The cxgbev/cxlv driver supports Virtual Function devices for Chelsio
T4 and T4 adapters. The VF devices share most of their code with the
existing PF4 driver (cxgbe/cxl) and as such the VF device driver
currently depends on the PF4 driver.
Similar to the cxgbe/cxl drivers, the VF driver includes a t4vf/t5vf
PCI device driver that attaches to the VF device. It then creates
child cxgbev/cxlv devices representing ports assigned to the VF.
By default, the PF driver assigns a single port to each VF.
t4vf_hw.c contains VF-specific routines from the shared code used to
fetch VF-specific parameters from the firmware.
t4_vf.c contains the VF-specific PCI device driver and includes its
own attach routine.
VF devices are required to use a different firmware request when
transmitting packets (which in turn requires a different CPL message
to encapsulate messages). This alternate firmware request does not
permit chaining multiple packets in a single message, so each packet
results in a firmware request. In addition, the different CPL message
requires more detailed information when enabling hardware checksums,
so parse_pkt() on VF devices must examine L2 and L3 headers for all
packets (not just TSO packets) for VF devices. Finally, L2 checksums
on non-UDP/non-TCP packets do not work reliably (the firmware trashes
the IPv4 fragment field), so IPv4 checksums for such packets are
calculated in software.
Most of the other changes in the non-VF-specific code are to expose
various variables and functions private to the PF driver so that they
can be used by the VF driver.
Note that a limited subset of cxgbetool functions are supported on VF
devices including register dumps, scheduler classes, and clearing of
statistics. In addition, TOE is not supported on VF devices, only for
the PF interfaces.
Reviewed by: np
MFC after: 2 months
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D7599
pmap_early_io_map()/pmap_early_io_unmap(), if used in pairs, should be used in
the form:
pmap_early_io_map()
..do stuff..
pmap_early_io_unmap()
Without other allocations in the middle. Without reclaiming memory this can
leave large holes in the device space.
While here, make a simple change to the unmap loop which now permits it to unmap
multiple TLB entries in the range.
Idle page zeroing has been disabled by default on all architectures since
r170816 and has some bugs that make it seemingly unusable. Specifically,
the idle-priority pagezero thread exacerbates contention for the free page
lock, and yields the CPU without releasing it in non-preemptive kernels. The
pagezero thread also does not behave correctly when superpage reservations
are enabled: its target is a function of v_free_count, which includes
reserved-but-free pages, but it is only able to zero pages belonging to the
physical memory allocator.
Reviewed by: alc, imp, kib
Differential Revision: https://reviews.freebsd.org/D7714
Summary:
1) Attach problem - mpc85xx_probe() relies on fact that 0xfff0 mask matches all
QorIQ CPUs what is not true since e6500. This shall be reworked to match against
all supported CPUs.
2) There is no any reason for operating system to re-program or anyhow else
touch the LAWs programmed by firmware (u-boot). Right now mpc85xx_attach()
removes all LaW entries except for DRAM. This causes MCE to be generated when
later any of driver maps DTB-provided hardware addresses which do not exist
anymore because corresponding LaWs were removed.
Submitted by: Ivan Krivonos <int0dster_AT_gmail.com>
Differential Revision: https://reviews.freebsd.org/D7663
Summary:
First time BSS is cleared in booke_init(), Second time it's cleared in
powerpc_init(). Any variable initialized between two those guys gets wiped out
what is wrong. In particular it wipes tlb1_entries initialized by tlb1_init(),
which was fine when tlb1_init() was called a second time, but this was removed
in r304656.
Submitted by: Ivan Krivonos <int0dster_gmail.com>
Differential Revision: https://reviews.freebsd.org/D7638
Summary:
Kernel maps only one page of FDT. When FDT is more than one page in size, data
TLB miss occurs on memmove() when FDT is moved to kernel storage
(sys/powerpc/booke/booke_machdep.c, booke_init())
This introduces a pmap_early_io_unmap() to complement pmap_early_io_map(), which
can be used for any early I/O mapping, but currently is only used when mapping
the fdt.
