
* Add a PCU lock, which isn't currently used but will eventually be
used to serialise some of the driver access.
* Add in all the software TX aggregation state, that's kept per-node
and per-TID.
* Add in the software and aggregation state to ath_buf.
* Add in hooks to ath_softc for aggregation state and the (upcoming)
aggregation TX state calls.
* Add / fix the HAL access macros.
Obtained from: Linux, ath9k
Sponsored by: Hobnob, Inc.
o Do not blindly UP controller when MTU is changed. Reinitialize
controller only if driver is running.
o Remove useless ti_stop() in ti_watchdog() since ti_init_locked()
always invokes ti_stop().
The SYSCTL_NODE macro defines a list that stores all child-elements of
that node. If there's no SYSCTL_DECL macro anywhere else, there's no
reason why it shouldn't be static.
checksum offloading and VLAN hardware tag insertion/stripping from
the currently enabled hardware offloading capabilities.
Previously if_hwassist, which was initialized to TX/RX checksum
offloading, was blindly used to enable both TX and RX checksum
offloading such that disabling either TX or RX checksum offloading
was not possible.
ti(4) controllers support TX/RX checksum offloading with VLAN
tagging so announce TX/RX checksum offloading capability over VLAN
to vlan(4).
Make VLAN hardware tag insertion/stripping honors currently enabled
interface capability instead of blindly enabling VLAN hardware
tagging. This change allows disabling hardware support of VLAN tag.
Because ti(4) supports VLAN oversized frames, make network stack
know the capability by setting if_hdrlen.
While I'm here, rewrite SIOCSIFCAP handler and make sure to
reinitialize controller whenever TX/RX checksum offloading and VLAN
hardware tagging option is changed. The requirement of controller
reinitialization comes from the limitation of Tigon I/II firmware.
Tigon I/II firmware requires all related RCBs should be
reinitialized whenever any of its hardware offloading capabilities
change.
vlan(4) is also notified whenever the parent interface's capability
changes such that it can correctly handle TX/RX checksum offloading
based on parent interface's enabled offloading capabilities.
RX checksum offloading handler was changed to make upper stack use
controller computed partial checksum value. Previously, ti(4) just
set the computed value for any frames(IPv4, IPv6) and the value was
not used in upper stack because driver didn't set CSUM_DATA_VALID
such that upper network stack had to recompute checksum of TCP/UDP
packets. I have no idea how this was not noticed for a long time.
With this change, upper network stack does not have to fully
recompute the checksum such that calculating pseudo checksum based
on partial checksum is sufficient to know whether received packet's
checksum is correct or not. However, I don't know why ti(4) does
not have controller compute pseudo checksum as controller has
ability to do it. I'm just guessing enabling that feature could
trigger a firmware bug or could be slower than computing it on host
side so just leave it as it was.
In order not to produce false positives, ti(4) now checks whether
controller actually computed IP or TCP/UDP checksum by checking
ti_flags field.
state changes. Hide superfluous link up/down message under
bootverbose since if_link_state_change(9) shows that information.
While I'm here, change baudrate with the resolved speed of the
established link instead of blindly setting it 1G. Unfortunately,
it seems there is no way to differentiate 10/100Mbps from
non-gigabit link so just assume we established a 100Mbps link if
current link is not a gigabit link.
This was broken in r175872.
We have a UMA backed jumbo allocator and that is much better
implementation than having a local jumbo buffer allocator in
driver. This local allocator would be removed in near future but
fixing build before removal wouldn't be a bad idea.
replace amd(4) with the former in the amd64, i386 and pc98 GENERIC kernel
configuration files. Besides duplicating functionality, amd(4), which
previously also supported the AMD Am53C974, unlike esp(4) is no longer
maintained and has accumulated enough bit rot over time to always cause
a panic during boot as long as at least one target is attached to it
(see PR 124667).
PR: 124667
Obtained from: NetBSD (based on)
MFC after: 3 days
corresponding Linux driver uses. This allows mpt(4) to still recognize
all good SATA devices in presence of a defective one, which takes about
45 seconds.
In the long term we probably should implement the logic used by mpt2sas(4)
allowing IOC port initialization to complete at a later time.
Submitted by: Andrew Boyer
MFC after: 3 days
by rman_get_virtual(9) to access device registers sparc64 currently cares
about.
