numam-dpdk/drivers/net/e1000/igb_rxtx.c

2962 lines
84 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2016 Intel Corporation
*/
#include <sys/queue.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <stdint.h>
#include <stdarg.h>
#include <inttypes.h>
#include <rte_interrupts.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_pci.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_memzone.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_mempool.h>
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_ether.h>
#include <rte_ethdev_driver.h>
#include <rte_prefetch.h>
#include <rte_udp.h>
#include <rte_tcp.h>
#include <rte_sctp.h>
#include <rte_net.h>
#include <rte_string_fns.h>
#include "e1000_logs.h"
#include "base/e1000_api.h"
#include "e1000_ethdev.h"
#ifdef RTE_LIBRTE_IEEE1588
#define IGB_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST
#else
#define IGB_TX_IEEE1588_TMST 0
#endif
/* Bit Mask to indicate what bits required for building TX context */
#define IGB_TX_OFFLOAD_MASK ( \
PKT_TX_OUTER_IPV6 | \
PKT_TX_OUTER_IPV4 | \
PKT_TX_IPV6 | \
PKT_TX_IPV4 | \
PKT_TX_VLAN_PKT | \
PKT_TX_IP_CKSUM | \
PKT_TX_L4_MASK | \
PKT_TX_TCP_SEG | \
IGB_TX_IEEE1588_TMST)
#define IGB_TX_OFFLOAD_NOTSUP_MASK \
(PKT_TX_OFFLOAD_MASK ^ IGB_TX_OFFLOAD_MASK)
/**
* Structure associated with each descriptor of the RX ring of a RX queue.
*/
struct igb_rx_entry {
struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
};
/**
* Structure associated with each descriptor of the TX ring of a TX queue.
*/
struct igb_tx_entry {
struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
uint16_t next_id; /**< Index of next descriptor in ring. */
uint16_t last_id; /**< Index of last scattered descriptor. */
};
/**
* rx queue flags
*/
enum igb_rxq_flags {
IGB_RXQ_FLAG_LB_BSWAP_VLAN = 0x01,
};
/**
* Structure associated with each RX queue.
*/
struct igb_rx_queue {
struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */
volatile union e1000_adv_rx_desc *rx_ring; /**< RX ring virtual address. */
uint64_t rx_ring_phys_addr; /**< RX ring DMA address. */
volatile uint32_t *rdt_reg_addr; /**< RDT register address. */
volatile uint32_t *rdh_reg_addr; /**< RDH register address. */
struct igb_rx_entry *sw_ring; /**< address of RX software ring. */
struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
struct rte_mbuf *pkt_last_seg; /**< Last segment of current packet. */
uint16_t nb_rx_desc; /**< number of RX descriptors. */
uint16_t rx_tail; /**< current value of RDT register. */
uint16_t nb_rx_hold; /**< number of held free RX desc. */
uint16_t rx_free_thresh; /**< max free RX desc to hold. */
uint16_t queue_id; /**< RX queue index. */
uint16_t reg_idx; /**< RX queue register index. */
uint16_t port_id; /**< Device port identifier. */
uint8_t pthresh; /**< Prefetch threshold register. */
uint8_t hthresh; /**< Host threshold register. */
uint8_t wthresh; /**< Write-back threshold register. */
uint8_t crc_len; /**< 0 if CRC stripped, 4 otherwise. */
uint8_t drop_en; /**< If not 0, set SRRCTL.Drop_En. */
uint32_t flags; /**< RX flags. */
uint64_t offloads; /**< offloads of DEV_RX_OFFLOAD_* */
};
/**
* Hardware context number
*/
enum igb_advctx_num {
IGB_CTX_0 = 0, /**< CTX0 */
IGB_CTX_1 = 1, /**< CTX1 */
IGB_CTX_NUM = 2, /**< CTX_NUM */
};
mbuf: flatten struct vlan_macip The vlan_macip structure combined a vlan tag id with l2 and l3 headers lengths for tracking offloads. However, this structure was only used as a unit by the e1000 and ixgbe drivers, not generally. This patch removes the structure from the mbuf header and places the fields into the mbuf structure directly at the required point, without any net effect on the structure layout. This allows us to treat the vlan tags and header length fields as separate for future mbuf changes. The drivers which were written to use the combined structure still do so, using a driver-local definition of it. Reduce perf regression caused by splitting vlan_macip field. This is done by providing a single uint16_t value to allow writing/clearing the l2 and l3 lengths together. There is still a small perf hit to the slow path TX due to the reads from vlan_tci and l2/l3 lengths being separated. (<5% in my tests with testpmd with no extra params). Unfortunately, this cannot be eliminated, without restoring the vlan tags and l2/l3 lengths as a combined 32-bit field. This would prevent us from ever looking to move those fields about and is an artificial tie that applies only for performance in igb and ixgbe drivers. Therefore, this patch keeps the vlan_tci field separate from the lengths as the best solution going forward. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com> Acked-by: Olivier Matz <olivier.matz@6wind.com> Acked-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
2014-09-09 14:40:56 +00:00
/** Offload features */
union igb_tx_offload {
uint64_t data;
mbuf: flatten struct vlan_macip The vlan_macip structure combined a vlan tag id with l2 and l3 headers lengths for tracking offloads. However, this structure was only used as a unit by the e1000 and ixgbe drivers, not generally. This patch removes the structure from the mbuf header and places the fields into the mbuf structure directly at the required point, without any net effect on the structure layout. This allows us to treat the vlan tags and header length fields as separate for future mbuf changes. The drivers which were written to use the combined structure still do so, using a driver-local definition of it. Reduce perf regression caused by splitting vlan_macip field. This is done by providing a single uint16_t value to allow writing/clearing the l2 and l3 lengths together. There is still a small perf hit to the slow path TX due to the reads from vlan_tci and l2/l3 lengths being separated. (<5% in my tests with testpmd with no extra params). Unfortunately, this cannot be eliminated, without restoring the vlan tags and l2/l3 lengths as a combined 32-bit field. This would prevent us from ever looking to move those fields about and is an artificial tie that applies only for performance in igb and ixgbe drivers. Therefore, this patch keeps the vlan_tci field separate from the lengths as the best solution going forward. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com> Acked-by: Olivier Matz <olivier.matz@6wind.com> Acked-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
2014-09-09 14:40:56 +00:00
struct {
uint64_t l3_len:9; /**< L3 (IP) Header Length. */
uint64_t l2_len:7; /**< L2 (MAC) Header Length. */
uint64_t vlan_tci:16; /**< VLAN Tag Control Identifier(CPU order). */
uint64_t l4_len:8; /**< L4 (TCP/UDP) Header Length. */
uint64_t tso_segsz:16; /**< TCP TSO segment size. */
/* uint64_t unused:8; */
};
mbuf: flatten struct vlan_macip The vlan_macip structure combined a vlan tag id with l2 and l3 headers lengths for tracking offloads. However, this structure was only used as a unit by the e1000 and ixgbe drivers, not generally. This patch removes the structure from the mbuf header and places the fields into the mbuf structure directly at the required point, without any net effect on the structure layout. This allows us to treat the vlan tags and header length fields as separate for future mbuf changes. The drivers which were written to use the combined structure still do so, using a driver-local definition of it. Reduce perf regression caused by splitting vlan_macip field. This is done by providing a single uint16_t value to allow writing/clearing the l2 and l3 lengths together. There is still a small perf hit to the slow path TX due to the reads from vlan_tci and l2/l3 lengths being separated. (<5% in my tests with testpmd with no extra params). Unfortunately, this cannot be eliminated, without restoring the vlan tags and l2/l3 lengths as a combined 32-bit field. This would prevent us from ever looking to move those fields about and is an artificial tie that applies only for performance in igb and ixgbe drivers. Therefore, this patch keeps the vlan_tci field separate from the lengths as the best solution going forward. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com> Acked-by: Olivier Matz <olivier.matz@6wind.com> Acked-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
2014-09-09 14:40:56 +00:00
};
/*
* Compare mask for igb_tx_offload.data,
* should be in sync with igb_tx_offload layout.
mbuf: flatten struct vlan_macip The vlan_macip structure combined a vlan tag id with l2 and l3 headers lengths for tracking offloads. However, this structure was only used as a unit by the e1000 and ixgbe drivers, not generally. This patch removes the structure from the mbuf header and places the fields into the mbuf structure directly at the required point, without any net effect on the structure layout. This allows us to treat the vlan tags and header length fields as separate for future mbuf changes. The drivers which were written to use the combined structure still do so, using a driver-local definition of it. Reduce perf regression caused by splitting vlan_macip field. This is done by providing a single uint16_t value to allow writing/clearing the l2 and l3 lengths together. There is still a small perf hit to the slow path TX due to the reads from vlan_tci and l2/l3 lengths being separated. (<5% in my tests with testpmd with no extra params). Unfortunately, this cannot be eliminated, without restoring the vlan tags and l2/l3 lengths as a combined 32-bit field. This would prevent us from ever looking to move those fields about and is an artificial tie that applies only for performance in igb and ixgbe drivers. Therefore, this patch keeps the vlan_tci field separate from the lengths as the best solution going forward. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com> Acked-by: Olivier Matz <olivier.matz@6wind.com> Acked-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
2014-09-09 14:40:56 +00:00
* */
#define TX_MACIP_LEN_CMP_MASK 0x000000000000FFFFULL /**< L2L3 header mask. */
#define TX_VLAN_CMP_MASK 0x00000000FFFF0000ULL /**< Vlan mask. */
#define TX_TCP_LEN_CMP_MASK 0x000000FF00000000ULL /**< TCP header mask. */
#define TX_TSO_MSS_CMP_MASK 0x00FFFF0000000000ULL /**< TSO segsz mask. */
/** Mac + IP + TCP + Mss mask. */
#define TX_TSO_CMP_MASK \
(TX_MACIP_LEN_CMP_MASK | TX_TCP_LEN_CMP_MASK | TX_TSO_MSS_CMP_MASK)
mbuf: flatten struct vlan_macip The vlan_macip structure combined a vlan tag id with l2 and l3 headers lengths for tracking offloads. However, this structure was only used as a unit by the e1000 and ixgbe drivers, not generally. This patch removes the structure from the mbuf header and places the fields into the mbuf structure directly at the required point, without any net effect on the structure layout. This allows us to treat the vlan tags and header length fields as separate for future mbuf changes. The drivers which were written to use the combined structure still do so, using a driver-local definition of it. Reduce perf regression caused by splitting vlan_macip field. This is done by providing a single uint16_t value to allow writing/clearing the l2 and l3 lengths together. There is still a small perf hit to the slow path TX due to the reads from vlan_tci and l2/l3 lengths being separated. (<5% in my tests with testpmd with no extra params). Unfortunately, this cannot be eliminated, without restoring the vlan tags and l2/l3 lengths as a combined 32-bit field. This would prevent us from ever looking to move those fields about and is an artificial tie that applies only for performance in igb and ixgbe drivers. Therefore, this patch keeps the vlan_tci field separate from the lengths as the best solution going forward. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com> Acked-by: Olivier Matz <olivier.matz@6wind.com> Acked-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
2014-09-09 14:40:56 +00:00
/**
* Strucutre to check if new context need be built
*/
struct igb_advctx_info {
uint64_t flags; /**< ol_flags related to context build. */
/** tx offload: vlan, tso, l2-l3-l4 lengths. */
union igb_tx_offload tx_offload;
/** compare mask for tx offload. */
union igb_tx_offload tx_offload_mask;
};
/**
* Structure associated with each TX queue.
