This code reads the PLL configuration registers and correctly programs
things so the UART and such can come up.
There's MIPS74k platform issues that need fixing; but this at least brings
things up enough to echo stuff out the serial port and allow for interactive
debugging with ddb.
Tested:
* AR71xx SoCs
* AR933x SoC
* AR9344 board (DB120)
Obtained from: Qualcomm Atheros; Linux/OpenWRT
For all pre-AR933x chips, the frequency is just the APB frequency.
For the AR933x, the UART frequency is different but we just hacked around
it.
For the AR934x, there's a different PLL setting for these, so they have
to be broken out.
sys/arm and sys/mips), squelching the clang 3.3 warnings about this.
Noticed by: tinderbox and many irate spectators
Submitted by: Luiz Otavio O Souza <loos.br@gmail.com>
PR: kern/177759
MFC after: 3 days
* Enable RX and host interrupts during bus probe/attach
* Disable all interrupts (+ host ISR) during bus detach
* Enable TX DONE interrupt only when we start transmitting; clear it when
we're done.
* The RX/TX FIFO depth is still conjecture on my part. I'll fix this
shortly.
* The TX FIFO interrupt isn't an "empty" interrupt, it's an "almost empty"
interrupt. Sigh. So..
* .. in ar933x_bus_transmit(), wait for the FIFO to drain before
continuing.
I dislike having to wait for the FIFO to drain, alas.
Tested:
* Atheros AP121 board, AR9331 SoC.
TODO:
* RX/TX overflow, RX error, BREAK support, etc.
* Figure out the true RX/TX FIFO depth.
This implements the bus transmit/receive/sigchg/ipend methods with
a polled interrupt handler (ipend) rather than enabling hardware
interrupts.
The FIFO is faked at 16 bytes deep for now, just so the transmit
IO side doesn't suck too bad (the callout frequency limits how quickly
IO is flushed to the sender, rather than scheduling the callout more
frequently whilst there's active TX. But I digress.)
Tested:
* Atheros AP121 (AR9330) reference board, booting to multi-user interactive
mode.
* Add baud rate and divisor programming code. See below for more
information.
* Flesh out ar933x_init() to disable interrupts and program the initial
console setup.
* Remove #if 0'ed code from ar933x_term().
* Explain what these functions do.
Now, the baud rate and divisor code comes from Linux, as a submission
to the OpenWRT project and Linux kernel from
Gabor Juhos <juhosg@openwrt.org>.
The original ticket for this code is https://dev.openwrt.org/ticket/12031 .
I've contacted Gabor and asked for his permission to also licence the patch
in question (which covers this code) to BSD lience and he's agreed.
Hence why I'm including it here in FreeBSD.
Tested:
* AP121 (AR9330)
* Default clock is 25MHz;
* Remove the UART register macro here - it's not needed as we don't need
to "adjust" the register offset / spacing at all;
* Remove unused fields in the softc.
Tested:
* AP121
This implements the kernel glue needed (getc, putc, rxready).
This isn't a 16550 UART, even if the datasheet overview claims so.
The Linux ar933x support was used as a reference, however the uart code
is a reimplementation.
Attentive viewers will note that the uart code is based off of the ns8250
code and the UART bus code is a stubbed-out version of this. I'll be
replacing it with non-stubbed versions soon, making this a fully featured
driver.
Tested:
* AP121 reference board (AR933x), booting through the mountroot> prompt;
then doing some basic interactive tests in ddb.
This was ported from the AR724x code and I think that also doesn't
quite work. I'll investigate that soon.
With this in place the system reset path works, so 'reset' from kdb
actually resets the SoC.
Tested:
* AP121 test board
CPUs.
The AR933x is a mips24k based SoC with an AR9380 series SoC on board,
two gigabit ethernet interfaces and an internal 10/100mbit ethernet
switch. There's also the normal interfaces (USB, ethernet, uart, GPIO.)
The downside? There's a non-ns8250 UART device.
With a very basic UART driver (not in this commit) the SoC is initialised
and boots up. I'll commit the UART code soon and then link it into the
general setup path.
This code is a re-implementation based from the Linux kernel / openwrt
AR933x support.