Submitted by: Ivan Krivonos <int0dster_gmail.com>
Differential Revision: https://reviews.freebsd.org/D7605
Summary:
There is no need to call tlb1_init() twice. Now it is called first time from
booke_init() and second time from powerpc_init() (where it is under BOOKE
switch). Although this does not cause immediate problems in the mainline kernel,
this can lead to undesirable side effects like two TLB entries with the same VA
in the TLB1. Presence of two TLB entries with the same VA can hang CPU.
Test Plan:
Add initial mapping for UART to the tlb1_init(), build and boot the kernel,
ensure that mapping presents only once (most convinient way - through Lauterbah
or similar hardware debugger)
Submitted by: Ivan Krivonos <int0dster_gmail.com>
Differential Revision: https://reviews.freebsd.org/D7607
Summary: Current booke/pmap code ignores mas7 and mas8 on e6500 CPU.
Submitted by: Ivan Krivonos <int0dster_gmail.com>
Differential Revision: https://reviews.freebsd.org/D7606
mpc85xx_map_dcsr() returns a vm_offset_t, not an error code.
mpc85xx_fix_errata() will gracefully exit if mpc85xx_map_dcsr() returns 0, as
that indicates an error (NULL pointer).
__syncicache() only syncs the icache on the current CPU, it doesn't touch the
cache on any other core. Replace the call with cpu_flush_dcache() instead.
Since bp_kernload is not touched again by the boot CPU in this code path, dcbf
is no less efficient than the dcbst from __syncicache() by invalidating the
cache line.
Summary:
There is often a need at the debugger to print arbitrary special
purpose registers (SPRs) on PowerPC. Using a rewritable asm stub, print any SPR
provided on the command line.
Note, as there is no checking in this, attempting to print a nonexistent SPR
may cause a Program exception (illegal instruction, or boundedly undefined).
Note also that this relies on the kernel text pages being writable. If in the
future this is made not the case, this will need to be reworked.
Test Plan:
Printing the Processor Version Register (PVR, SPR 287):
db> show spr 11f
SPR 287(11f): 80240012
Differential Revision: https://reviews.freebsd.org/D7403
Summary:
u-boot, following the ePAPR specification, puts secondary cores into a
spinloop at boot, rather than leaving them shut off. It then relies on the host
OS to write the correct values to a special spin table, located in coherent
memory (on newer implementations), or noncoherent memory (older
implementations).
This supports both implementations of ePAPR, as well as continuing to support
non-ePAPR booting, by first attempting to use the spintable, and falling back to
expecting non-started CPUs.
Test Plan:
Booted on a P5020 board. Tested before and after the changes.
Before the changes, prints the error "SMP: CPU 1 already out of hold-off state!"
and panics shortly thereafter. After the changes, same boot method lets it
complete boot.
Reviewed by: nwhitehorn
MFC after: 2 weeks
Relnotes: Yes
Sponsored by: Alex Perez/Inertial Computing
Differential Revision: https://reviews.freebsd.org/D7494
Several files use the internal name of `struct device` instead of
`device_t` which is part of the public API. This patch changes all
`struct device *` to `device_t`.
The remaining occurrences of `struct device` are those referring to the
Linux or OpenBSD version of the structure, or the code is not built on
FreeBSD and it's unclear what to do.
Submitted by: Matthew Macy <mmacy@nextbsd.org> (previous version)
Approved by: emaste, jhibbits, sbruno
MFC after: 3 days
Differential Revision: https://reviews.freebsd.org/D7447
Without enabling this bit, tlbre and tlbsx don't update the MAS7 register,
resulting in garbage in the register after a read (rather, the previous setting
of it for a tlbwe). This can result in mmu_booke_mapdev_attr() thinking
mappings that should match actually don't, because tlb1_read_entry() can't
determine the correct address of a given entry.
MFC after: 11-RELEASE
bouncing of unmapped buffers. Also treat userspace buffers as unmapped, to
avoid borrowing the UVA for copies. This allows sync'ing userspace buffers
outside the context of the owning process, and sync'ing bounced maps in
non-sleepable contexts.