*/
struct igb_tx_queue {
volatile union e1000_adv_tx_desc *tx_ring; /**< TX ring address */
uint64_t tx_ring_phys_addr; /**< TX ring DMA address. */
struct igb_tx_entry *sw_ring; /**< virtual address of SW ring. */
volatile uint32_t *tdt_reg_addr; /**< Address of TDT register. */
uint32_t txd_type; /**< Device-specific TXD type */
uint16_t nb_tx_desc; /**< number of TX descriptors. */
uint16_t tx_tail; /**< Current value of TDT register. */
uint16_t tx_head;
/**< Index of first used TX descriptor. */
uint16_t queue_id; /**< TX queue index. */
uint16_t reg_idx; /**< TX queue register index. */
uint16_t port_id; /**< Device port identifier. */
uint8_t pthresh; /**< Prefetch threshold register. */
uint8_t hthresh; /**< Host threshold register. */
uint8_t wthresh; /**< Write-back threshold register. */
uint32_t ctx_curr;
/**< Current used hardware descriptor. */
uint32_t ctx_start;
/**< Start context position for transmit queue. */
struct igb_advctx_info ctx_cache[IGB_CTX_NUM];
/**< Hardware context history.*/
uint64_t offloads; /**< offloads of DEV_TX_OFFLOAD_* */
};
#if 1
#define RTE_PMD_USE_PREFETCH
#endif
#ifdef RTE_PMD_USE_PREFETCH
#define rte_igb_prefetch(p) rte_prefetch0(p)
#else
#define rte_igb_prefetch(p) do {} while(0)
#endif
#ifdef RTE_PMD_PACKET_PREFETCH
#define rte_packet_prefetch(p) rte_prefetch1(p)
#else
#define rte_packet_prefetch(p) do {} while(0)
#endif
/*
* Macro for VMDq feature for 1 GbE NIC.
*/
#define E1000_VMOLR_SIZE (8)
#define IGB_TSO_MAX_HDRLEN (512)
#define IGB_TSO_MAX_MSS (9216)
/*********************************************************************
*
* TX function
*
**********************************************************************/
/*
*There're some limitations in hardware for TCP segmentation offload. We
*should check whether the parameters are valid.
*/
static inline uint64_t
check_tso_para(uint64_t ol_req, union igb_tx_offload ol_para)
{
if (!(ol_req & PKT_TX_TCP_SEG))
return ol_req;
if ((ol_para.tso_segsz > IGB_TSO_MAX_MSS) || (ol_para.l2_len +
ol_para.l3_len + ol_para.l4_len > IGB_TSO_MAX_HDRLEN)) {
ol_req &= ~PKT_TX_TCP_SEG;
ol_req |= PKT_TX_TCP_CKSUM;
}
return ol_req;
}
/*
* Advanced context descriptor are almost same between igb/ixgbe
* This is a separate function, looking for optimization opportunity here
* Rework required to go with the pre-defined values.
*/
static inline void
igbe_set_xmit_ctx(struct igb_tx_queue* txq,
volatile struct e1000_adv_tx_context_desc *ctx_txd,
uint64_t ol_flags, union igb_tx_offload tx_offload)
{
uint32_t type_tucmd_mlhl;
uint32_t mss_l4len_idx;
uint32_t ctx_idx, ctx_curr;
uint32_t vlan_macip_lens;
union igb_tx_offload tx_offload_mask;
ctx_curr = txq->ctx_curr;
ctx_idx = ctx_curr + txq->ctx_start;
tx_offload_mask.data = 0;
type_tucmd_mlhl = 0;
/* Specify which HW CTX to upload. */
mss_l4len_idx = (ctx_idx << E1000_ADVTXD_IDX_SHIFT);
if (ol_flags & PKT_TX_VLAN_PKT)
tx_offload_mask.data |= TX_VLAN_CMP_MASK;
/* check if TCP segmentation required for this packet */
if (ol_flags & PKT_TX_TCP_SEG) {
/* implies IP cksum in IPv4 */
if (ol_flags & PKT_TX_IP_CKSUM)
type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4 |
E1000_ADVTXD_TUCMD_L4T_TCP |
E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
else
type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV6 |
E1000_ADVTXD_TUCMD_L4T_TCP |
E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
tx_offload_mask.data |= TX_TSO_CMP_MASK;
mss_l4len_idx |= tx_offload.tso_segsz << E1000_ADVTXD_MSS_SHIFT;
mss_l4len_idx |= tx_offload.l4_len << E1000_ADVTXD_L4LEN_SHIFT;
} else { /* no TSO, check if hardware checksum is needed */
if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK))
tx_offload_mask.data |= TX_MACIP_LEN_CMP_MASK;
if (ol_flags & PKT_TX_IP_CKSUM)
type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4;
switch (ol_flags & PKT_TX_L4_MASK) {
case PKT_TX_UDP_CKSUM:
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP |
E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
mss_l4len_idx |= sizeof(struct udp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
break;
case PKT_TX_TCP_CKSUM:
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP |
E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
mss_l4len_idx |= sizeof(struct tcp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
break;
case PKT_TX_SCTP_CKSUM:
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP |
E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
mss_l4len_idx |= sizeof(struct sctp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
break;
default:
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_RSV |
E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
break;
}
}
txq->ctx_cache[ctx_curr].flags = ol_flags;
txq->ctx_cache[ctx_curr].tx_offload.data =
tx_offload_mask.data & tx_offload.data;
txq->ctx_cache[ctx_curr].tx_offload_mask = tx_offload_mask;
ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
vlan_macip_lens = (uint32_t)tx_offload.data;
ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
ctx_txd->mss_l4len_idx = rte_cpu_to_le_32(mss_l4len_idx);
ctx_txd->seqnum_seed = 0;
}
/*
* Check which hardware context can be used. Use the existing match
* or create a new context descriptor.
*/
static inline uint32_t
what_advctx_update(struct igb_tx_queue *txq, uint64_t flags,
union igb_tx_offload tx_offload)
{
/* If match with the current context */
if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
(txq->ctx_cache[txq->ctx_curr].tx_offload.data ==
(txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data & tx_offload.data)))) {
return txq->ctx_curr;
}
/* If match with the second context */
txq->ctx_curr ^= 1;
if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
(txq->ctx_cache[txq->ctx_curr].tx_offload.data ==
(txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data & tx_offload.data)))) {
return txq->ctx_curr;
}
/* Mismatch, use the previous context */
return IGB_CTX_NUM;
}
static inline uint32_t
tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
{
static const uint32_t l4_olinfo[2] = {0, E1000_ADVTXD_POPTS_TXSM};
static const uint32_t l3_olinfo[2] = {0, E1000_ADVTXD_POPTS_IXSM};
uint32_t tmp;
tmp = l4_olinfo[(ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM];
tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
tmp |= l4_olinfo[(ol_flags & PKT_TX_TCP_SEG) != 0];
return tmp;
}
static inline uint32_t
tx_desc_vlan_flags_to_cmdtype(uint64_t ol_flags)
{
uint32_t cmdtype;
static uint32_t vlan_cmd[2] = {0, E1000_ADVTXD_DCMD_VLE};
static uint32_t tso_cmd[2] = {0, E1000_ADVTXD_DCMD_TSE};
cmdtype = vlan_cmd[(ol_flags & PKT_TX_VLAN_PKT) != 0];
cmdtype |= tso_cmd[(ol_flags & PKT_TX_TCP_SEG) != 0];
return cmdtype;
}
uint16_t
eth_igb_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct igb_tx_queue *txq;
struct igb_tx_entry *sw_ring;
struct igb_tx_entry *txe, *txn;
volatile union e1000_adv_tx_desc *txr;
volatile union e1000_adv_tx_desc *txd;
struct rte_mbuf *tx_pkt;
struct rte_mbuf *m_seg;
uint64_t buf_dma_addr;
uint32_t olinfo_status;
uint32_t cmd_type_len;
uint32_t pkt_len;
uint16_t slen;
uint64_t ol_flags;
uint16_t tx_end;
uint16_t tx_id;
uint16_t tx_last;
uint16_t nb_tx;
uint64_t tx_ol_req;
uint32_t new_ctx = 0;
uint32_t ctx = 0;
union igb_tx_offload tx_offload = {0};
txq = tx_queue;
sw_ring = txq->sw_ring;
txr = txq->tx_ring;
tx_id = txq->tx_tail;
txe = &sw_ring[tx_id];
for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
tx_pkt = *tx_pkts++;
pkt_len = tx_pkt->pkt_len;
RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
/*
* The number of descriptors that must be allocated for a
* packet is the number of segments of that packet, plus 1
* Context Descriptor for the VLAN Tag Identifier, if any.
* Determine the last TX descriptor to allocate in the TX ring
* for the packet, starting from the current position (tx_id)
* in the ring.
*/
tx_last = (uint16_t) (tx_id + tx_pkt->nb_segs - 1);
ol_flags = tx_pkt->ol_flags;
tx_ol_req = ol_flags & IGB_TX_OFFLOAD_MASK;
/* If a Context Descriptor need be built . */
if (tx_ol_req) {
tx_offload.l2_len = tx_pkt->l2_len;
tx_offload.l3_len = tx_pkt->l3_len;
tx_offload.l4_len = tx_pkt->l4_len;
tx_offload.vlan_tci = tx_pkt->vlan_tci;
tx_offload.tso_segsz = tx_pkt->tso_segsz;
tx_ol_req = check_tso_para(tx_ol_req, tx_offload);
ctx = what_advctx_update(txq, tx_ol_req, tx_offload);
/* Only allocate context descriptor if required*/
new_ctx = (ctx == IGB_CTX_NUM);
ctx = txq->ctx_curr + txq->ctx_start;
tx_last = (uint16_t) (tx_last + new_ctx);
}
if (tx_last >= txq->nb_tx_desc)
tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
" tx_first=%u tx_last=%u",
(unsigned) txq->port_id,
(unsigned) txq->queue_id,
(unsigned) pkt_len,
(unsigned) tx_id,
(unsigned) tx_last);
/*
* Check if there are enough free descriptors in the TX ring
* to transmit the next packet.
* This operation is based on the two following rules:
*
* 1- Only check that the last needed TX descriptor can be
* allocated (by construction, if that descriptor is free,
* all intermediate ones are also free).
*
* For this purpose, the index of the last TX descriptor
* used for a packet (the "last descriptor" of a packet)
* is recorded in the TX entries (the last one included)
* that are associated with all TX descriptors allocated
* for that packet.
*
* 2- Avoid to allocate the last free TX descriptor of the
* ring, in order to never set the TDT register with the
* same value stored in parallel by the NIC in the TDH
* register, which makes the TX engine of the NIC enter
* in a deadlock situation.
*
* By extension, avoid to allocate a free descriptor that
* belongs to the last set of free descriptors allocated
* to the same packet previously transmitted.
*/
/*
* The "last descriptor" of the previously sent packet, if any,
* which used the last descriptor to allocate.
*/
tx_end = sw_ring[tx_last].last_id;
/*
* The next descriptor following that "last descriptor" in the
* ring.
*/
tx_end = sw_ring[tx_end].next_id;
/*
* The "last descriptor" associated with that next descriptor.
*/
tx_end = sw_ring[tx_end].last_id;
/*
* Check that this descriptor is free.
*/
if (! (txr[tx_end].wb.status & E1000_TXD_STAT_DD)) {
if (nb_tx == 0)
return 0;
goto end_of_tx;
}
/*
* Set common flags of all TX Data Descriptors.