TODO:
* UART (obviously)
* All of the ethernet, USB and wifi SoC glue, including ethernet PLL
programming.
* Mikrotik RouterBoard 433AH have PCI slot 18 wired to INT0 on the PCI Bus.
This is different from e.g. Atheros PB42 and Ubiquiti boards.
* Check for hint hint.pcib.0.baseslot=X, where X is number of base slot;
* If hint not supplied print a warning and use default AR71XX_PCI_BASE_SLOT;
PR: kern/174978
Approved by: adrian (mentor)
are written out.
This allows EEPROM-less NICs on the AR7241 PCIe bus to be correctly
initialised.
Tested:
* AP91 (AR7240+AR9285) - the existing board support didn't break;
* AP99 (AR7241+AR9287) - this fixed the configuration of the AR9287 PCI.
This seems to break at least my test board here (AR71xx + AR8316 switch
PHY). Since I do have a whole sleuth of "normal" PHY boards (with
an AR71xx on a normal PHY port), I'll do some further testing with those
to determine whether this is a general issue, or whether it's limited
to the behaviour of the "fake" dedicated PHY port mode on these atheros
switches.
* Flesh out the PLL configuration fetch function, which will return the PLL
configuration based on the unit number and speed.
* Remove the PLL speed config logic from the AR71xx/AR91xx chip PLL config
function - pass in a 'pll' value instead.
* Modify arge_set_pll() to:
+ fetch the PLL configuration
+ write the PLL configuration
+ update the MII speed configuration.
This will allow if_arge to override the PLL configuration as required.
Obtained from: Linux/Atheros/OpenWRT
* Add a new method to set the MII mode - GMII, RGMII, RMII, MII.
+ arge0 supports all four (two for non-Gige interfaces.)
+ arge1 only supports two (one for non-gige interfaces.)
* Set the MII clock speed when changing the MAC PLL speed.
+ Needed for AR91xx and AR71xx; not needed for AR724x.
Tested:
* AR71xx only, I'll do AR913x testing tonight and fix whichever issues
creep up.
TODO:
* Implement the missing AR7242 arge0 PLL configuration, but don't
adjust the MII speed accordingly.
* .. the AR7240/AR7241 don't require this, so make sure it's not set
accidentally.
Bugs (not fixed here):
* Statically configured arge speeds are still broken - investigate why
that is on the AP96 board. Autonegotiate is working fine, but there
still seems to be an occasionally heavy packet loss issue.
Obtained from: Linux/Atheros/OpenWRT
This is only done if the ARGE_MDIO option is included.
* Shuffle the arge MDIO bus into a separate device, that needs to be
probed early (use hint.argemdio.X.order=0)
* hint.arge.X.mdio now specifies which miiproxy to rendezvous with.
* Call MAC/MDIO bus init during MDIO attach, not arge attach.
This is done regardless:
* Shift the arge MAC and MDIO bus reset code into separate functions
and call it early during MDIO bus attach. It's required for
correct MDIO bus IO to occur on AR71xx/AR91xx devices.
* Remove the AR71xx/AR91xx centric assumption that there's only one
MDIO bus. The initial code mapped miibus0(arge0) and miibus1(arge1)
MII register operations to the MII0 (arge0) register space. The
AR724x (and later, upcoming chipsets) have two MDIO busses and
the second is very much in use.
TODO:
* since the multiphy behaviour has changed (where now a phymask of >1
PHY will still be enumerated), multiphy setups may be quite wrong.
I'll go and fix these so they still have a chance of working, at least.
until the switch PHY support appears in -HEAD.
Submitted by: Stefan Bethke <stb@lassitu.de>
ar724x_pci.c.
* Move out the code which populates the firmware into ar71xx_fixup.c
* Shuffle around the ar724x fixup code to match what the ar71xx fixup
code does.
I've validated this on an AR7240 with AR9285 on-board NIC. It doesn't
yet load, as the AR9285 EEPROM code needs to be made "flash aware."
TODO:
* Validate that I haven't broken AR71xx
* Test AR9285/AR9287 onboard NICs, complete with EEPROM code changes
* Port over the needed BAR hacks for AR7240, AR7241 and AR7242 from
Linux OpenWRT. The current WAR has only been tested on the AR7240
and I'm not sure the way the BAR register is treated is "right".