This change is equivalent to r286787 for x86.
Reviewed by: jhibbits
Differential Revision: https://reviews.freebsd.org/D3989
Summary:
MPC85XX and QorIQ are very similar. When the DPAA dTSEC driver was
added, QORIQ_DPAA was brought in as a config option to support the differences
in hardware register settings between QorIQ (e500mc-, e5500- based) SoCs and
QUICC (e500v1/e500v2-based) SoCs, particularly in the Local Access Window (LAW)
target settings.
Unify these settings using macros to hide details and ease porting, and use a
new function (mpc85xx_is_qoriq()) to distinguish between QorIQ and QUICC SoCs at
runtime.
An alternative to using the function could be to use a variable initialized at
platform attach time, which may incur less overhead at runtime. Since it's not
in the critical path once booted, this optimization doesn't seem necessary at
first pass.
Reviewed by: nwhitehorn
MFC after: 1 week
Differential Revision: https://reviews.freebsd.org/D7294
Though the chances of the code in these sections changing are low, future-proof
the sections and use label math.
Renumber the surrounding areas to avoid duplicate label numbers.
L3 cache is not defined by Book-E, so is platform specific. Since it was
already moved for e500-based devices into mpc85xx in r292903, just eliminate it
altogether. Any device that supports L3 cache should have its own platform
means to enable it.
mp_maxid or CPU_FOREACH() as appropriate. This fixes a number of places in
the kernel that assumed CPU IDs are dense in [0, mp_ncpus) and would try,
for example, to run tasks on CPUs that did not exist or to allocate too
few buffers on systems with sparse CPU IDs in which there are holes in the
range and mp_maxid > mp_ncpus. Such circumstances generally occur on
systems with SMT, but on which SMT is disabled. This patch restores system
operation at least on POWER8 systems configured in this way.
There are a number of other places in the kernel with potential problems
in these situations, but where sparse CPU IDs are not currently known
to occur, mostly in the ARM machine-dependent code. These will be fixed
in a follow-up commit after the stable/11 branch.
PR: kern/210106
Reviewed by: jhb
Approved by: re (glebius)
Remove the use of fdt_data_to_res(), and instead construct the resources
manually. Additionally, avoid the 32-bit size limitation of fdt_data_get(), by
building physical addresses manually from the lbc ranges property.
Approved by: re@(gjb)
late boot: enable it explicitly after installing the page tables. If booting
from an FDT, also make sure to escape the firmware's MMU context early
before overwriting firmware page tables.
Approved by: re (gjb)
Most of the effect of setting MSR[SF] is that the CPU will stop ignoring
the high 32 bits of registers containing addresses in load/store
instructions. As such, the kernel was setting it only when it began to
need access to high memory. MSR[SF] also affects the operation of some
conditional instructions, however, and so setting it at late times could
subtly break code at very early times. This fixes use of the FDT mode in
loader, and FDT boot more generally, on 64-bit PowerPC systems.
Hardware provided by: IBM LTC
Approved by: re (kib)
threads, to make it less confusing and using modern kernel terms.
Rename the functions to reflect current use of the functions, instead
of the historic KSE conventions:
cpu_set_fork_handler -> cpu_fork_kthread_handler (for kthreads)
cpu_set_upcall -> cpu_copy_thread (for forks)
cpu_set_upcall_kse -> cpu_set_upcall (for new threads creation)
Reviewed by: jhb (previous version)
Sponsored by: The FreeBSD Foundation
MFC after: 1 week
Approved by: re (hrs)
Differential revision: https://reviews.freebsd.org/D6731
After r285994, sysctl(8) was fixed to use 273.15 instead of 273.20 as 0C
reference and as result, the temperature read in sysctl(8) now exibits a
+0.1C difference.
This commit fix the kernel references to match the reference value used in
sysctl(8) after r285994.