*
* The following bits must be set in all Data Descriptors:
* - E1000_ADVTXD_DTYP_DATA
* - E1000_ADVTXD_DCMD_DEXT
*
* The following bits must be set in the first Data Descriptor
* and are ignored in the other ones:
* - E1000_ADVTXD_DCMD_IFCS
* - E1000_ADVTXD_MAC_1588
* - E1000_ADVTXD_DCMD_VLE
*
* The following bits must only be set in the last Data
* Descriptor:
* - E1000_TXD_CMD_EOP
*
* The following bits can be set in any Data Descriptor, but
* are only set in the last Data Descriptor:
* - E1000_TXD_CMD_RS
*/
cmd_type_len = txq->txd_type |
E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
if (tx_ol_req & PKT_TX_TCP_SEG)
pkt_len -= (tx_pkt->l2_len + tx_pkt->l3_len + tx_pkt->l4_len);
olinfo_status = (pkt_len << E1000_ADVTXD_PAYLEN_SHIFT);
#if defined(RTE_LIBRTE_IEEE1588)
if (ol_flags & PKT_TX_IEEE1588_TMST)
cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
#endif
if (tx_ol_req) {
/* Setup TX Advanced context descriptor if required */
if (new_ctx) {
volatile struct e1000_adv_tx_context_desc *
ctx_txd;
ctx_txd = (volatile struct
e1000_adv_tx_context_desc *)
&txr[tx_id];
txn = &sw_ring[txe->next_id];
RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
if (txe->mbuf != NULL) {
rte_pktmbuf_free_seg(txe->mbuf);
txe->mbuf = NULL;
}
igbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req, tx_offload);
txe->last_id = tx_last;
tx_id = txe->next_id;
txe = txn;
}
/* Setup the TX Advanced Data Descriptor */
cmd_type_len |= tx_desc_vlan_flags_to_cmdtype(tx_ol_req);
olinfo_status |= tx_desc_cksum_flags_to_olinfo(tx_ol_req);
olinfo_status |= (ctx << E1000_ADVTXD_IDX_SHIFT);
}
m_seg = tx_pkt;
do {
txn = &sw_ring[txe->next_id];
txd = &txr[tx_id];
if (txe->mbuf != NULL)
rte_pktmbuf_free_seg(txe->mbuf);
txe->mbuf = m_seg;
/*
* Set up transmit descriptor.
*/
slen = (uint16_t) m_seg->data_len;
buf_dma_addr = rte_mbuf_data_iova(m_seg);
txd->read.buffer_addr =
rte_cpu_to_le_64(buf_dma_addr);
txd->read.cmd_type_len =
rte_cpu_to_le_32(cmd_type_len | slen);
txd->read.olinfo_status =
rte_cpu_to_le_32(olinfo_status);
txe->last_id = tx_last;
tx_id = txe->next_id;
txe = txn;
m_seg = m_seg->next;
} while (m_seg != NULL);
/*
* The last packet data descriptor needs End Of Packet (EOP)
* and Report Status (RS).
*/
txd->read.cmd_type_len |=
rte_cpu_to_le_32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
}
end_of_tx:
rte_wmb();
/*
* Set the Transmit Descriptor Tail (TDT).
*/
E1000_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, tx_id);
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
(unsigned) txq->port_id, (unsigned) txq->queue_id,
(unsigned) tx_id, (unsigned) nb_tx);
txq->tx_tail = tx_id;
return nb_tx;
}
/*********************************************************************
*
* TX prep functions
*
**********************************************************************/
uint16_t
eth_igb_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
int i, ret;
struct rte_mbuf *m;
for (i = 0; i < nb_pkts; i++) {
m = tx_pkts[i];
/* Check some limitations for TSO in hardware */
if (m->ol_flags & PKT_TX_TCP_SEG)
if ((m->tso_segsz > IGB_TSO_MAX_MSS) ||
(m->l2_len + m->l3_len + m->l4_len >
IGB_TSO_MAX_HDRLEN)) {
rte_errno = -EINVAL;
return i;
}
if (m->ol_flags & IGB_TX_OFFLOAD_NOTSUP_MASK) {
rte_errno = -ENOTSUP;
return i;
}
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
ret = rte_validate_tx_offload(m);
if (ret != 0) {
rte_errno = ret;
return i;
}
#endif
ret = rte_net_intel_cksum_prepare(m);
if (ret != 0) {
rte_errno = ret;
return i;
}
}
return i;
}
/*********************************************************************
*
* RX functions
*
**********************************************************************/
#define IGB_PACKET_TYPE_IPV4 0X01
#define IGB_PACKET_TYPE_IPV4_TCP 0X11
#define IGB_PACKET_TYPE_IPV4_UDP 0X21
#define IGB_PACKET_TYPE_IPV4_SCTP 0X41
#define IGB_PACKET_TYPE_IPV4_EXT 0X03
#define IGB_PACKET_TYPE_IPV4_EXT_SCTP 0X43
#define IGB_PACKET_TYPE_IPV6 0X04
#define IGB_PACKET_TYPE_IPV6_TCP 0X14
#define IGB_PACKET_TYPE_IPV6_UDP 0X24
#define IGB_PACKET_TYPE_IPV6_EXT 0X0C
#define IGB_PACKET_TYPE_IPV6_EXT_TCP 0X1C
#define IGB_PACKET_TYPE_IPV6_EXT_UDP 0X2C
#define IGB_PACKET_TYPE_IPV4_IPV6 0X05
#define IGB_PACKET_TYPE_IPV4_IPV6_TCP 0X15
#define IGB_PACKET_TYPE_IPV4_IPV6_UDP 0X25
#define IGB_PACKET_TYPE_IPV4_IPV6_EXT 0X0D
#define IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP 0X1D
#define IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP 0X2D
#define IGB_PACKET_TYPE_MAX 0X80
#define IGB_PACKET_TYPE_MASK 0X7F
#define IGB_PACKET_TYPE_SHIFT 0X04
static inline uint32_t
igb_rxd_pkt_info_to_pkt_type(uint16_t pkt_info)
{
static const uint32_t
ptype_table[IGB_PACKET_TYPE_MAX] __rte_cache_aligned = {
[IGB_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4,
[IGB_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT,
[IGB_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6,
[IGB_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6,
[IGB_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6_EXT,
[IGB_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT,
[IGB_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
[IGB_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
[IGB_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
[IGB_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
[IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
[IGB_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
[IGB_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
[IGB_PACKET_TYPE_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
[IGB_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
[IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
[IGB_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP,
[IGB_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP,
};
if (unlikely(pkt_info & E1000_RXDADV_PKTTYPE_ETQF))
return RTE_PTYPE_UNKNOWN;
pkt_info = (pkt_info >> IGB_PACKET_TYPE_SHIFT) & IGB_PACKET_TYPE_MASK;
return ptype_table[pkt_info];
}
static inline uint64_t
rx_desc_hlen_type_rss_to_pkt_flags(struct igb_rx_queue *rxq, uint32_t hl_tp_rs)
{
uint64_t pkt_flags = ((hl_tp_rs & 0x0F) == 0) ? 0 : PKT_RX_RSS_HASH;
#if defined(RTE_LIBRTE_IEEE1588)
static uint32_t ip_pkt_etqf_map[8] = {
0, 0, 0, PKT_RX_IEEE1588_PTP,
0, 0, 0, 0,
};
struct rte_eth_dev dev = rte_eth_devices[rxq->port_id];
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev.data->dev_private);
/* EtherType is in bits 8:10 in Packet Type, and not in the default 0:2 */
if (hw->mac.type == e1000_i210)
pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 12) & 0x07];
else
pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 4) & 0x07];
#else
RTE_SET_USED(rxq);
#endif
return pkt_flags;
}
static inline uint64_t
rx_desc_status_to_pkt_flags(uint32_t rx_status)
{
uint64_t pkt_flags;
/* Check if VLAN present */
pkt_flags = ((rx_status & E1000_RXD_STAT_VP) ?
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED : 0);
#if defined(RTE_LIBRTE_IEEE1588)
if (rx_status & E1000_RXD_STAT_TMST)
pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
#endif
return pkt_flags;
}
static inline uint64_t
rx_desc_error_to_pkt_flags(uint32_t rx_status)
{
/*
* Bit 30: IPE, IPv4 checksum error
* Bit 29: L4I, L4I integrity error
*/
static uint64_t error_to_pkt_flags_map[4] = {
PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD,
PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD,
PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
};
return error_to_pkt_flags_map[(rx_status >>
E1000_RXD_ERR_CKSUM_BIT) & E1000_RXD_ERR_CKSUM_MSK];
}
uint16_t
eth_igb_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct igb_rx_queue *rxq;
volatile union e1000_adv_rx_desc *rx_ring;
volatile union e1000_adv_rx_desc *rxdp;
struct igb_rx_entry *sw_ring;
struct igb_rx_entry *rxe;
struct rte_mbuf *rxm;
struct rte_mbuf *nmb;
union e1000_adv_rx_desc rxd;
uint64_t dma_addr;
uint32_t staterr;
uint32_t hlen_type_rss;
uint16_t pkt_len;
uint16_t rx_id;
uint16_t nb_rx;
uint16_t nb_hold;
uint64_t pkt_flags;
nb_rx = 0;
nb_hold = 0;
rxq = rx_queue;
rx_id = rxq->rx_tail;
rx_ring = rxq->rx_ring;
sw_ring = rxq->sw_ring;
while (nb_rx < nb_pkts) {
/*
* The order of operations here is important as the DD status
* bit must not be read after any other descriptor fields.
* rx_ring and rxdp are pointing to volatile data so the order
* of accesses cannot be reordered by the compiler. If they were
* not volatile, they could be reordered which could lead to
* using invalid descriptor fields when read from rxd.
*/
rxdp = &rx_ring[rx_id];
staterr = rxdp->wb.upper.status_error;
if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
break;
rxd = *rxdp;
/*
* End of packet.
*
* If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
* likely to be invalid and to be dropped by the various
* validation checks performed by the network stack.
*
* Allocate a new mbuf to replenish the RX ring descriptor.
* If the allocation fails:
* - arrange for that RX descriptor to be the first one
* being parsed the next time the receive function is
* invoked [on the same queue].
*
* - Stop parsing the RX ring and return immediately.
*
* This policy do not drop the packet received in the RX
* descriptor for which the allocation of a new mbuf failed.
* Thus, it allows that packet to be later retrieved if
* mbuf have been freed in the mean time.
* As a side effect, holding RX descriptors instead of
* systematically giving them back to the NIC may lead to
* RX ring exhaustion situations.
* However, the NIC can gracefully prevent such situations
* to happen by sending specific "back-pressure" flow control
* frames to its peer(s).
*/
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
"staterr=0x%x pkt_len=%u",
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
(unsigned) rx_id, (unsigned) staterr,
(unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
if (nmb == NULL) {
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
"queue_id=%u", (unsigned) rxq->port_id,
(unsigned) rxq->queue_id);
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
break;
}
nb_hold++;
rxe = &sw_ring[rx_id];
rx_id++;
if (rx_id == rxq->nb_rx_desc)
rx_id = 0;
/* Prefetch next mbuf while processing current one. */
rte_igb_prefetch(sw_ring[rx_id].mbuf);
/*
* When next RX descriptor is on a cache-line boundary,
* prefetch the next 4 RX descriptors and the next 8 pointers
* to mbufs.
*/
if ((rx_id & 0x3) == 0) {
rte_igb_prefetch(&rx_ring[rx_id]);
rte_igb_prefetch(&sw_ring[rx_id]);
}
rxm = rxe->mbuf;
rxe->mbuf = nmb;
dma_addr =
rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
rxdp->read.hdr_addr = 0;
rxdp->read.pkt_addr = dma_addr;
/*
* Initialize the returned mbuf.
* 1) setup generic mbuf fields:
* - number of segments,
* - next segment,
* - packet length,
* - RX port identifier.