The "fixup" method here is right when setting the BAR for local access -
ie, the BAR address is either 0xffff (AR7240) or 0x1000ffff (AR7241/AR7242),
but the ath9k-fixup.c code (Linux OpenWRT) does this when setting the
initial "fixup" BAR. It then restores the original BAR.
I'll have to read the ar724x PCI bus glue to see what other special cases
await.
future use by the ath(4) driver.
These embedded devices put the calibration/PCI bootstrap data on the
on board SPI flash rather than on an EEPROM connected to the NIC.
For some boards, there's two NICs and two sets of EEPROM data in the
main SPI flash.
The particulars:
* Introduce ath_fixup_size, which is the size of the EEPROM area in
bytes.
* Create a firmware image with a name based on the PCI device identifier
(bus/slot/device/function).
* Hide some verbose debugging behind 'bootverbose'.
ath(4) can then use this to load in the EEPROM data.
This requires AR71XX_ATH_EEPROM to be defined.
* the openwrt code doesn't treat 0/0/0 any differently
from other bus/slot/func combinations.
* A "local write" function writes to the LCONF area, and
so I've added it.
* The PCI workaround at attach time uses this LCONF code,
which it already did ..
* .. but it is a 4 byte write, not a 2 byte write.
Even though it's PCIR_COMMAND which is a two byte PCI register.
Tested on: AR7161
TODO: The other two AR71xx derivatives
TODO: More thoroughly stare at the datasheets I do have
and if it indeed is incorrect, push fixes to both
FreeBSD and Linux/OpenWRT.
Obtained from: Linux OpenWRT
This makes our naming scheme more closely match other systems and the
expectations of much third-party software. MIPS builds which are little-endian
should require and exhibit no changes. Big-endian TARGET_ARCHes must be
changed:
From: To:
mipseb mips
mipsn32eb mipsn32
mips64eb mips64
An entry has been added to UPDATING and some foot-shooting protection (complete
with warnings which should become errors in the near future) to the top-level
base system Makefile.
- Replace MIPS24K-specific code with more generic framework that will
make adding new CPU support easier
- Add MIPS24K support for new framework
- Limit backtrace depth to 1 for stability reasons and add option
HWPMC_MIPS_BACKTRACE to override this limitation
These are needed for some particular port configurations where the default
speed isn't suitable for all link speed types. (Ie, changing 10/100/1000MBit
PLL rate requires a similar MII clock rate, rather than a fixed MII rate.)
This is:
* only currently implemented for the ar71xx;
* isn't used anywhere (yet), as the final interface for this hasn't yet
been determined.
function.
From the submitter:
This patch fixes an issue I encountered using an NFS root with an
ar71xx-based MikroTik RouterBoard 450G on -current where the kernel fails
to contact a DHCP/BOOTP server via if_arge when it otherwise should be able
to. This may be the same issue that Monthadar Al Jaberi reported against
an RSPRO on 6 March, as the signature is the same:
%%%
DHCP/BOOTP timeout for server 255.255.255.255
DHCP/BOOTP timeout for server 255.255.255.255
DHCP/BOOTP timeout for server 255.255.255.255
.
.
.
DHCP/BOOTP timeout for server 255.255.255.255
DHCP/BOOTP timeout for server 255.255.255.255
arge0: initialization failed: no memory for rx buffers
DHCP/BOOTP timeout for server 255.255.255.255
arge0: initialization failed: no memory for rx buffers
%%%
The primary issue that I found is that the DHCP/BOOTP message that
bootpc_call() is sending never makes it onto the wire, which I believe is
due to the following:
- Last December, a change was made to the ifioctl that bootpc_call() uses
to adjust the netmask around the sosend().
- The new ioctl (SIOCAIFADDR) performs an if_init when invoked, whereas the
old one (SIOCSIFNETMASK) did not.
- if_arge maintains its own sense of link state in sc->arge_link_status.
- On a single-phy interface, sc->arge_link_status is initialized to 0 in
arge_init_locked().