Sponsored by: Rubicon Communications (Netgate)
PCI-express HotPlug support is implemented via bits in the slot
registers of the PCI-express capability of the downstream port along
with an interrupt that triggers when bits in the slot status register
change.
This is implemented for FreeBSD by adding HotPlug support to the
PCI-PCI bridge driver which attaches to the virtual PCI-PCI bridges
representing downstream ports on HotPlug slots. The PCI-PCI bridge
driver registers an interrupt handler to receive HotPlug events. It
also uses the slot registers to determine the current HotPlug state
and drive an internal HotPlug state machine. For simplicty of
implementation, the PCI-PCI bridge device detaches and deletes the
child PCI device when a card is removed from a slot and creates and
attaches a PCI child device when a card is inserted into the slot.
The PCI-PCI bridge driver provides a bus_child_present which claims
that child devices are present on HotPlug-capable slots only when a
card is inserted. Rather than requiring a timeout in the RC for
config accesses to not-present children, the pcib_read/write_config
methods fail all requests when a card is not present (or not yet
ready).
These changes include support for various optional HotPlug
capabilities such as a power controller, mechanical latch,
electro-mechanical interlock, indicators, and an attention button.
It also includes support for devices which require waiting for
command completion events before initiating a subsequent HotPlug
command. However, it has only been tested on ExpressCard systems
which support surprise removal and have none of these optional
capabilities.
PCI-express HotPlug support is conditional on the PCI_HP option
which is enabled by default on arm64, x86, and powerpc.
Reviewed by: adrian, imp, vangyzen (older versions)
Relnotes: yes
Differential Revision: https://reviews.freebsd.org/D6136
This allows the PCI-PCI bridge driver to save a reference to the child
device in its softc.
Note that this required moving the "pci" device creation out of
acpi_pcib_attach(). Instead, acpi_pcib_attach() is renamed to
acpi_pcib_fetch_prt() as it's sole action now is to fetch the PCI
interrupt routing table.
Differential Revision: https://reviews.freebsd.org/D6021
Rescanning a PCI bus uses the following steps:
- Fetch the current set of child devices and save it in the 'devlist'
array.
- Allocate a parallel array 'unchanged' initalized with NULL pointers.
- Scan the bus checking each slot (and each function on slots with a
multifunction device).
- If a valid function is found, look for a matching device in the 'devlist'
array. If a device is found, save the pointer in the 'unchanged' array.
If a device is not found, add a new device.
- After the scan has finished, walk the 'devlist' array deleting any
devices that do not have a matching pointer in the 'unchanged' array.
- Finally, fetch an updated set of child devices and explicitly attach any
devices that are not present in the 'unchanged' array.
This builds on the previous changes to move subclass data management into
pci_alloc_devinfo(), pci_child_added(), and bus_child_deleted().
Subclasses of the PCI bus use custom rescan logic explicitly override the
rescan method to disable rescans.
Differential Revision: https://reviews.freebsd.org/D6018
When ORing in a register_t to a wider integer (vm_paddr_t), it gets sign
extended, so high addresses overwrite the upper word with all 0xf. Cast to the
unsigned form (u_register_t), to avoid this problem, and get correct addresses
printed.
With this, a static environment can be compiled in via config(5). This allows,
among other things, the use of a compiled-in debug console (hw.uart.dbgport) for
kgdb.
rounddown2 tends to produce longer lines than the original code
and when the code has a high indentation level it was not really
advantageous to do the replacement.
This tries to strike a balance between readability using the macros
and flexibility of having the expressions, so not everything is
converted.
Summary:
PowerPC Book-E SMP is currently broken for unknown reasons. Pull in
Semihalf changes made c2012 for e500mc/e5500, which enables booting SMP.
This eliminates the shared software TLB1 table, replacing it with
tlb1_read_entry() function.
This does not yet support ePAPR SMP booting, and doesn't handle resetting CPUs
already released (ePAPR boot releases APs to a spin loop waiting on a specific
address). This will be addressed in the near future by using the MPIC to reset
the AP into our own alternate boot address.