* 2) integrate hardware offload data, if any:
* - RSS flag & hash,
* - IP checksum flag,
* - VLAN TCI, if any,
* - error flags.
*/
pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
rxq->crc_len);
rxm->data_off = RTE_PKTMBUF_HEADROOM;
rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
rxm->nb_segs = 1;
rxm->next = NULL;
rxm->pkt_len = pkt_len;
rxm->data_len = pkt_len;
rxm->port = rxq->port_id;
rxm->hash.rss = rxd.wb.lower.hi_dword.rss;
hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
/*
* The vlan_tci field is only valid when PKT_RX_VLAN is
* set in the pkt_flags field and must be in CPU byte order.
*/
if ((staterr & rte_cpu_to_le_32(E1000_RXDEXT_STATERR_LB)) &&
(rxq->flags & IGB_RXQ_FLAG_LB_BSWAP_VLAN)) {
rxm->vlan_tci = rte_be_to_cpu_16(rxd.wb.upper.vlan);
} else {
rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
}
pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(rxq, hlen_type_rss);
pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
rxm->ol_flags = pkt_flags;
rxm->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb.lower.
lo_dword.hs_rss.pkt_info);
/*
* Store the mbuf address into the next entry of the array
* of returned packets.
*/
rx_pkts[nb_rx++] = rxm;
}
rxq->rx_tail = rx_id;
/*
* If the number of free RX descriptors is greater than the RX free
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
* register.
* Update the RDT with the value of the last processed RX descriptor
* minus 1, to guarantee that the RDT register is never equal to the
* RDH register, which creates a "full" ring situtation from the
* hardware point of view...
*/
nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
if (nb_hold > rxq->rx_free_thresh) {
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
"nb_hold=%u nb_rx=%u",
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
(unsigned) rx_id, (unsigned) nb_hold,
(unsigned) nb_rx);
rx_id = (uint16_t) ((rx_id == 0) ?
(rxq->nb_rx_desc - 1) : (rx_id - 1));
E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
nb_hold = 0;
}
rxq->nb_rx_hold = nb_hold;
return nb_rx;
}
uint16_t
eth_igb_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct igb_rx_queue *rxq;
volatile union e1000_adv_rx_desc *rx_ring;
volatile union e1000_adv_rx_desc *rxdp;
struct igb_rx_entry *sw_ring;
struct igb_rx_entry *rxe;
struct rte_mbuf *first_seg;
struct rte_mbuf *last_seg;
struct rte_mbuf *rxm;
struct rte_mbuf *nmb;
union e1000_adv_rx_desc rxd;
uint64_t dma; /* Physical address of mbuf data buffer */
uint32_t staterr;
uint32_t hlen_type_rss;
uint16_t rx_id;
uint16_t nb_rx;
uint16_t nb_hold;
uint16_t data_len;
uint64_t pkt_flags;
nb_rx = 0;
nb_hold = 0;
rxq = rx_queue;
rx_id = rxq->rx_tail;
rx_ring = rxq->rx_ring;
sw_ring = rxq->sw_ring;
/*
* Retrieve RX context of current packet, if any.
*/
first_seg = rxq->pkt_first_seg;
last_seg = rxq->pkt_last_seg;
while (nb_rx < nb_pkts) {
next_desc:
/*
* The order of operations here is important as the DD status
* bit must not be read after any other descriptor fields.
* rx_ring and rxdp are pointing to volatile data so the order
* of accesses cannot be reordered by the compiler. If they were
* not volatile, they could be reordered which could lead to
* using invalid descriptor fields when read from rxd.
*/
rxdp = &rx_ring[rx_id];
staterr = rxdp->wb.upper.status_error;
if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
break;
rxd = *rxdp;
/*
* Descriptor done.
*
* Allocate a new mbuf to replenish the RX ring descriptor.
* If the allocation fails:
* - arrange for that RX descriptor to be the first one
* being parsed the next time the receive function is
* invoked [on the same queue].
*
* - Stop parsing the RX ring and return immediately.
*
* This policy does not drop the packet received in the RX
* descriptor for which the allocation of a new mbuf failed.
* Thus, it allows that packet to be later retrieved if
* mbuf have been freed in the mean time.
* As a side effect, holding RX descriptors instead of
* systematically giving them back to the NIC may lead to
* RX ring exhaustion situations.
* However, the NIC can gracefully prevent such situations
* to happen by sending specific "back-pressure" flow control
* frames to its peer(s).
*/
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
"staterr=0x%x data_len=%u",
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
(unsigned) rx_id, (unsigned) staterr,
(unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
if (nmb == NULL) {
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
"queue_id=%u", (unsigned) rxq->port_id,
(unsigned) rxq->queue_id);
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
break;
}
nb_hold++;
rxe = &sw_ring[rx_id];
rx_id++;
if (rx_id == rxq->nb_rx_desc)
rx_id = 0;
/* Prefetch next mbuf while processing current one. */
rte_igb_prefetch(sw_ring[rx_id].mbuf);
/*
* When next RX descriptor is on a cache-line boundary,
* prefetch the next 4 RX descriptors and the next 8 pointers
* to mbufs.
*/
if ((rx_id & 0x3) == 0) {
rte_igb_prefetch(&rx_ring[rx_id]);
rte_igb_prefetch(&sw_ring[rx_id]);
}
/*
* Update RX descriptor with the physical address of the new
* data buffer of the new allocated mbuf.
*/
rxm = rxe->mbuf;
rxe->mbuf = nmb;
dma = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
rxdp->read.pkt_addr = dma;
rxdp->read.hdr_addr = 0;
/*
* Set data length & data buffer address of mbuf.
*/
data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
rxm->data_len = data_len;
rxm->data_off = RTE_PKTMBUF_HEADROOM;
/*
* If this is the first buffer of the received packet,
* set the pointer to the first mbuf of the packet and
* initialize its context.
* Otherwise, update the total length and the number of segments
* of the current scattered packet, and update the pointer to
* the last mbuf of the current packet.
*/
if (first_seg == NULL) {
first_seg = rxm;
first_seg->pkt_len = data_len;
first_seg->nb_segs = 1;
} else {
first_seg->pkt_len += data_len;
first_seg->nb_segs++;
last_seg->next = rxm;
}
/*
* If this is not the last buffer of the received packet,
* update the pointer to the last mbuf of the current scattered
* packet and continue to parse the RX ring.
*/
if (! (staterr & E1000_RXD_STAT_EOP)) {
last_seg = rxm;
goto next_desc;
}
/*
* This is the last buffer of the received packet.
* If the CRC is not stripped by the hardware:
* - Subtract the CRC length from the total packet length.
* - If the last buffer only contains the whole CRC or a part
* of it, free the mbuf associated to the last buffer.
* If part of the CRC is also contained in the previous
* mbuf, subtract the length of that CRC part from the
* data length of the previous mbuf.
*/
rxm->next = NULL;
if (unlikely(rxq->crc_len > 0)) {
first_seg->pkt_len -= ETHER_CRC_LEN;
if (data_len <= ETHER_CRC_LEN) {
rte_pktmbuf_free_seg(rxm);
first_seg->nb_segs--;
last_seg->data_len = (uint16_t)
(last_seg->data_len -
(ETHER_CRC_LEN - data_len));
last_seg->next = NULL;
} else
rxm->data_len =
(uint16_t) (data_len - ETHER_CRC_LEN);
}
/*
* Initialize the first mbuf of the returned packet:
* - RX port identifier,
* - hardware offload data, if any:
* - RSS flag & hash,
* - IP checksum flag,
* - VLAN TCI, if any,
* - error flags.
*/
first_seg->port = rxq->port_id;
first_seg->hash.rss = rxd.wb.lower.hi_dword.rss;
/*
* The vlan_tci field is only valid when PKT_RX_VLAN is
* set in the pkt_flags field and must be in CPU byte order.
*/
if ((staterr & rte_cpu_to_le_32(E1000_RXDEXT_STATERR_LB)) &&
(rxq->flags & IGB_RXQ_FLAG_LB_BSWAP_VLAN)) {
first_seg->vlan_tci =
rte_be_to_cpu_16(rxd.wb.upper.vlan);
} else {
first_seg->vlan_tci =
rte_le_to_cpu_16(rxd.wb.upper.vlan);
}
hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(rxq, hlen_type_rss);
pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
first_seg->ol_flags = pkt_flags;
first_seg->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb.
lower.lo_dword.hs_rss.pkt_info);
/* Prefetch data of first segment, if configured to do so. */
rte_packet_prefetch((char *)first_seg->buf_addr +
first_seg->data_off);
/*
* Store the mbuf address into the next entry of the array
* of returned packets.
*/
rx_pkts[nb_rx++] = first_seg;
/*
* Setup receipt context for a new packet.
*/
first_seg = NULL;
}
/*
* Record index of the next RX descriptor to probe.
*/
rxq->rx_tail = rx_id;
/*
* Save receive context.
*/
rxq->pkt_first_seg = first_seg;
rxq->pkt_last_seg = last_seg;
/*
* If the number of free RX descriptors is greater than the RX free
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
* register.
* Update the RDT with the value of the last processed RX descriptor
* minus 1, to guarantee that the RDT register is never equal to the
* RDH register, which creates a "full" ring situtation from the
* hardware point of view...
*/
nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
if (nb_hold > rxq->rx_free_thresh) {
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
"nb_hold=%u nb_rx=%u",
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
(unsigned) rx_id, (unsigned) nb_hold,
(unsigned) nb_rx);
rx_id = (uint16_t) ((rx_id == 0) ?
(rxq->nb_rx_desc - 1) : (rx_id - 1));
E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
nb_hold = 0;
}
rxq->nb_rx_hold = nb_hold;
return nb_rx;
}
/*
* Maximum number of Ring Descriptors.
*
* Since RDLEN/TDLEN should be multiple of 128bytes, the number of ring
* desscriptors should meet the following condition:
* (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
*/
static void
igb_tx_queue_release_mbufs(struct igb_tx_queue *txq)
{
unsigned i;
if (txq->sw_ring != NULL) {
for (i = 0; i < txq->nb_tx_desc; i++) {
if (txq->sw_ring[i].mbuf != NULL) {
rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
txq->sw_ring[i].mbuf = NULL;
}
}
}
}
static void
igb_tx_queue_release(struct igb_tx_queue *txq)
{
if (txq != NULL) {
igb_tx_queue_release_mbufs(txq);
rte_free(txq->sw_ring);
rte_free(txq);
}
}
void
eth_igb_tx_queue_release(void *txq)
{
igb_tx_queue_release(txq);
}
static int
igb_tx_done_cleanup(struct igb_tx_queue *txq, uint32_t free_cnt)
{
struct igb_tx_entry *sw_ring;
volatile union e1000_adv_tx_desc *txr;
uint16_t tx_first; /* First segment analyzed. */
uint16_t tx_id; /* Current segment being processed. */
uint16_t tx_last; /* Last segment in the current packet. */
uint16_t tx_next; /* First segment of the next packet. */
int count;
if (txq != NULL) {
count = 0;
sw_ring = txq->sw_ring;
txr = txq->tx_ring;
/*
* tx_tail is the last sent packet on the sw_ring. Goto the end
* of that packet (the last segment in the packet chain) and
* then the next segment will be the start of the oldest segment
* in the sw_ring. This is the first packet that will be
* attempted to be freed.
*/
/* Get last segment in most recently added packet. */
tx_first = sw_ring[txq->tx_tail].last_id;
/* Get the next segment, which is the oldest segment in ring. */
tx_first = sw_ring[tx_first].next_id;
/* Set the current index to the first. */
tx_id = tx_first;
/*
* Loop through each packet. For each packet, verify that an
* mbuf exists and that the last segment is free. If so, free
* it and move on.