Ideally ata(4) should just be converted to access these using bus_space(9)
read/write functions instead as there's really no reason to do it the
former way. However, this part of ata-siliconimage.c should go away in
favor of siis(4) sooner or later anyway and I don't have the hardware to
actually test the SX4 bits of ata-promise.c.
Also ideally the other architectures should also properly handle the
BUS_SPACE_MAP_LINEAR flag of bus_space_map(9) so this code wouldn't need
to be #ifdef'ed.
take advantage of it instead of duplicating it. This reduces the size of
the i386 GENERIC kernel by about 4k. The only potential in-tree user left
unconverted is xe(4), which generally should be changed to use miibus(4)
instead of implementing PHY handling on its own, as otherwise it makes not
much sense to add a dependency on miibus(4)/mii_bitbang(4) to xe(4) just
for the MII bitbang'ing code. The common MII bitbang'ing code also is
useful in the embedded space for using GPIO pins to implement MII access.
- Based on lessons learnt with dc(4) (see r185750), add bus barriers to the
MII bitbang read and write functions of the other drivers converted in
order to ensure the intended ordering. Given that register access via an
index register as well as register bank/window switching is subject to the
same problem, also add bus barriers to the respective functions of smc(4),
tl(4) and xl(4).
- Sprinkle some const.
Thanks to the following testers:
Andrew Bliznak (nge(4)), nwhitehorn@ (bm(4)), yongari@ (sis(4) and ste(4))
Thanks to Hans-Joerg Sirtl for supplying hardware to test stge(4).
Reviewed by: yongari (subset of drivers)
Obtained from: NetBSD (partially)
- Move esp_devclass to ncr53c9x.c in order to allow different bus front-ends
to use it.
- Use KOBJMETHOD_END.
- Remove the gl_clear_latched_intr hook as it's not needed for any of the
chips nor the front-ends supported in FreeBSD and likely never will be.
- Correct the DMA constraints used in the SBus front-end, the LSI64854 isn't
limited to 32-bit DMA.
- The ESP200 also only supports up to 64k transfers.
- Don't let the DMA and SBus front-end supply a maximum transfer size larger
than MAXPHYS as that's the maximum the upper layers use and we otherwise
just waste resources unnecessarily.
- Initialize the ECB callout and don't zero the handle when returning ECBs
to the free list so that ncr53c9x_callout() actually is called with the
driver lock held.
- On detach the driver lock should be held across cam_sim_free() according
to isp(4) and a panic received.
- Check the return value of NCRDMA_SETUP(), i.e. bus_dmamap_load(9), and try
to handle failures gracefully.
- In ncr53c9x_action() replace N calls to xpt_done() in a switch with just
one at the end.
- On XPT_PATH_INQ report "NCR" rather than "Sun" as the vendor as the former
is somewhat more correct as well as the maximum supported transfer size via
maxio in order to take advantage of controllers that that can handle more
than DFLTPHYS.
- Print the number of MESSAGE (EXTENDED) rejected.
- Fix the path encoded in the multiple inclusion protection of ncr53c9xvar.h.
- Correct the DMA constraints used in the LSI64854 core to not exceed the
maximum supported transfer size and include the boundary so we don't need
to check on every setup of a DMA transfer.
- Let the bus DMA map callbacks do nothing in case of an error.
- Correctly handle > 64k transfers for FAS366 in the LSI64854. A new feature
flag NCR_F_LARGEXFER was introduced so we just need to check for this one
and not for individual controllers supporting large transfers in several
places.
- Let the LSI64854 core load transfer buffers using BUS_DMA_NOWAIT as the
NCR53C9x core can't handle EINPROGRESS. Due to lack of bounce buffers
support, sparc64 doesn't actually use EINPROGRESS and likely never will,
as an example for writing additional front-ends for the NCR53C9x core it
makes sense to set BUS_DMA_NOWAIT anyway though.
- Some minor cleanup.
to an API change in CAM. It's once again possible to link a static kernel
with 'mfi' without requiring 'scbus' as well. Ditto for KLD loading.
Submitted by: kib
Reviewed by: ken
MFC after: 3 days
(mostly with Catalan characters in mind, but it probably
benefits other languages).
The new mappings are as follows:
▮ -> █
ÀÈÍÏÓÒÚ -> AEIIOOU
ŀ / Ŀ -> l / L
Reviewed by: ed
Approved by: kib (mentor)
their length.