- sc->arge_link_status remains 0 until a phy state change notification
causes arge_link_task to run, notice the link is up, and set it to 1.
- The inits caused by the ifioctls in bootpc_call are reinitializing the
interface, but not the phy, so sc->arge_link_status goes to 0 and remains
there.
- arge_start_locked() always sees sc->arge_link_status == 0 and returns
without queuing anything.
The attached patch changes arge_init_locked() such that in the single-phy
case, instead of initializing sc->arge_link_status to 0, it runs
arge_link_task() to set it according to the current phy state. This change
has allowed my setup to mount an NFS root successfully.
Submitted by: Patrick Kelsey <kelsey@ieee.org>
Reviewed by: juli
I had some interesting hangs until I realised I should try flushing the
DDR FIFO register and lo and behold, hangs stopped occuring.
I've put in a few DDR flushes here and there in case people decide to
reuse some of these functions. It's very very likely they're almost
all superflous.
To test:
* Connect to a network with a _lot_ of broadcast traffic
* Do this:
# while true; do ifconfig arge0 down; ifconfig arge0 up; done
This fixes the mbuf exhaustion that has been reported when the interface
state flaps up/down.
required for the ABI the kernel is being built for.
XXX This is implemented in a kind-of nasty way that involves including source
files, but it's still an improvement.
o) Retire ISA_* options since they're unused and were always wrong.
implementations or no implementation on all platforms.
Some of these functions might be good ideas, but their semantics were unclear
given the lack of implementation, and an unlucky porter could be fooled into
trying to implement them or, worse, being baffled when something like
platform_trap_enter() failed to be called.
- Pass interrupt trapframe for handlers dow the chain
- Add PMC interrupt handler
PMC interrupt is a special case, so we want handle it as soon as possible
with minimum overhead. So we handle it apb filter routine.
on-board, glued to the AR71xx CPU. These may forgo separate WMAC EEPROMs
(which store configuration and calibration data) and instead store
it in the main board SPI flash.
Normally the NIC reads the EEPROM attached to it to setup various PCI
configuration registers. If this isn't done, the device will probe as
something different (eg 0x168c:abcd, or 0x168c:ff??.) Other setup registers
are also written to which may control important functions.
This introduces a new compile option, AR71XX_ATH_EEPROM, which enables the
use of this particular code. The ART offset in the SPI flash can be
specified as a hint against the relevant slot/device number, for example:
hint.pcib.0.bus.0.17.0.ath_fixup_addr=0x1fff1000
hint.pcib.0.bus.0.18.0.ath_fixup_addr=0x1fff5000
TODO:
* Think of a better name;
* Make the PCIe version of this fixup code also use this option;
* Maybe also check slot 19;
* This has to happen _before_ the SPI flash is set from memory-mapped
to SPI-IO - so document that somewhere.
This was preventing the ath driver from being loaded at runtime.
It worked fine when compiled statically into the kernel but not when
kldload'ed after the system booted.
The root cause was that PCIR_INTLINE (register 60) was being
overwritten by zeros when register 62 was being written to.
A subsequent read of this register would return 0, and thus
the rest of the PCI glue assumed an IRQ resource had already
been allocated. This caused the device to fail to attach at
runtime as the device itself didn't contain any IRQ resources.
TODO: go back over the ar71xx and ar724x PCI config read/write
code and ensure it's correct.
performance issues.
* Access to the GPIO bus is already locked by requesting
and releasing the bus - thus the lock isn't really needed
for each GPIO pin change.
* Don't lock and unlock the GPIO bus for -each- i2c access -
the i2c bus code is already doing this by calling the upper
layer callback to request/release the bus. This thus locks
the bus for the entirety of the transaction.
TODO:
* Further verify that everything is correctly requesting/
releasing the GPIO bus.
* Look at how to lock the GPIO pin configuration stuff,
potentially by locking/unlocking the bus at the gpiobus
layer.
config and function mask setup.
* "gpiomask" now specifies which GPIO pins to enable, for devices to bind to.
* "function_set" allows bits in the function register to be set at GPIO setup.
* "function_clear" allows bits in the function register to be cleared at
GPIO setup.