This does include a change to the dpaa/dtsec(4) driver, to mark the portals as
CPU-private.
Test Plan:
Tested on Amiga X5000/20 (P5020). Boots, prints the following
messages:
Adding CPU 0, pir=0, awake=1
Waking up CPU 1 (dev=1)
Adding CPU 1, pir=20, awake=1
SMP: AP CPU #1 launched
top(1) shows CPU1 active.
Obtained from: Semihalf
Relnotes: Yes
Differential Revision: https://reviews.freebsd.org/D5945
The ACPI and OFW PCI bus drivers as well as CardBus override this to
allocate the larger ivars to hold additional info beyond the stock PCI ivars.
This removes the need to pass the size to functions like pci_add_iov_child()
and pci_read_device() simplifying IOV and bus rescanning implementations.
As a result of this and earlier changes, the ACPI PCI bus driver no longer
needs its own device_attach and pci_create_iov_child methods but can use
the methods in the stock PCI bus driver instead.
Differential Revision: https://reviews.freebsd.org/D5891
Summary:
There is currently a 1GB hole between user and kernel address spaces
into which direct (1:1 PA:VA) device mappings go. This appears to go largely
unused, leaving all devices to contend with the 128MB block at the end of the
32-bit space (0xf8000000-0xffffffff). This easily fills up, and needs to be
densely packed. However, dense packing wastes precious TLB1 space, of which
there are only 16 (e500v2) or 64(e5500) entries available.
Change this by using the 1GB space for all device mappings, and allow the kernel
to use the entire upper 1GB for KVA. This also allows us to use sparse device
mappings, freeing up TLB entries.
Test Plan: Boot tested on p5020.
Differential Revision: https://reviews.freebsd.org/D5832
Instead of providing a wrapper around device_delete_child() that the PCI
bus and child bus drivers must call explicitly, move the bulk of the logic
from pci_delete_child() into a bus_child_deleted() method
(pci_child_deleted()). This allows PCI devices to be safely deleted via
device_delete_child().
- Add a bus_child_deleted method to the ACPI PCI bus which clears the
device_t associated with the corresponding ACPI handle in addition to
the normal PCI bus cleanup.
- Change cardbus_detach_card to call device_delete_children() and move
CardBus-specific delete logic into a new cardbus_child_deleted() method.
- Use device_delete_child() instead of pci_delete_child() in the SRIOV code.
- Add a bus_child_deleted method to the OpenFirmware PCI bus drivers which
frees the OpenFirmware device info for each PCI device.
Reviewed by: imp
Tested on: amd64 (CardBus and PCI-e hotplug)
Differential Revision: https://reviews.freebsd.org/D5831
OFW i2c probing requires a new method ofw_bus_get_node(), and the bus device is
assumed iichb. With these changes, i2c devices attached in fdt are probed and
attached automagically.
Import portions of the PowerPC OF PCI implementation into new file
"ofwpci.c", common for other platforms. The files ofw_pci.c and ofw_pci.h
from sys/powerpc/ofw no longer exist. All required declarations are moved
to sys/dev/ofw/ofwpci.h. This creates a new ofw_pci_write_ivar() function
and modifies some others methods. Most functions contain existing ppc
implementations in the majority unchanged. Now there is no need to have
multiple identical copies of methods for various architectures.
Requested by: jhibbits
Reviewed by: jhibbits, marius
Submitted by: Marcin Mazurek <mma@semihalf.com>
Obtained from: Semihalf
Sponsored by: Annapurna Labs
Differential Revision: https://reviews.freebsd.org/D4879
a DRIVER_MODULE() referencing mmc_driver has a MODULE_DEPEND() on mmc. This
is because the kernel linker only searches for symbols in dependent modules,
so loading sdhci_pci (and other bus-flavors of sdhci) would fail when mmc
was not compiled into the kernel (even if you hand-loaded mmc first).
(Thanks to jilles@ for providing the vital clue about the kernel linker.)
On some architectures, u_long isn't large enough for resource definitions.