Without this, an error frame mbuf would:
* have its size adjusted;
* thrown at the radiotap code;
* then since it's never consumed, the rxbuf/mbuf is then re-added to the
RX descriptor list with the small size;
* .. and the hardware ends up (sometimes) only DMA'ing part of a frame into
the small buffer, chaining RX frames together (setting the more flag).
I discovered this particular issue when doing some promiscuous radiotap
testing; I found that I'd occasionally get rs_more set in RX descriptors
w/ the first frame length being very small (sub-100 bytes.) The driver
handles 2-descriptor RX frames (but not more), so this still worked; it
was just odd.
This is suboptimal and may benefit from being replaced with caching
the m_pkthdr_len and m_len fields, then restoring them after completion.
bge(4) sends BGE_FW_CMD_DRV_ALIVE command to firmware every 2
seconds. BGE_FW_CMD_DRV_ALIVE command requires 4 bytes data. This
data contains timeout value in seconds until the next
BGE_FW_CMD_DRV_ALIVE command.
Broadcom recommends driver set the value 3 times longer than the
interval that it sends BGE_FW_CMD_DRV_ALIVE. Currently bge(4) uses
3 seconds so probably we have to increase it in future and use
different ALIVE command(e.g. BGE_FW_CMD_DRV_ALIVE3).
No functional changes.
This bit(SW event 7 in publicly available data sheet) is used to
make RX CPU handle a firmware command and the bit is automatically
cleared after RX CPU completed the command.
Generally firmware command takes the following steps.
1. Write BGE_SRAM_FW_CMD_MB with a command.
2. Write BGE_SRAM_FW_CMD_LEN_MB with the length of the command in bytes.
3. Write BGE_SRAM_FW_CMD_DATA_MB with actual command data.
4. Generate BGE_RX_CPU_EVENT and let firmware handle the command.
5. Wait for the ACK of the firmware command.
No functional changes.
about the various driver events like load, unload, reset, suspend,
restart, and ioctl operations.
Define driver's event rather than using hard-coded values. We don't
still send suspend/resume event to firmware.
Previously bge(4) used BGE_SDI_STATUS to send events. Because driver
has to access firmware mail box to inform current state, using
BGE_SDI_STATUS register was wrong. The end result was the same as
BGE_SDI_STATUS is 0x0C04.
No functional changes.
The origin of GENCOMM seems to come from Alteon Tigon Host/NIC
interface definition where it defines general communications region
which is active when firmware is loaded and running. This region
was used in communication between the host and processor internal
to the Tigon chip.
Broadcom data sheet also defines the region as 'Software Gencomm'
in NetXtreme memory map but lacks detailed description of its
interface so it was hard to know which ones are used for which
interface.
This change shall slightly enhance readability.
No functional changes.
larger than 4KB in size. However the maximum DMA segment size
created in DMA tag is 4KB, so we wouldn't encounter the issue here.
Just record this issue such that let developers not to create a DMA
segment that is larger than 4KB for BCM5719. It's possible to split
a DMA segment into multiple smaller ones in run time but I believe
it's not worth to implement that.
o Protect bge(4) status block access and register dump with driver lock.
o Add missing bus_dmamap_sync() before dumping status block.
o Use minimum status block size, 32 bytes, for status block dump on most
controllers except BCM5700 AX/BX.
While I'm here, make the handler show 5717 Plus in hardware flags.
* preserve AR_TxIntrReq on every descriptor in an aggregate chain,
not just the first descriptor;
* always blank out the descriptor in ar5416ChainTxDesc() when forming
aggregates - the way I'm using this in the 11n branch is to first
chain aggregates together, then use the other HAL calls to fill in
the details.
* Add the TID field in the TX status descriptor;
* Add in the 11n first/middle/last functions for fiddling
with the descriptors. These are from the Linux and the
reference driver, but I'm not (currently) using them.
* Add further AR_ISR_S5 register definitions.
Obtained from: Linux ath9k, Atheros
interfere with traffic, as the NF load can take quite a while and poking the
AGC every 10uS is just a bit silly.
Instead, just leave the baseband NF calibration where it is and just read it
back next time a longcal interval happens.
controller.
AX88772B data sheet does not show detailed information about
checksum offloading related things. It seems the controller has
lots of options to support checksum offloading but I failed to
understand why this feature requires so much complex controller
configuration and status bits.