*/
while (1) {
tx_last = sw_ring[tx_id].last_id;
if (sw_ring[tx_last].mbuf) {
if (txr[tx_last].wb.status &
E1000_TXD_STAT_DD) {
/*
* Increment the number of packets
* freed.
*/
count++;
/* Get the start of the next packet. */
tx_next = sw_ring[tx_last].next_id;
/*
* Loop through all segments in a
* packet.
*/
do {
rte_pktmbuf_free_seg(sw_ring[tx_id].mbuf);
sw_ring[tx_id].mbuf = NULL;
sw_ring[tx_id].last_id = tx_id;
/* Move to next segemnt. */
tx_id = sw_ring[tx_id].next_id;
} while (tx_id != tx_next);
if (unlikely(count == (int)free_cnt))
break;
} else
/*
* mbuf still in use, nothing left to
* free.
*/
break;
} else {
/*
* There are multiple reasons to be here:
* 1) All the packets on the ring have been
* freed - tx_id is equal to tx_first
* and some packets have been freed.
* - Done, exit
* 2) Interfaces has not sent a rings worth of
* packets yet, so the segment after tail is
* still empty. Or a previous call to this
* function freed some of the segments but
* not all so there is a hole in the list.
* Hopefully this is a rare case.
* - Walk the list and find the next mbuf. If
* there isn't one, then done.
*/
if (likely((tx_id == tx_first) && (count != 0)))
break;
/*
* Walk the list and find the next mbuf, if any.
*/
do {
/* Move to next segemnt. */
tx_id = sw_ring[tx_id].next_id;
if (sw_ring[tx_id].mbuf)
break;
} while (tx_id != tx_first);
/*
* Determine why previous loop bailed. If there
* is not an mbuf, done.
*/
if (sw_ring[tx_id].mbuf == NULL)
break;
}
}
} else
count = -ENODEV;
return count;
}
int
eth_igb_tx_done_cleanup(void *txq, uint32_t free_cnt)
{
return igb_tx_done_cleanup(txq, free_cnt);
}
static void
igb_reset_tx_queue_stat(struct igb_tx_queue *txq)
{
txq->tx_head = 0;
txq->tx_tail = 0;
txq->ctx_curr = 0;
memset((void*)&txq->ctx_cache, 0,
IGB_CTX_NUM * sizeof(struct igb_advctx_info));
}
static void
igb_reset_tx_queue(struct igb_tx_queue *txq, struct rte_eth_dev *dev)
{
static const union e1000_adv_tx_desc zeroed_desc = {{0}};
struct igb_tx_entry *txe = txq->sw_ring;
uint16_t i, prev;
struct e1000_hw *hw;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* Zero out HW ring memory */
for (i = 0; i < txq->nb_tx_desc; i++) {
txq->tx_ring[i] = zeroed_desc;
}
/* Initialize ring entries */
prev = (uint16_t)(txq->nb_tx_desc - 1);
for (i = 0; i < txq->nb_tx_desc; i++) {
volatile union e1000_adv_tx_desc *txd = &(txq->tx_ring[i]);
txd->wb.status = E1000_TXD_STAT_DD;
txe[i].mbuf = NULL;
txe[i].last_id = i;
txe[prev].next_id = i;
prev = i;
}
txq->txd_type = E1000_ADVTXD_DTYP_DATA;
/* 82575 specific, each tx queue will use 2 hw contexts */
if (hw->mac.type == e1000_82575)
txq->ctx_start = txq->queue_id * IGB_CTX_NUM;
igb_reset_tx_queue_stat(txq);
}
uint64_t
igb_get_tx_port_offloads_capa(struct rte_eth_dev *dev)
{
uint64_t tx_offload_capa;
RTE_SET_USED(dev);
tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_SCTP_CKSUM |
DEV_TX_OFFLOAD_TCP_TSO |
DEV_TX_OFFLOAD_MULTI_SEGS;
return tx_offload_capa;
}
uint64_t
igb_get_tx_queue_offloads_capa(struct rte_eth_dev *dev)
{
uint64_t tx_queue_offload_capa;
tx_queue_offload_capa = igb_get_tx_port_offloads_capa(dev);
return tx_queue_offload_capa;
}
int
eth_igb_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
const struct rte_memzone *tz;
struct igb_tx_queue *txq;
struct e1000_hw *hw;
uint32_t size;
ethdev: new Rx/Tx offloads API This patch check if a input requested offloading is valid or not. Any reuqested offloading must be supported in the device capabilities. Any offloading is disabled by default if it is not set in the parameter dev_conf->[rt]xmode.offloads to rte_eth_dev_configure() and [rt]x_conf->offloads to rte_eth_[rt]x_queue_setup(). If any offloading is enabled in rte_eth_dev_configure() by application, it is enabled on all queues no matter whether it is per-queue or per-port type and no matter whether it is set or cleared in [rt]x_conf->offloads to rte_eth_[rt]x_queue_setup(). If a per-queue offloading hasn't be enabled in rte_eth_dev_configure(), it can be enabled or disabled for individual queue in ret_eth_[rt]x_queue_setup(). A new added offloading is the one which hasn't been enabled in rte_eth_dev_configure() and is reuqested to be enabled in rte_eth_[rt]x_queue_setup(), it must be per-queue type, otherwise trigger an error log. The underlying PMD must be aware that the requested offloadings to PMD specific queue_setup() function only carries those new added offloadings of per-queue type. This patch can make above such checking in a common way in rte_ethdev layer to avoid same checking in underlying PMD. This patch assumes that all PMDs in 18.05-rc2 have already converted to offload API defined in 17.11 . It also assumes that all PMDs can return correct offloading capabilities in rte_eth_dev_infos_get(). In the beginning of [rt]x_queue_setup() of underlying PMD, add offloads = [rt]xconf->offloads | dev->data->dev_conf.[rt]xmode.offloads; to keep same as offload API defined in 17.11 to avoid upper application broken due to offload API change. PMD can use the info that input [rt]xconf->offloads only carry the new added per-queue offloads to do some optimization or some code change on base of this patch. Signed-off-by: Wei Dai <wei.dai@intel.com> Signed-off-by: Ferruh Yigit <ferruh.yigit@intel.com> Signed-off-by: Qi Zhang <qi.z.zhang@intel.com>
2018-05-10 11:56:55 +00:00
uint64_t offloads;
ethdev: new Rx/Tx offloads API This patch check if a input requested offloading is valid or not. Any reuqested offloading must be supported in the device capabilities. Any offloading is disabled by default if it is not set in the parameter dev_conf->[rt]xmode.offloads to rte_eth_dev_configure() and [rt]x_conf->offloads to rte_eth_[rt]x_queue_setup(). If any offloading is enabled in rte_eth_dev_configure() by application, it is enabled on all queues no matter whether it is per-queue or per-port type and no matter whether it is set or cleared in [rt]x_conf->offloads to rte_eth_[rt]x_queue_setup(). If a per-queue offloading hasn't be enabled in rte_eth_dev_configure(), it can be enabled or disabled for individual queue in ret_eth_[rt]x_queue_setup(). A new added offloading is the one which hasn't been enabled in rte_eth_dev_configure() and is reuqested to be enabled in rte_eth_[rt]x_queue_setup(), it must be per-queue type, otherwise trigger an error log. The underlying PMD must be aware that the requested offloadings to PMD specific queue_setup() function only carries those new added offloadings of per-queue type. This patch can make above such checking in a common way in rte_ethdev layer to avoid same checking in underlying PMD. This patch assumes that all PMDs in 18.05-rc2 have already converted to offload API defined in 17.11 . It also assumes that all PMDs can return correct offloading capabilities in rte_eth_dev_infos_get(). In the beginning of [rt]x_queue_setup() of underlying PMD, add offloads = [rt]xconf->offloads | dev->data->dev_conf.[rt]xmode.offloads; to keep same as offload API defined in 17.11 to avoid upper application broken due to offload API change. PMD can use the info that input [rt]xconf->offloads only carry the new added per-queue offloads to do some optimization or some code change on base of this patch. Signed-off-by: Wei Dai <wei.dai@intel.com> Signed-off-by: Ferruh Yigit <ferruh.yigit@intel.com> Signed-off-by: Qi Zhang <qi.z.zhang@intel.com>
2018-05-10 11:56:55 +00:00
offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/*
* Validate number of transmit descriptors.
* It must not exceed hardware maximum, and must be multiple
* of E1000_ALIGN.
*/
if (nb_desc % IGB_TXD_ALIGN != 0 ||
(nb_desc > E1000_MAX_RING_DESC) ||
(nb_desc < E1000_MIN_RING_DESC)) {
return -EINVAL;
}
/*
* The tx_free_thresh and tx_rs_thresh values are not used in the 1G
* driver.
*/
if (tx_conf->tx_free_thresh != 0)
PMD_INIT_LOG(INFO, "The tx_free_thresh parameter is not "
"used for the 1G driver.");
if (tx_conf->tx_rs_thresh != 0)
PMD_INIT_LOG(INFO, "The tx_rs_thresh parameter is not "
"used for the 1G driver.");
if (tx_conf->tx_thresh.wthresh == 0 && hw->mac.type != e1000_82576)
PMD_INIT_LOG(INFO, "To improve 1G driver performance, "
"consider setting the TX WTHRESH value to 4, 8, "
"or 16.");
/* Free memory prior to re-allocation if needed */
if (dev->data->tx_queues[queue_idx] != NULL) {
igb_tx_queue_release(dev->data->tx_queues[queue_idx]);
dev->data->tx_queues[queue_idx] = NULL;
}
/* First allocate the tx queue data structure */
txq = rte_zmalloc("ethdev TX queue", sizeof(struct igb_tx_queue),
RTE_CACHE_LINE_SIZE);
if (txq == NULL)
return -ENOMEM;
/*
* Allocate TX ring hardware descriptors. A memzone large enough to
* handle the maximum ring size is allocated in order to allow for
* resizing in later calls to the queue setup function.