Particularly, powerpc and arm allow 36-bit (or larger) physical addresses, but
type `long' is only 32-bit. This extends rman's resources to uintmax_t. With
this change, any resource can feasibly be placed anywhere in physical memory
(within the constraints of the driver).
Why uintmax_t and not something machine dependent, or uint64_t? Though it's
possible for uintmax_t to grow, it's highly unlikely it will become 128-bit on
32-bit architectures. 64-bit architectures should have plenty of RAM to absorb
the increase on resource sizes if and when this occurs, and the number of
resources on memory-constrained systems should be sufficiently small as to not
pose a drastic overhead. That being said, uintmax_t was chosen for source
clarity. If it's specified as uint64_t, all printf()-like calls would either
need casts to uintmax_t, or be littered with PRI*64 macros. Casts to uintmax_t
aren't horrible, but it would also bake into the API for
resource_list_print_type() either a hidden assumption that entries get cast to
uintmax_t for printing, or these calls would need the PRI*64 macros. Since
source code is meant to be read more often than written, I chose the clearest
path of simply using uintmax_t.
Tested on a PowerPC p5020-based board, which places all device resources in
0xfxxxxxxxx, and has 8GB RAM.
Regression tested on qemu-system-i386
Regression tested on qemu-system-mips (malta profile)
Tested PAE and devinfo on virtualbox (live CD)
Special thanks to bz for his testing on ARM.
Reviewed By: bz, jhb (previous)
Relnotes: Yes
Sponsored by: Alex Perez/Inertial Computing
Differential Revision: https://reviews.freebsd.org/D4544
1) Include opt_platform.h to get QORIQ_DPAA. Otherwise the definition of
OCP85XX_TGTIF_LBC is incorrect.
2) The child resources are already allocated, just activate them, instead of
incorrectly remapping the memory regions (resource lists for lbc consist of the
virtual address of the child's resources, not the physical address).
Sponsored by: Alex Perez/Inertial Computing
Some MPC85xx GPIO controllers are compatible with QorIQ.
It may make more sense in the future to rename this and mpc85xx_gpio.c, as
mpc85xx_gpio.c appears to only be compatible with a few mpc85xx SoCs. All other
MPC85xx SoCs use the same controller as QorIQ.
Freescale's QorIQ line includes a new ethernet controller, based on their
Datapath Acceleration Architecture (DPAA). This uses a combination of a Frame
manager, Buffer manager, and Queue manager to improve performance across all
interfaces by being able to pass data directly between hardware acceleration
interfaces.
As part of this import, Freescale's Netcomm Software (ncsw) driver is imported.
This was an attempt by Freescale to create an OS-agnostic sub-driver for
managing the hardware, using shims to interface to the OS-specific APIs. This
work was abandoned, and Freescale's primary work is in the Linux driver (dual
BSD/GPL license). Hence, this was imported directly to sys/contrib, rather than
going through the vendor area. Going forward, FreeBSD-specific changes may be
made to the ncsw code, diverging from the upstream in potentially incompatible
ways. An alternative could be to import the Linux driver itself, using the
linuxKPI layer, as that would maintain parity with the vendor-maintained driver.
However, the Linux driver has not been evaluated for reliability yet, and may
have issues with the import, whereas the ncsw-based driver in this commit was
completed by Semihalf 4 years ago, and is very stable.
Other SoC modules based on DPAA, which could be added in the future:
* Security and Encryption engine (SEC4.x, SEC5.x)
* RAID engine
Additional work to be done:
* Implement polling mode
* Test vlan support
* Add support for the Pattern Matching Engine, which can do regular expression
matching on packets.
This driver has been tested on the P5020 QorIQ SoC. Others listed in the
dtsec(4) manual page are expected to work as the same DPAA engine is included in
all.