One of major difference between AX88772B and its predecessor is
AX88772B uses a new RX header format when RX checksum offloading is
enabled. It also requires the received length of a frame should be
multiple of 4. Controller will pad necessary bytes to make the
length of received frame to be multiple of 4. It is driver's
responsibility to offset this pad bytes.
Note, AX88772B could be configured to get partial checksum value in
in RX header. This mode uses different RX header format and
currently we don't use that fature.
This change makes axe(4) use driver specific MII attach handler to
override uether(9)'s default MII attach and announce flow-control
capability for AX88178/AX88772A/AX88772B to PHY drivers. It seems
original AX88772 also supports flow-control but I didn't enable it
due to lack of test/access to the controller. The flow-control
threshold parameter is loaded from EEPROM and there is no way to
override this value without reprogramming EEPROM. For AX88772B,
TX/RX IP/TCP/UDP checksum offloading is announced to network stack.
IPv6 and PPPoE checksum offloading is also supported by controller
but we have no way to take advantage of these features.
Driver already knows PHY address so make PHY driver know that
information and remove unnecessary PHY address check used in
miibus_readreg/miibus_writereg callbacks. Also announce AX88178,
AX88772A and AX88772B support VLAN over-sized frame.
While I'm here clean up headers and remove axe_start() in
axe_init() because the link wouldn't be available right after media
change.
handler such that driver can announce interface capabilities and
can do its own MII attach. Currently all USB ethernet controllers
have no way to establish a link with pause capabilities. Lack of
checksum offloading support also was one of reason to bring this
change in.
This change adds a couple of wrappers to USB ethernet drivers
(uether_ifmedia_upd, uether_init and uether_start). All exported
functions in uether has prefix uether_ so I think it's more
consistent to have wrappers that follow the convention.
This change preserves ABI/KPI so it should be safe to merge this
change to stable/8.
While I'm here add missing __FBSDID and clean up headers.
Reviewed by: hselasky
controller which is found on ULi M1563 South Bridge & M1689 Bridge.
These controllers look like a tulip clone.
M5263 controller does not support MII bitbang so use DC_ROM
register to access MII registers. Like other tulip variants, ULi
controller uses a setup frame to configure RX filter and uses new
setup frame format. It's not clear to me whether the controller
supports a hash based multicast filtering so this patch uses 14
perfect multicast filter to filter multicast frames. If number of
multicast addresses is greater than 14, controller is put into a
mode that receives all multicast frames.
Due to lack of access to M5261, this change was not tested with
M5261 but it probably works. Many thanks to Marco who provided
remote access to M5263.
Tested by: Marco Steinbach <coco <> executive-computing dot de>,
Martin MATO <martin.mato <> orange dot fr>
link such that calling dc_setcfg() right after media change would
be meaningless unless controller in question is not Davicom DM9102.
Ideally dc_setcfg() should be called when speed/duplex is resolved
otherwise it would reprogram controller with wrong speed/duplex
information. Because MII status change callback already calls
dc_setcfg() I think calling dc_setcfg() in dc_init_locked() is
wrong. For instance, it would take some time to establish a link
after mii_mediachg(), so blindly calling dc_setcfg() right after
mii_mediachg() will always yield wrong media configuration.
Extend dc_ifmedia_upd() to handle media change and still allow
21143 and Davidcom controllers program speed/duplex regardless of
current resolved speed/duplex of link. In theory 21143 may not need
to call dc_setcfg() right after media change, but leave it as it is
because there are too many variants to test that change. Probably
dc(4) shall need a PHY reset in dc_ifmedia_upd() but it's hard to
verify correctness of the change.
This change reliably makes ULi M5263 establish a link.
While I'm here correctly report media change result. Previously it
always reported a success.
- for the legacy PCI ATA channels move channel number out of the device
description, same as it is for ahci(4), siis(4) and mvs(4);
- add device description for the ISA ATA channels.
where the driver assumed that BA resources are still available due to
net80211 saying so.
PR: 161407, 159768
Tested by: cperciva, rene
MFC after: 3 days
As the underlying block is 4KB if the PMC throughput is low the measurement
will be reported on the next tick. pmcstat(8) use the modified flush API to
reclaim current buffer before displaying next top.
MFC after: 1 month
It seems the D_PSEUDO flag was meant to allow make_dev() to return NULL.
Nowadays we have a different interface for that; make_dev_p(). There's
no need to keep it there.
While there, remove an unneeded D_NEEDMINOR from the gpio driver.