The function_set/function_clear bits allow for individual GPIO pins to either
drive a GPIO line or an alternate function - eg USB, JTAG, etc. This allows
for things like CS1/CS2 be enabled for those boards w/ >1 SPI device connected,
or disabling JTAG for the AR7240 (which is apparently needed ..)
I've verified this on the AR71xx.
This patch should remove the need for kldunload of USB
controller drivers at suspend and kldload of USB controller
drivers at resume.
This patch also fixes some build issues in avr32dci.c
MFC after: 2 weeks
the ar71xx platform code should assume a uboot or redboot environment.
The current code gets very confused (and just crashes) on a uboot
environment, where each attribute=value pair is in a single entry.
Redboot on the other hand stores it as "attribute", "value", "attribute",
"value", ...
This allows the kernel to boot on a TP-LINK TL-WR1043ND from flash,
where the uboot environment gets setup. This didn't show up during a netboot
as "tftpboot" and "go" don't setup the uboot environment variables.
one. Interestingly, these are actually the default for quite some time
(bus_generic_driver_added(9) since r52045 and bus_generic_print_child(9)
since r52045) but even recently added device drivers do this unnecessarily.
Discussed with: jhb, marcel
- While at it, use DEVMETHOD_END.
Discussed with: jhb
- Also while at it, use __FBSDID.
Because driver is accessing a common MII structure in
mii_pollstat(), updating user supplied structure should be done
before dropping a driver lock.
Reported by: Karim (fodillemlinkarimi <> gmail dot com)
(reporting IFM_LOOP based on BMCR_LOOP is left in place though as
it might provide useful for debugging). For most mii(4) drivers it
was unclear whether the PHYs driven by them actually support
loopback or not. Moreover, typically loopback mode also needs to
be activated on the MAC, which none of the Ethernet drivers using
mii(4) implements. Given that loopback media has no real use (and
obviously hardly had a chance to actually work) besides for driver
development (which just loopback mode should be sufficient for
though, i.e one doesn't necessary need support for loopback media)
support for it is just dropped as both NetBSD and OpenBSD already
did quite some time ago.
- Let mii_phy_add_media() also announce the support of IFM_NONE.
- Restructure the PHY entry points to use a structure of entry points
instead of discrete function pointers, and extend this to include
a "reset" entry point. Make sure any PHY-specific reset routine is
always used, and provide one for lxtphy(4) which disables MII
interrupts (as is done for a few other PHYs we have drivers for).
This includes changing NIC drivers which previously just called the
generic mii_phy_reset() to now actually call the PHY-specific reset
routine, which might be crucial in some cases. While at it, the
redundant checks in these NIC drivers for mii->mii_instance not being
zero before calling the reset routines were removed because as soon
as one PHY driver attaches mii->mii_instance is incremented and we
hardly can end up in their media change callbacks etc if no PHY driver
has attached as mii_attach() would have failed in that case and not
attach a miibus(4) instance.
Consequently, NIC drivers now no longer should call mii_phy_reset()
directly, so it was removed from EXPORT_SYMS.
- Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe().
The purpose of that function is to perform the common steps to attach
a PHY driver instance and to hook it up to the miibus(4) instance and to
optionally also handle the probing, addition and initialization of the
supported media. So all a PHY driver without any special requirements
has to do in its bus attach method is to call mii_phy_dev_attach()
along with PHY-specific MIIF_* flags, a pointer to its PHY functions
and the add_media set to one. All PHY drivers were updated to take
advantage of mii_phy_dev_attach() as appropriate. Along with these
changes the capability mask was added to the mii_softc structure so
PHY drivers taking advantage of mii_phy_dev_attach() but still
handling media on their own do not need to fiddle with the MII attach
arguments anyway.
- Keep track of the PHY offset in the mii_softc structure. This is done
for compatibility with NetBSD/OpenBSD.
- Keep track of the PHY's OUI, model and revision in the mii_softc
structure. Several PHY drivers require this information also after
attaching and previously had to wrap their own softc around mii_softc.
NetBSD/OpenBSD also keep track of the model and revision on their
mii_softc structure. All PHY drivers were updated to take advantage
as appropriate.