Obtained from: Semihalf
Relnotes: Yes
Sponsored by: Alex Perez/Inertial Computing
Summary:
Some drivers need special memory requirements. X86 solves this with a
pmap_change_attr() API, which DRM uses for changing the mapping of the GART and
other memory regions. Implement the same function for PowerPC. AIM currently
does not need this, but will in the future for DRM, so a default is added for
that, for business as usual. Book-E has some drivers coming down that do
require non-default memory coherency. In this case, the Datapath Acceleration
Architecture (DPAA) based ethernet controller has 2 regions for the buffer
portals: cache-inhibited, and cache-enabled. By default, device memory is
cache-inhibited. If the cache-enabled memory regions are mapped
cache-inhibited, an alignment exception is thrown on access.
Test Plan:
Tested with a new driver to be added after this (DPAA dTSEC ethernet driver).
No alignment exceptions thrown, driver works as expected with this.
Reviewed By: nwhitehorn
Sponsored by: Alex Perez/Inertial Computing
Differential Revision: https://reviews.freebsd.org/D5471
Extract common code from PowerPC's ofw_pci
Import portions of the PowerPC OF PCI implementation into
new file "ofw_pci.c", common for other platforms. The files ofw_pci.c and
ofw_pci.h from sys/powerpc/ofw no longer exist. All required declarations
are moved to sys/dev/ofw/ofw_pci.h.
This creates a new ofw_pci_write_ivar() function and modifies
ofw_pci_nranges(), ofw_pci_read_ivar(), ofw_pci_route_interrupt()
methods.
Most functions contain existing ppc implementations in the majority
unchanged. Now there is no need to have multiple identical copies
of methods for various architectures.
Submitted by: Marcin Mazurek <mma@semihalf.com>
Obtained from: Semihalf
Sponsored by: Annapurna Labs
Reviewed by: jhibbits, mmel
Differential Revision: https://reviews.freebsd.org/D4879
This needs to return to the drawing board as it breaks both
PowerPC and Sparc64 build.
Pointed out by: jhibbits
This simplifies checking for default resource range for bus_alloc_resource(),
and improves readability.
This is part of, and related to, the migration of rman_res_t from u_long to
uintmax_t.
Discussed with: jhb
Suggested by: marcel
Import portions of the PowerPC OF PCI implementation into
new file "ofw_pci.c", common for other platforms. The files ofw_pci.c and
ofw_pci.h from sys/powerpc/ofw no longer exist. All required declarations
are moved to sys/dev/ofw/ofw_pci.h.
This creates a new ofw_pci_write_ivar() function and modifies
ofw_pci_nranges(), ofw_pci_read_ivar(), ofw_pci_route_interrupt() methods.
Most functions contain existing ppc implementations in the majority
unchanged. Now there is no need to have multiple identical copies
of methods for various architectures.
Submitted by: Marcin Mazurek <mma@semihalf.com>
Obtained from: Semihalf
Sponsored by: Annapurna Labs
Reviewed by: jhibbits, mmel
Differential Revision: https://reviews.freebsd.org/D4879
Provide bus_get_bus_tag() for sparc64, powerpc, arm, arm64 and mips
nexus and its children in order to return a platform specific default tag.
This is required to ensure generic correctness of the bus_space tag.
It is especially needed for arches where child bus tag does not match
the parent bus tag. This solves the problem with ppc architecture
where the PCI bus tag differs from parent bus tag which is big-endian.
This commit is a part of the following patch:
https://reviews.freebsd.org/D4879
Submitted by: Marcin Mazurek <mma@semihalf.com>
Obtained from: Semihalf
Sponsored by: Annapurna Labs
Reviewed by: jhibbits, mmel
Differential Revision: https://reviews.freebsd.org/D4879
will allow for code that uses the old fdt_get_range and fdt_regsize
functions to find a range, map it, access, then unmap to replace this, up
to and including the map, with a call to OF_decode_addr.
As this function should only be used in the early boot code the unmap is
mostly do document we no longer need the mapping as it's a no-op, at least
on arm.
Reviewed by: jhibbits
Sponsored by: ABT Systems Ltd
Differential Revision: https://reviews.freebsd.org/D5258
ucontext_t available. Our code even has XXX comment about this.