*/
size = sizeof(union e1000_adv_tx_desc) * E1000_MAX_RING_DESC;
tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx, size,
E1000_ALIGN, socket_id);
if (tz == NULL) {
igb_tx_queue_release(txq);
return -ENOMEM;
}
txq->nb_tx_desc = nb_desc;
txq->pthresh = tx_conf->tx_thresh.pthresh;
txq->hthresh = tx_conf->tx_thresh.hthresh;
txq->wthresh = tx_conf->tx_thresh.wthresh;
if (txq->wthresh > 0 && hw->mac.type == e1000_82576)
txq->wthresh = 1;
txq->queue_id = queue_idx;
txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
txq->port_id = dev->data->port_id;
txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(txq->reg_idx));
txq->tx_ring_phys_addr = tz->iova;
txq->tx_ring = (union e1000_adv_tx_desc *) tz->addr;
/* Allocate software ring */
txq->sw_ring = rte_zmalloc("txq->sw_ring",
sizeof(struct igb_tx_entry) * nb_desc,
RTE_CACHE_LINE_SIZE);
if (txq->sw_ring == NULL) {
igb_tx_queue_release(txq);
return -ENOMEM;
}
PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
igb_reset_tx_queue(txq, dev);
dev->tx_pkt_burst = eth_igb_xmit_pkts;
dev->tx_pkt_prepare = &eth_igb_prep_pkts;
dev->data->tx_queues[queue_idx] = txq;
ethdev: new Rx/Tx offloads API This patch check if a input requested offloading is valid or not. Any reuqested offloading must be supported in the device capabilities. Any offloading is disabled by default if it is not set in the parameter dev_conf->[rt]xmode.offloads to rte_eth_dev_configure() and [rt]x_conf->offloads to rte_eth_[rt]x_queue_setup(). If any offloading is enabled in rte_eth_dev_configure() by application, it is enabled on all queues no matter whether it is per-queue or per-port type and no matter whether it is set or cleared in [rt]x_conf->offloads to rte_eth_[rt]x_queue_setup(). If a per-queue offloading hasn't be enabled in rte_eth_dev_configure(), it can be enabled or disabled for individual queue in ret_eth_[rt]x_queue_setup(). A new added offloading is the one which hasn't been enabled in rte_eth_dev_configure() and is reuqested to be enabled in rte_eth_[rt]x_queue_setup(), it must be per-queue type, otherwise trigger an error log. The underlying PMD must be aware that the requested offloadings to PMD specific queue_setup() function only carries those new added offloadings of per-queue type. This patch can make above such checking in a common way in rte_ethdev layer to avoid same checking in underlying PMD. This patch assumes that all PMDs in 18.05-rc2 have already converted to offload API defined in 17.11 . It also assumes that all PMDs can return correct offloading capabilities in rte_eth_dev_infos_get(). In the beginning of [rt]x_queue_setup() of underlying PMD, add offloads = [rt]xconf->offloads | dev->data->dev_conf.[rt]xmode.offloads; to keep same as offload API defined in 17.11 to avoid upper application broken due to offload API change. PMD can use the info that input [rt]xconf->offloads only carry the new added per-queue offloads to do some optimization or some code change on base of this patch. Signed-off-by: Wei Dai <wei.dai@intel.com> Signed-off-by: Ferruh Yigit <ferruh.yigit@intel.com> Signed-off-by: Qi Zhang <qi.z.zhang@intel.com>
2018-05-10 11:56:55 +00:00
txq->offloads = offloads;
return 0;
}
static void
igb_rx_queue_release_mbufs(struct igb_rx_queue *rxq)
{
unsigned i;
if (rxq->sw_ring != NULL) {
for (i = 0; i < rxq->nb_rx_desc; i++) {
if (rxq->sw_ring[i].mbuf != NULL) {
rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
rxq->sw_ring[i].mbuf = NULL;
}
}
}
}
static void
igb_rx_queue_release(struct igb_rx_queue *rxq)
{
if (rxq != NULL) {
igb_rx_queue_release_mbufs(rxq);
rte_free(rxq->sw_ring);
rte_free(rxq);
}
}
void
eth_igb_rx_queue_release(void *rxq)
{
igb_rx_queue_release(rxq);
}
static void
igb_reset_rx_queue(struct igb_rx_queue *rxq)
{
static const union e1000_adv_rx_desc zeroed_desc = {{0}};
unsigned i;
/* Zero out HW ring memory */
for (i = 0; i < rxq->nb_rx_desc; i++) {
rxq->rx_ring[i] = zeroed_desc;
}
rxq->rx_tail = 0;
rxq->pkt_first_seg = NULL;
rxq->pkt_last_seg = NULL;
}
uint64_t
igb_get_rx_port_offloads_capa(struct rte_eth_dev *dev)
{
uint64_t rx_offload_capa;
RTE_SET_USED(dev);
rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP |
DEV_RX_OFFLOAD_VLAN_FILTER |
DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM |
DEV_RX_OFFLOAD_JUMBO_FRAME |
DEV_RX_OFFLOAD_KEEP_CRC |
DEV_RX_OFFLOAD_SCATTER;
return rx_offload_capa;
}
uint64_t
igb_get_rx_queue_offloads_capa(struct rte_eth_dev *dev)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint64_t rx_queue_offload_capa;
switch (hw->mac.type) {
case e1000_vfadapt_i350:
/*
* As only one Rx queue can be used, let per queue offloading
* capability be same to per port queue offloading capability
* for better convenience.
*/
rx_queue_offload_capa = igb_get_rx_port_offloads_capa(dev);
break;
default:
rx_queue_offload_capa = 0;
}
return rx_queue_offload_capa;
}
int
eth_igb_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
const struct rte_memzone *rz;
struct igb_rx_queue *rxq;
struct e1000_hw *hw;
unsigned int size;
ethdev: new Rx/Tx offloads API This patch check if a input requested offloading is valid or not. Any reuqested offloading must be supported in the device capabilities. Any offloading is disabled by default if it is not set in the parameter dev_conf->[rt]xmode.offloads to rte_eth_dev_configure() and [rt]x_conf->offloads to rte_eth_[rt]x_queue_setup(). If any offloading is enabled in rte_eth_dev_configure() by application, it is enabled on all queues no matter whether it is per-queue or per-port type and no matter whether it is set or cleared in [rt]x_conf->offloads to rte_eth_[rt]x_queue_setup(). If a per-queue offloading hasn't be enabled in rte_eth_dev_configure(), it can be enabled or disabled for individual queue in ret_eth_[rt]x_queue_setup(). A new added offloading is the one which hasn't been enabled in rte_eth_dev_configure() and is reuqested to be enabled in rte_eth_[rt]x_queue_setup(), it must be per-queue type, otherwise trigger an error log. The underlying PMD must be aware that the requested offloadings to PMD specific queue_setup() function only carries those new added offloadings of per-queue type. This patch can make above such checking in a common way in rte_ethdev layer to avoid same checking in underlying PMD. This patch assumes that all PMDs in 18.05-rc2 have already converted to offload API defined in 17.11 . It also assumes that all PMDs can return correct offloading capabilities in rte_eth_dev_infos_get(). In the beginning of [rt]x_queue_setup() of underlying PMD, add offloads = [rt]xconf->offloads | dev->data->dev_conf.[rt]xmode.offloads; to keep same as offload API defined in 17.11 to avoid upper application broken due to offload API change. PMD can use the info that input [rt]xconf->offloads only carry the new added per-queue offloads to do some optimization or some code change on base of this patch. Signed-off-by: Wei Dai <wei.dai@intel.com> Signed-off-by: Ferruh Yigit <ferruh.yigit@intel.com> Signed-off-by: Qi Zhang <qi.z.zhang@intel.com>
2018-05-10 11:56:55 +00:00
uint64_t offloads;
ethdev: new Rx/Tx offloads API This patch check if a input requested offloading is valid or not. Any reuqested offloading must be supported in the device capabilities. Any offloading is disabled by default if it is not set in the parameter dev_conf->[rt]xmode.offloads to rte_eth_dev_configure() and [rt]x_conf->offloads to rte_eth_[rt]x_queue_setup(). If any offloading is enabled in rte_eth_dev_configure() by application, it is enabled on all queues no matter whether it is per-queue or per-port type and no matter whether it is set or cleared in [rt]x_conf->offloads to rte_eth_[rt]x_queue_setup(). If a per-queue offloading hasn't be enabled in rte_eth_dev_configure(), it can be enabled or disabled for individual queue in ret_eth_[rt]x_queue_setup(). A new added offloading is the one which hasn't been enabled in rte_eth_dev_configure() and is reuqested to be enabled in rte_eth_[rt]x_queue_setup(), it must be per-queue type, otherwise trigger an error log. The underlying PMD must be aware that the requested offloadings to PMD specific queue_setup() function only carries those new added offloadings of per-queue type. This patch can make above such checking in a common way in rte_ethdev layer to avoid same checking in underlying PMD. This patch assumes that all PMDs in 18.05-rc2 have already converted to offload API defined in 17.11 . It also assumes that all PMDs can return correct offloading capabilities in rte_eth_dev_infos_get(). In the beginning of [rt]x_queue_setup() of underlying PMD, add offloads = [rt]xconf->offloads | dev->data->dev_conf.[rt]xmode.offloads; to keep same as offload API defined in 17.11 to avoid upper application broken due to offload API change. PMD can use the info that input [rt]xconf->offloads only carry the new added per-queue offloads to do some optimization or some code change on base of this patch. Signed-off-by: Wei Dai <wei.dai@intel.com> Signed-off-by: Ferruh Yigit <ferruh.yigit@intel.com> Signed-off-by: Qi Zhang <qi.z.zhang@intel.com>
2018-05-10 11:56:55 +00:00
offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/*
* Validate number of receive descriptors.
* It must not exceed hardware maximum, and must be multiple
* of E1000_ALIGN.
*/
if (nb_desc % IGB_RXD_ALIGN != 0 ||
(nb_desc > E1000_MAX_RING_DESC) ||
(nb_desc < E1000_MIN_RING_DESC)) {
return -EINVAL;
}
/* Free memory prior to re-allocation if needed */
if (dev->data->rx_queues[queue_idx] != NULL) {
igb_rx_queue_release(dev->data->rx_queues[queue_idx]);
dev->data->rx_queues[queue_idx] = NULL;
}
/* First allocate the RX queue data structure. */
rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igb_rx_queue),
RTE_CACHE_LINE_SIZE);
if (rxq == NULL)
return -ENOMEM;
ethdev: new Rx/Tx offloads API This patch check if a input requested offloading is valid or not. Any reuqested offloading must be supported in the device capabilities. Any offloading is disabled by default if it is not set in the parameter dev_conf->[rt]xmode.offloads to rte_eth_dev_configure() and [rt]x_conf->offloads to rte_eth_[rt]x_queue_setup(). If any offloading is enabled in rte_eth_dev_configure() by application, it is enabled on all queues no matter whether it is per-queue or per-port type and no matter whether it is set or cleared in [rt]x_conf->offloads to rte_eth_[rt]x_queue_setup(). If a per-queue offloading hasn't be enabled in rte_eth_dev_configure(), it can be enabled or disabled for individual queue in ret_eth_[rt]x_queue_setup(). A new added offloading is the one which hasn't been enabled in rte_eth_dev_configure() and is reuqested to be enabled in rte_eth_[rt]x_queue_setup(), it must be per-queue type, otherwise trigger an error log. The underlying PMD must be aware that the requested offloadings to PMD specific queue_setup() function only carries those new added offloadings of per-queue type. This patch can make above such checking in a common way in rte_ethdev layer to avoid same checking in underlying PMD. This patch assumes that all PMDs in 18.05-rc2 have already converted to offload API defined in 17.11 . It also assumes that all PMDs can return correct offloading capabilities in rte_eth_dev_infos_get(). In the beginning of [rt]x_queue_setup() of underlying PMD, add offloads = [rt]xconf->offloads | dev->data->dev_conf.[rt]xmode.offloads; to keep same as offload API defined in 17.11 to avoid upper application broken due to offload API change. PMD can use the info that input [rt]xconf->offloads only carry the new added per-queue offloads to do some optimization or some code change on base of this patch. Signed-off-by: Wei Dai <wei.dai@intel.com> Signed-off-by: Ferruh Yigit <ferruh.yigit@intel.com> Signed-off-by: Qi Zhang <qi.z.zhang@intel.com>
2018-05-10 11:56:55 +00:00
rxq->offloads = offloads;
rxq->mb_pool = mp;
rxq->nb_rx_desc = nb_desc;
rxq->pthresh = rx_conf->rx_thresh.pthresh;
rxq->hthresh = rx_conf->rx_thresh.hthresh;
rxq->wthresh = rx_conf->rx_thresh.wthresh;
if (rxq->wthresh > 0 &&
(hw->mac.type == e1000_82576 || hw->mac.type == e1000_vfadapt_i350))
rxq->wthresh = 1;
rxq->drop_en = rx_conf->rx_drop_en;
rxq->rx_free_thresh = rx_conf->rx_free_thresh;
rxq->queue_id = queue_idx;
rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
rxq->port_id = dev->data->port_id;
if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
rxq->crc_len = ETHER_CRC_LEN;
else
rxq->crc_len = 0;
/*
* Allocate RX ring hardware descriptors. A memzone large enough to
* handle the maximum ring size is allocated in order to allow for
* resizing in later calls to the queue setup function.