- Convert the mebers of the MII data structure to unsigned where
appropriate. This is partly inspired by NetBSD/OpenBSD.
- According to IEEE 802.3-2002 the bits actually have to be reversed
when mapping an OUI to the MII ID registers. All PHY drivers and
miidevs where changed as necessary. Actually this now again allows to
largely share miidevs with NetBSD, which fixed this problem already
9 years ago. Consequently miidevs was synced as far as possible.
- Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that
weren't explicitly converted to support flow control before. It's
unclear whether flow control actually works with these but typically
it should and their net behavior should be more correct with these
changes in place than without if the MAC driver sets MIIF_DOPAUSE.
Obtained from: NetBSD (partially)
Reviewed by: yongari (earlier version), silence on arch@ and net@
of endian-ness issues with the AR724x.
From Luiz:
* Fix the bus space tag used so endian-ness is correctly handled;
* Only do the workaround for the AR7240; AR7241/AR7242 (PB92)
don't require this
From me:
* Add a read flush from openwrt
Submitted by: Luiz Otavio O Souza
This is reported to work on the AR7240 based Ubiquiti Rocket M5
but I haven't tested it on that hardware. I also don't yet have
it fully working on the AR7242 based development board here;
probe/attach functions but the register space resource looks like
the endian-ness is wrong (0x10000000 instead of 0x00001000).o
Further digging will be required.
Submitted by: Luiz Otavio O Souza
bus driver at detach, hence ehci_detach() does exactly this since r199718.
Submitted by: Luiz Otavio O Souza
MFC after: 7 days
Approved by: thompsa (mentor)
levels. TX would hang, RX wouldn't. A bit of digging showed the interface
send queue was full, but IFF_DRV_OACTIVE was clear and the hardware TX
queue was empty.
It turns out that there wasn't a check to drain the interface send
queue once hardware TX had completed, so if the interface send queue
had filled up in the meantime, subsequent packets would be dropped
by the higher layers and if_start (and thus arge_start()) would never
be called.
The fix is simple - call arge_start_locked() in the software interrupt
handler after the hardware TX queue has been handled or a TX underrun
occured. This way the interface send queue gets drained.
offset in the flash.
Some devices (eg the TPLink WR-1043ND) don't have a flash environment
partition which can be queried for the current board settings.
This particular workaround allows for image creators to use a hint
to set the base MAC address. For example:
hint.arge.0.eeprommac=0x1f01fc00
just for Redboot.
At some point we're going to need to build options for different
boot environments - for example, the UBoot setups I've seen simply
have the MAC address hard-coded at a fixed location in flash.
The OpenWRT support simply yanks the if_arge MAC directly from that
in code, rather than trying to find a uboot environment to pull it
from.
memory detected from Redboot, or overrides the "otherwise" case
if no Redboot information was found.
Some AR71XX platforms don't use Redboot (eg TP-LINK devices using
UBoot; some later Ubiquiti devices which apparently also use
UBoot) and at least one plain out lies - the Ubiquiti LS-SR71A
Redboot says there's 16mb of RAM when in fact there's 32mb.
A more "clean" solution will be needed at a later date.
The AR913x/AR724x USB lives at a different offset to the AR71xx
USB, so this needs to be either adjusted for in a subsequent
commit, or updated in hints for kernels compiled for those
platforms.
Submitted by: Luiz Otavio O Souzau <loos.br@gmail.com>
mipsel' or 'machine mips mipseb' into the config file (with a few 64's
tossed in for good measure). This will let us build the proper
kernels with different worlds as part of make universe.
This reflects actual type used to store and compare child device orders.
Change is mostly done via a Coccinelle (soon to be devel/coccinelle)
semantic patch.
Verified by LINT+modules kernel builds.
Followup to: r212213
MFC after: 10 days
* Add a function to write to the relevant PLL register
* Break out the PLL configuration for the AR71XX into the CPU ops,
lifted from if_arge.c.
* Add the AR91XX PLL configuration ops, using the AR91XX register
definitions.
This is untested but should at least allow an AR724X to boot.
The current code is lacking the detail needed to expose the PCIe bus.
It is also lacking any NIC, PLL or flush/WB code.