Discussed with: gonzo@ (gpio)
Some earlier series (~AR5212?) play badly with BIOSes.
In these instances, they may require a forced reset (by transitioning
the NIC through D0 -> D3 -> D0) before they probe/attach correctly.
This is currently disabled because:
* I haven't figured out the "right" code to ensure this only happens
for PCI NICs (not PCIe or Cardbus);
* I haven't at all done wide scale testing for this, and I'm not yet
ready for said wide-scale testing.
I'm documenting this primarily so users with misbehaving NICs have
something to tinker with.
Obtained from: Atheros
The final missing bit here is enabling the PCI configuration register
read, but there's currently no glue available for the HAL to read (and
write) PCI configuration space registers.
Obtained from: Atheros
The AR5008/AR9001 series NICs have a bug where BB register reads
will occasionally be corrupted. This could cause issues with things
such as ANI, which adjust operational parameters based on the
BB radio register reads. This was introduced in the AR5008 chip
and fixed with the first released AR9002 series NIC (AR9280v2.)
A followup commit will implement the acutal WAR when reading
BB registers. I'm still not sure how I'll implement it - whether
it should be done in the osdep layer, or whether it should just
live in the AR5416 HAL. Either way, they can use this capability
bit to determine whether to implement the WAR or not.
Thankyou to various sources inside Atheros who have helped me track
down what this particular issue is.
Obtained from: Atheros
There are HAL methods which are actually direct register
access, rather than simply HAL calls. Because of this, these
register accesses would use the non-debug path in ah_osdep.h
as opt_ah.h isn't included.
With this, the correct register access methods are used,
so debugging traces show things such as TXDP checking and
TSF32 access.
Because driver is accessing a common MII structure in
mii_pollstat(), updating user supplied structure should be done
before dropping a driver lock.
Reported by: Karim (fodillemlinkarimi <> gmail dot com)
Because driver is accessing a common MII structure in
mii_pollstat(), updating user supplied structure should be done
before dropping a driver lock.
Reported by: Karim (fodillemlinkarimi <> gmail dot com)
That way the radar errors aren't enabled prematurely.
A DFS tester has reported that radar events are reported
during channel scanning, before DFS is actually enabled.
Use the offset into the device tree from fdtp as the phandle instead
of using pointer into the device tree. This will make sure that the
phandle fits into a uint32_t type, even when compiled for 64bit.
Reviewed by: raj, nathanw, marcel
on the largest multi-write size.
From the submitter:
==
I looked further into the magic 88-byte threshold after which the bug
occurs. It turns out that figure included the 24-byte tx_desc, and up
to 64 bytes of beacon frame (header+data).
rum_write_multi doesn't seem happy with writing >64 bytes at a time to
the MAC register. If I break it up into separate calls (e.g. bytes
0-63, then bytes 64-65, written at the appropriate offset) I see the
proper beacon frames being transmitted now.
==
Submitted by: Steven Chamberlain <steven@pyro.eu.org>
MFC after: 3 days
* Break out the PCI setup override code into a new function.
* Re-apply the PCI overrides on powersave resume. The retry timeout
register isn't currently being saved/resumed by the PCI driver/bus
code.
a decoded range for an ACPI Host-PCI bridge, try to allocate it from the
ACPI system resource range. If that works, permit the resource allocation
regardless.
MFC after: 1 week
Check for this case and just return, so that the UCOM unit number zero is
not accidentially freed.
Submitted by: Danish FreeBSD user at EuroBSDcon 2011
MFC after: 3 days
option is defined. This sysctl can be queried by feature_present(3).
Query for this feature in /sbin/atacontrol and /usr/sbin/burncd.
If these utilities detect that ATA_CAM is enabled, then these utilities
will error out. These utilities are compatible with the old ATA
driver, but are incomptible with the new ATA_CAM driver. By erroring out,
we give end-users an idea as to what remedies to use, and reduce the need for them
to file PR's. For atacontrol, camcontrol must be used instead,
and for burncd, alternative utilties from the ports collection must be used
such as sysutils/cdrtools.
In future, maybe someone can re-write burncd to work with ATA_CAM,
but at least for now, we give a somewhat useful error message to end users.
PR: 160979
Reviewed by: jh, Arnaud Lacombe <lacombar at gmail dot com>
Reported by: Joe Barbish <fbsd8 at a1poweruser dot com>
MFC after: 3 days