*/
size = sizeof(union e1000_adv_rx_desc) * E1000_MAX_RING_DESC;
rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx, size,
E1000_ALIGN, socket_id);
if (rz == NULL) {
igb_rx_queue_release(rxq);
return -ENOMEM;
}
rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(rxq->reg_idx));
rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(rxq->reg_idx));
rxq->rx_ring_phys_addr = rz->iova;
rxq->rx_ring = (union e1000_adv_rx_desc *) rz->addr;
/* Allocate software ring. */
rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
sizeof(struct igb_rx_entry) * nb_desc,
RTE_CACHE_LINE_SIZE);
if (rxq->sw_ring == NULL) {
igb_rx_queue_release(rxq);
return -ENOMEM;
}
PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
dev->data->rx_queues[queue_idx] = rxq;
igb_reset_rx_queue(rxq);
return 0;
}
uint32_t
eth_igb_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
#define IGB_RXQ_SCAN_INTERVAL 4
volatile union e1000_adv_rx_desc *rxdp;
struct igb_rx_queue *rxq;
uint32_t desc = 0;
rxq = dev->data->rx_queues[rx_queue_id];
rxdp = &(rxq->rx_ring[rxq->rx_tail]);
while ((desc < rxq->nb_rx_desc) &&
(rxdp->wb.upper.status_error & E1000_RXD_STAT_DD)) {
desc += IGB_RXQ_SCAN_INTERVAL;
rxdp += IGB_RXQ_SCAN_INTERVAL;
if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
rxdp = &(rxq->rx_ring[rxq->rx_tail +
desc - rxq->nb_rx_desc]);
}
return desc;
}
int
eth_igb_rx_descriptor_done(void *rx_queue, uint16_t offset)
{
volatile union e1000_adv_rx_desc *rxdp;
struct igb_rx_queue *rxq = rx_queue;
uint32_t desc;
if (unlikely(offset >= rxq->nb_rx_desc))
return 0;
desc = rxq->rx_tail + offset;
if (desc >= rxq->nb_rx_desc)
desc -= rxq->nb_rx_desc;
rxdp = &rxq->rx_ring[desc];
return !!(rxdp->wb.upper.status_error & E1000_RXD_STAT_DD);
}
int
eth_igb_rx_descriptor_status(void *rx_queue, uint16_t offset)
{
struct igb_rx_queue *rxq = rx_queue;
volatile uint32_t *status;
uint32_t desc;
if (unlikely(offset >= rxq->nb_rx_desc))
return -EINVAL;
if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
return RTE_ETH_RX_DESC_UNAVAIL;
desc = rxq->rx_tail + offset;
if (desc >= rxq->nb_rx_desc)
desc -= rxq->nb_rx_desc;
status = &rxq->rx_ring[desc].wb.upper.status_error;
if (*status & rte_cpu_to_le_32(E1000_RXD_STAT_DD))
return RTE_ETH_RX_DESC_DONE;
return RTE_ETH_RX_DESC_AVAIL;
}
int
eth_igb_tx_descriptor_status(void *tx_queue, uint16_t offset)
{
struct igb_tx_queue *txq = tx_queue;
volatile uint32_t *status;
uint32_t desc;
if (unlikely(offset >= txq->nb_tx_desc))
return -EINVAL;
desc = txq->tx_tail + offset;
if (desc >= txq->nb_tx_desc)
desc -= txq->nb_tx_desc;
status = &txq->tx_ring[desc].wb.status;
if (*status & rte_cpu_to_le_32(E1000_TXD_STAT_DD))
return RTE_ETH_TX_DESC_DONE;
return RTE_ETH_TX_DESC_FULL;
}
void
igb_dev_clear_queues(struct rte_eth_dev *dev)
{
uint16_t i;
struct igb_tx_queue *txq;
struct igb_rx_queue *rxq;
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
if (txq != NULL) {
igb_tx_queue_release_mbufs(txq);
igb_reset_tx_queue(txq, dev);
}
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
if (rxq != NULL) {
igb_rx_queue_release_mbufs(rxq);
igb_reset_rx_queue(rxq);
}
}
}
void
igb_dev_free_queues(struct rte_eth_dev *dev)
{
uint16_t i;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
eth_igb_rx_queue_release(dev->data->rx_queues[i]);
dev->data->rx_queues[i] = NULL;
}
dev->data->nb_rx_queues = 0;
for (i = 0; i < dev->data->nb_tx_queues; i++) {
eth_igb_tx_queue_release(dev->data->tx_queues[i]);
dev->data->tx_queues[i] = NULL;
}
dev->data->nb_tx_queues = 0;
}
/**
* Receive Side Scaling (RSS).
* See section 7.1.1.7 in the following document:
* "Intel 82576 GbE Controller Datasheet" - Revision 2.45 October 2009
*
* Principles:
* The source and destination IP addresses of the IP header and the source and
* destination ports of TCP/UDP headers, if any, of received packets are hashed
* against a configurable random key to compute a 32-bit RSS hash result.
* The seven (7) LSBs of the 32-bit hash result are used as an index into a
* 128-entry redirection table (RETA). Each entry of the RETA provides a 3-bit
* RSS output index which is used as the RX queue index where to store the
* received packets.
* The following output is supplied in the RX write-back descriptor:
* - 32-bit result of the Microsoft RSS hash function,
* - 4-bit RSS type field.
*/
/*
* RSS random key supplied in section 7.1.1.7.3 of the Intel 82576 datasheet.
* Used as the default key.
*/
static uint8_t rss_intel_key[40] = {
0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
};
static void
igb_rss_disable(struct rte_eth_dev *dev)
{
struct e1000_hw *hw;
uint32_t mrqc;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
mrqc = E1000_READ_REG(hw, E1000_MRQC);
mrqc &= ~E1000_MRQC_ENABLE_MASK;
E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
}
static void
igb_hw_rss_hash_set(struct e1000_hw *hw, struct rte_eth_rss_conf *rss_conf)
{
uint8_t *hash_key;
uint32_t rss_key;
uint32_t mrqc;
uint64_t rss_hf;
uint16_t i;
hash_key = rss_conf->rss_key;
if (hash_key != NULL) {
/* Fill in RSS hash key */
for (i = 0; i < 10; i++) {
rss_key = hash_key[(i * 4)];
rss_key |= hash_key[(i * 4) + 1] << 8;
rss_key |= hash_key[(i * 4) + 2] << 16;
rss_key |= hash_key[(i * 4) + 3] << 24;
E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key);
}
}
/* Set configured hashing protocols in MRQC register */
rss_hf = rss_conf->rss_hf;
mrqc = E1000_MRQC_ENABLE_RSS_4Q; /* RSS enabled. */
if (rss_hf & ETH_RSS_IPV4)
mrqc |= E1000_MRQC_RSS_FIELD_IPV4;
if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
mrqc |= E1000_MRQC_RSS_FIELD_IPV4_TCP;
if (rss_hf & ETH_RSS_IPV6)
mrqc |= E1000_MRQC_RSS_FIELD_IPV6;
if (rss_hf & ETH_RSS_IPV6_EX)
mrqc |= E1000_MRQC_RSS_FIELD_IPV6_EX;
if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP;
if (rss_hf & ETH_RSS_IPV6_TCP_EX)
mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
if (rss_hf & ETH_RSS_IPV6_UDP_EX)
mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP_EX;
E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
}
int
eth_igb_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct e1000_hw *hw;
uint32_t mrqc;
uint64_t rss_hf;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/*
* Before changing anything, first check that the update RSS operation
* does not attempt to disable RSS, if RSS was enabled at
* initialization time, or does not attempt to enable RSS, if RSS was
* disabled at initialization time.
*/
rss_hf = rss_conf->rss_hf & IGB_RSS_OFFLOAD_ALL;
mrqc = E1000_READ_REG(hw, E1000_MRQC);
if (!(mrqc & E1000_MRQC_ENABLE_MASK)) { /* RSS disabled */
if (rss_hf != 0) /* Enable RSS */
return -(EINVAL);
return 0; /* Nothing to do */
}
/* RSS enabled */
if (rss_hf == 0) /* Disable RSS */
return -(EINVAL);
igb_hw_rss_hash_set(hw, rss_conf);
return 0;
}
int eth_igb_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct e1000_hw *hw;
uint8_t *hash_key;
uint32_t rss_key;
uint32_t mrqc;
uint64_t rss_hf;
uint16_t i;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
hash_key = rss_conf->rss_key;
if (hash_key != NULL) {
/* Return RSS hash key */
for (i = 0; i < 10; i++) {
rss_key = E1000_READ_REG_ARRAY(hw, E1000_RSSRK(0), i);
hash_key[(i * 4)] = rss_key & 0x000000FF;
hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF;
hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF;
hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF;
}
}
/* Get RSS functions configured in MRQC register */
mrqc = E1000_READ_REG(hw, E1000_MRQC);
if ((mrqc & E1000_MRQC_ENABLE_RSS_4Q) == 0) { /* RSS is disabled */
rss_conf->rss_hf = 0;
return 0;
}
rss_hf = 0;
if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
rss_hf |= ETH_RSS_IPV4;
if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
rss_hf |= ETH_RSS_IPV6;
if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_EX)
rss_hf |= ETH_RSS_IPV6_EX;
if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP_EX)
rss_hf |= ETH_RSS_IPV6_TCP_EX;
if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_UDP)
rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP)
rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP_EX)
rss_hf |= ETH_RSS_IPV6_UDP_EX;
rss_conf->rss_hf = rss_hf;
return 0;
}
static void
igb_rss_configure(struct rte_eth_dev *dev)
{
struct rte_eth_rss_conf rss_conf;
struct e1000_hw *hw;
uint32_t shift;
uint16_t i;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* Fill in redirection table. */
shift = (hw->mac.type == e1000_82575) ? 6 : 0;
for (i = 0; i < 128; i++) {
union e1000_reta {
uint32_t dword;
uint8_t bytes[4];
} reta;
uint8_t q_idx;
q_idx = (uint8_t) ((dev->data->nb_rx_queues > 1) ?
i % dev->data->nb_rx_queues : 0);
reta.bytes[i & 3] = (uint8_t) (q_idx << shift);
if ((i & 3) == 3)
E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
}
/*
* Configure the RSS key and the RSS protocols used to compute
* the RSS hash of input packets.
*/
rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) {
igb_rss_disable(dev);
return;
}
if (rss_conf.rss_key == NULL)
rss_conf.rss_key = rss_intel_key; /* Default hash key */
igb_hw_rss_hash_set(hw, &rss_conf);
}
/*
* Check if the mac type support VMDq or not.
* Return 1 if it supports, otherwise, return 0.