This works well enough to bring a system up to single-user mode
using an MDROOT.
Known Issues:
* The EHCI USB doesn't currently work and will panic the kernel during
attach.
* The onboard ethernet won't work until the PLL routines have been
fleshed out and shoe-horned into if_arge.
* The WMAC device glue (and quite likely the if_ath support)
hasn't yet been implemented.
* Implement a SoC probe function, from Linux, which determines the
SoC family, type and revision. This only probes the AR71xx series
SoC and (currently) panics on others.
* Migrate some of the AR71XX specific hardware init (USB device, determining
system frequencies) into using the cpuops introduced in an earlier commit.
Other SoC specific hardware stuff (per-device flush/WB, GPIO pin wiring,
Ethernet PLL setup, other things I've likely missed) will be introduced in
subsequent commits.
Reviewed by: imp@
Obtained from: (partially) Linux
Each of these SoCs have different devices, different hardware initialisation
methods and, quite likely, different quirks. These functions will abstract
out the SoC differences and keep these differences out of the drivers (eg
USB init, if_arge, etc.)
The existing code only checked the alignment of the first mbuf and
didn't enforce the size constraints.
This commit introduces a simple function to check the alignment and
size of all mbufs in the list. This fixes the initial issue in the
PR.
PR: kern/148307
Reviewed by: gonzo@
* Add some per-device sysctl entries which record the watchdog state -
whether it is armed; whether the last reboot was due to the watchdog.
* Add a per-device sysctl debug flag to enable logging watchdog arming/
disarming.
Reviewed by: gonzo@
queue length. The default value for this parameter is 50, which is
quite low for many of today's uses and the only way to modify this
parameter right now is to edit if_var.h file. Also add read-only
sysctl with the same name, so that it's possible to retrieve the
current value.
MFC after: 1 month
The RX overflow is reported in bit 2 on real hardware and Linux driver
for the same device already has this defined correctly.
This fixes frequent interrupt storms seen on RouterStation Pro boards.
Discussed with: gonzo
symbols resolving in DDB
- When zeroing .bss/.sbss do not round end address to page boundary,
it's not neccessary and might destroy data pased by trampoline or
boot loader
and deactivate_device
- Save state before attaching driver and restore it when
detaching
- Clear CLK bit after last bit of byte has been sent over
the bus providing falling edge for last byte in transfer
- Fix several places where CS0 was always assumed
- Add $FreeBSD$ to ar71xxreg.h
fixed-state media with parameters set via hints
and configure MAC accordingly to these parameters.
All the underlying PHY magic is done by boot manager
on startup. At the moment there is no proper way
to make active and control all PHYs simultaneously
from one MII bus and there is no way to associate
incoming/outgoing packet with specific PHY.
1) Adds future RMI directories
2) Places intr_machdep.c in specfic files.arch pointing to the generic
intr_machdep.c. This allows us to have an architecture dependant intr_machdep.c
(which we will need for RMI) in the machine specific directory
3) removes intr_machdep.c from files.mips
4) Adds some TARGET_XLR_XLS ifdef's for the machine specific intra_machdep.h. We
may need to look at finding a better place to put this. But first I want to
get this thing compiling.
- Get rid of arge_fix_chain, use m_defrag like if_vr
- Rework interrupt handling routine to avoid race that lead
to disabling RX interrupts
- Enable full duplex if requested
- Properly set station MAC address
- Slightly optimize RX loop
- Initialize FILTERMATCH and FILTERMASK registers as linux driver does
* In arge_attach(), hard reset the MAC blocks before configuring the MAC.
* In arge_reset_dma(), clear pending packet interrupts based off
the hardware counter instead of acking every packet in the ring,
as the hardware counter can exceed the ring size. If the reset
was successful the counters will be zero anyway.
* In arge_encap(), remove an unused variable.
* In arge_tx_locked(), remove redundant setting of the EMPTY flag as
the TX DMA engine sets it for us.
* In arge_intr(), remember to clear the interrupt status bits
relayed from arge_intr_filter().
* Handle RX overflow and TX underflow.
* In arge_tx_intr(), remember to unmask the TX interrupt bits
after processing them.