Add a bit of compliance by moving struct __ucontext definition into
sys/_ucontext.h and including it into signal.h and sys/ucontext.h.
Several machine/ucontext.h headers were changed to use namespace-safe
types (like uint64_t->__uint64_t) to not depend on sys/types.h.
struct __stack_t from sys/signal.h is made always visible in private
namespace to satisfy sys/_ucontext.h requirements.
Apparently mips _types.h pollutes global namespace with f_register_t
type definition. This commit does not try to fix the issue.
PR: 207079
Reported and tested by: Ting-Wei Lan <lantw44@gmail.com>
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
Summary:
The revised Book-E spec, adding the specification for the MMUv2 and e6500,
includes a hardware PTE layout for indirect page tables. In order to support
this in the future, migrate the PTE format to match the MMUv2 hardware PTE
format.
Test Plan: Boot tested on a P5020 board. Booted to multiuser mode.
Differential Revision: https://reviews.freebsd.org/D5224
ABI of struct fpreg. The FPU emulator operates on the "raw" FPU state
stored in the pcb rather than the "cooked" fpreg state used for ptrace()
and cores.
Reported by: bz
The stack must be aligned to 16 bytes at all times. Clang 3.8 is especially
adamant about this, and causes strange behavior and segmentation faults if it is
not the case.
PR: kern/206810
Device trees mark lbc as compatible with simplebus. Since simplebus is passed
first, it attaches first. When lbc's pass (default pass) comes, the bus is
already attached to simplebus, so is skipped.
Sponsored by: Alex Perez/Inertial Computing
The PT_{GET,SET}FPREGS requests use 'struct fpreg' and the NT_FPREGSET
core note stores a copy of 'struct fpreg'. As with x86 and the floating
point state there compared to the extended state in XSAVE, struct fpreg
on powerpc now only holds the 'base' FP state, and setting it via
PT_SETFPREGS leaves the extended vector state in a thread unchanged.
Reviewed by: jhibbits
Differential Revision: https://reviews.freebsd.org/D5004
Use driver settable callbacks for handling of:
- core post reset
- reading actual port speed
Typically, OTG enabled EHCI cores wants setting of USBMODE register,
but this register is not defined in EHCI specification and different
cores can have it on different offset.
Also, for cores with TT extension, actual port speed must be determinable.
But again, EHCI specification not covers this so this patch provides
function for two most common variant of speed bits layout.
Reviewed by: hselasky
Differential Revision: https://reviews.freebsd.org/D5088
POSIX requires these members to be of type void * rather than the
char * inherited from 4BSD. NetBSD and OpenBSD both changed their
fields to void * back in 1998. No new build failures were reported
via an exp-run.
PR: 206503 (exp-run)
Reviewed by: kib
MFC after: 1 week
Differential Revision: https://reviews.freebsd.org/D5092
Summary:
Migrate to using the semi-opaque type rman_res_t to specify rman resources. For
now, this is still compatible with u_long.
This is step one in migrating rman to use uintmax_t for resources instead of
u_long.
Going forward, this could feasibly be used to specify architecture-specific
definitions of resource ranges, rather than baking a specific integer type into
the API.
This change has been broken out to facilitate MFC'ing drivers back to 10 without
breaking ABI.
Reviewed By: jhb
Sponsored by: Alex Perez/Inertial Computing
Differential Revision: https://reviews.freebsd.org/D5075
The only difference between dcbzl and dcbz is dcbzl operates on native cache
line lengths regardless of L1CSR0[DCBZ32]. Since we don't change the cache line
size, the cacheline_size variable will reflect the used cache line length, and
dcbz will work as expected.
By confining the page table management to a handful of functions it'll be
easier to modify the page table scheme without affecting other functions.
This will be necessary when 64-bit support is added, and page tables become
much larger.
VM_MAX_KERNEL_ADDERESS is the maximum KVA address. 0xf8000000 is the start of
device mapping space. Since several conditional checks use '<=' against
VM_MAX_KERNEL_ADDRESS, bad things could feasibly happen.