*/
static int
igb_is_vmdq_supported(const struct rte_eth_dev *dev)
{
const struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
switch (hw->mac.type) {
case e1000_82576:
case e1000_82580:
case e1000_i350:
return 1;
case e1000_82540:
case e1000_82541:
case e1000_82542:
case e1000_82543:
case e1000_82544:
case e1000_82545:
case e1000_82546:
case e1000_82547:
case e1000_82571:
case e1000_82572:
case e1000_82573:
case e1000_82574:
case e1000_82583:
case e1000_i210:
case e1000_i211:
default:
PMD_INIT_LOG(ERR, "Cannot support VMDq feature");
return 0;
}
}
static int
igb_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
{
struct rte_eth_vmdq_rx_conf *cfg;
struct e1000_hw *hw;
uint32_t mrqc, vt_ctl, vmolr, rctl;
int i;
PMD_INIT_FUNC_TRACE();
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
/* Check if mac type can support VMDq, return value of 0 means NOT support */
if (igb_is_vmdq_supported(dev) == 0)
return -1;
igb_rss_disable(dev);
/* RCTL: eanble VLAN filter */
rctl = E1000_READ_REG(hw, E1000_RCTL);
rctl |= E1000_RCTL_VFE;
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
/* MRQC: enable vmdq */
mrqc = E1000_READ_REG(hw, E1000_MRQC);
mrqc |= E1000_MRQC_ENABLE_VMDQ;
E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
/* VTCTL: pool selection according to VLAN tag */
vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
if (cfg->enable_default_pool)
vt_ctl |= (cfg->default_pool << E1000_VT_CTL_DEFAULT_POOL_SHIFT);
vt_ctl |= E1000_VT_CTL_IGNORE_MAC;
E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
for (i = 0; i < E1000_VMOLR_SIZE; i++) {
vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
vmolr &= ~(E1000_VMOLR_AUPE | E1000_VMOLR_ROMPE |
E1000_VMOLR_ROPE | E1000_VMOLR_BAM |
E1000_VMOLR_MPME);
if (cfg->rx_mode & ETH_VMDQ_ACCEPT_UNTAG)
vmolr |= E1000_VMOLR_AUPE;
if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_MC)
vmolr |= E1000_VMOLR_ROMPE;
if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_UC)
vmolr |= E1000_VMOLR_ROPE;
if (cfg->rx_mode & ETH_VMDQ_ACCEPT_BROADCAST)
vmolr |= E1000_VMOLR_BAM;
if (cfg->rx_mode & ETH_VMDQ_ACCEPT_MULTICAST)
vmolr |= E1000_VMOLR_MPME;
E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
}
/*
* VMOLR: set STRVLAN as 1 if IGMAC in VTCTL is set as 1
* Both 82576 and 82580 support it
*/
if (hw->mac.type != e1000_i350) {
for (i = 0; i < E1000_VMOLR_SIZE; i++) {
vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
vmolr |= E1000_VMOLR_STRVLAN;
E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
}
}
/* VFTA - enable all vlan filters */
for (i = 0; i < IGB_VFTA_SIZE; i++)
E1000_WRITE_REG(hw, (E1000_VFTA+(i*4)), UINT32_MAX);
/* VFRE: 8 pools enabling for rx, both 82576 and i350 support it */
if (hw->mac.type != e1000_82580)
E1000_WRITE_REG(hw, E1000_VFRE, E1000_MBVFICR_VFREQ_MASK);
/*
* RAH/RAL - allow pools to read specific mac addresses
* In this case, all pools should be able to read from mac addr 0
*/
E1000_WRITE_REG(hw, E1000_RAH(0), (E1000_RAH_AV | UINT16_MAX));
E1000_WRITE_REG(hw, E1000_RAL(0), UINT32_MAX);
/* VLVF: set up filters for vlan tags as configured */
for (i = 0; i < cfg->nb_pool_maps; i++) {
/* set vlan id in VF register and set the valid bit */
E1000_WRITE_REG(hw, E1000_VLVF(i), (E1000_VLVF_VLANID_ENABLE | \
(cfg->pool_map[i].vlan_id & ETH_VLAN_ID_MAX) | \
((cfg->pool_map[i].pools << E1000_VLVF_POOLSEL_SHIFT ) & \
E1000_VLVF_POOLSEL_MASK)));
}
E1000_WRITE_FLUSH(hw);
return 0;
}
/*********************************************************************
*
* Enable receive unit.
*
**********************************************************************/
static int
igb_alloc_rx_queue_mbufs(struct igb_rx_queue *rxq)
{
struct igb_rx_entry *rxe = rxq->sw_ring;
uint64_t dma_addr;
unsigned i;
/* Initialize software ring entries. */
for (i = 0; i < rxq->nb_rx_desc; i++) {
volatile union e1000_adv_rx_desc *rxd;
struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
if (mbuf == NULL) {
PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
"queue_id=%hu", rxq->queue_id);
return -ENOMEM;
}
dma_addr =
rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
rxd = &rxq->rx_ring[i];
rxd->read.hdr_addr = 0;
rxd->read.pkt_addr = dma_addr;
rxe[i].mbuf = mbuf;
}
return 0;
}
#define E1000_MRQC_DEF_Q_SHIFT (3)
static int
igb_dev_mq_rx_configure(struct rte_eth_dev *dev)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t mrqc;
if (RTE_ETH_DEV_SRIOV(dev).active == ETH_8_POOLS) {
/*
* SRIOV active scheme
* FIXME if support RSS together with VMDq & SRIOV
*/
mrqc = E1000_MRQC_ENABLE_VMDQ;
/* 011b Def_Q ignore, according to VT_CTL.DEF_PL */
mrqc |= 0x3 << E1000_MRQC_DEF_Q_SHIFT;
E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
} else if(RTE_ETH_DEV_SRIOV(dev).active == 0) {
/*
* SRIOV inactive scheme
*/
switch (dev->data->dev_conf.rxmode.mq_mode) {
case ETH_MQ_RX_RSS:
igb_rss_configure(dev);
break;
case ETH_MQ_RX_VMDQ_ONLY:
/*Configure general VMDQ only RX parameters*/
igb_vmdq_rx_hw_configure(dev);
break;
case ETH_MQ_RX_NONE:
/* if mq_mode is none, disable rss mode.*/
default:
igb_rss_disable(dev);
break;
}
}
return 0;
}
int
eth_igb_rx_init(struct rte_eth_dev *dev)
{
struct rte_eth_rxmode *rxmode;
struct e1000_hw *hw;
struct igb_rx_queue *rxq;
uint32_t rctl;
uint32_t rxcsum;
uint32_t srrctl;
uint16_t buf_size;
uint16_t rctl_bsize;
uint16_t i;
int ret;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
srrctl = 0;
/*
* Make sure receives are disabled while setting
* up the descriptor ring.
*/
rctl = E1000_READ_REG(hw, E1000_RCTL);
E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
rxmode = &dev->data->dev_conf.rxmode;
/*
* Configure support of jumbo frames, if any.
*/
if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
rctl |= E1000_RCTL_LPE;
/*
* Set maximum packet length by default, and might be updated
* together with enabling/disabling dual VLAN.
*/
E1000_WRITE_REG(hw, E1000_RLPML,
dev->data->dev_conf.rxmode.max_rx_pkt_len +
VLAN_TAG_SIZE);
} else
rctl &= ~E1000_RCTL_LPE;
/* Configure and enable each RX queue. */
rctl_bsize = 0;
dev->rx_pkt_burst = eth_igb_recv_pkts;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
uint64_t bus_addr;
uint32_t rxdctl;
rxq = dev->data->rx_queues[i];
rxq->flags = 0;
/*
* i350 and i354 vlan packets have vlan tags byte swapped.
*/
if (hw->mac.type == e1000_i350 || hw->mac.type == e1000_i354) {
rxq->flags |= IGB_RXQ_FLAG_LB_BSWAP_VLAN;
PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap required");
} else {
PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap not required");
}
/* Allocate buffers for descriptor rings and set up queue */
ret = igb_alloc_rx_queue_mbufs(rxq);
if (ret)
return ret;
/*
* Reset crc_len in case it was changed after queue setup by a
* call to configure
*/
if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
rxq->crc_len = ETHER_CRC_LEN;
else
rxq->crc_len = 0;
bus_addr = rxq->rx_ring_phys_addr;
E1000_WRITE_REG(hw, E1000_RDLEN(rxq->reg_idx),
rxq->nb_rx_desc *
sizeof(union e1000_adv_rx_desc));
E1000_WRITE_REG(hw, E1000_RDBAH(rxq->reg_idx),
(uint32_t)(bus_addr >> 32));
E1000_WRITE_REG(hw, E1000_RDBAL(rxq->reg_idx), (uint32_t)bus_addr);
srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
/*
* Configure RX buffer size.
*/
buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
RTE_PKTMBUF_HEADROOM);
if (buf_size >= 1024) {
/*
* Configure the BSIZEPACKET field of the SRRCTL
* register of the queue.
* Value is in 1 KB resolution, from 1 KB to 127 KB.
* If this field is equal to 0b, then RCTL.BSIZE
* determines the RX packet buffer size.
*/
srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
E1000_SRRCTL_BSIZEPKT_MASK);
buf_size = (uint16_t) ((srrctl &
E1000_SRRCTL_BSIZEPKT_MASK) <<
E1000_SRRCTL_BSIZEPKT_SHIFT);
/* It adds dual VLAN length for supporting dual VLAN */
if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
2 * VLAN_TAG_SIZE) > buf_size){
if (!dev->data->scattered_rx)
PMD_INIT_LOG(DEBUG,
"forcing scatter mode");
dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
dev->data->scattered_rx = 1;
}
} else {
/*
* Use BSIZE field of the device RCTL register.
*/
if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
rctl_bsize = buf_size;
if (!dev->data->scattered_rx)
PMD_INIT_LOG(DEBUG, "forcing scatter mode");
dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
dev->data->scattered_rx = 1;
}
/* Set if packets are dropped when no descriptors available */
if (rxq->drop_en)
srrctl |= E1000_SRRCTL_DROP_EN;
E1000_WRITE_REG(hw, E1000_SRRCTL(rxq->reg_idx), srrctl);
/* Enable this RX queue. */
rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rxq->reg_idx));
rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
rxdctl &= 0xFFF00000;
rxdctl |= (rxq->pthresh & 0x1F);
rxdctl |= ((rxq->hthresh & 0x1F) << 8);
rxdctl |= ((rxq->wthresh & 0x1F) << 16);
E1000_WRITE_REG(hw, E1000_RXDCTL(rxq->reg_idx), rxdctl);
}
if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) {
if (!dev->data->scattered_rx)
PMD_INIT_LOG(DEBUG, "forcing scatter mode");
dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
dev->data->scattered_rx = 1;
}
/*
* Setup BSIZE field of RCTL register, if needed.
* Buffer sizes >= 1024 are not [supposed to be] setup in the RCTL
* register, since the code above configures the SRRCTL register of
* the RX queue in such a case.
* All configurable sizes are:
* 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
* 8192: rctl |= (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX);
* 4096: rctl |= (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX);
* 2048: rctl |= E1000_RCTL_SZ_2048;
* 1024: rctl |= E1000_RCTL_SZ_1024;
* 512: rctl |= E1000_RCTL_SZ_512;
* 256: rctl |= E1000_RCTL_SZ_256;
*/
if (rctl_bsize > 0) {
if (rctl_bsize >= 512) /* 512 <= buf_size < 1024 - use 512 */
rctl |= E1000_RCTL_SZ_512;
else /* 256 <= buf_size < 512 - use 256 */
rctl |= E1000_RCTL_SZ_256;
}
/*
* Configure RSS if device configured with multiple RX queues.
*/
igb_dev_mq_rx_configure(dev);
/* Update the rctl since igb_dev_mq_rx_configure may change its value */
rctl |= E1000_READ_REG(hw, E1000_RCTL);
/*
* Setup the Checksum Register.
* Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
*/
rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
rxcsum |= E1000_RXCSUM_PCSD;
/* Enable both L3/L4 rx checksum offload */
if (rxmode->offloads & DEV_RX_OFFLOAD_IPV4_CKSUM)
rxcsum |= E1000_RXCSUM_IPOFL;
else
rxcsum &= ~E1000_RXCSUM_IPOFL;
if (rxmode->offloads &
(DEV_RX_OFFLOAD_TCP_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM))
rxcsum |= E1000_RXCSUM_TUOFL;
else
rxcsum &= ~E1000_RXCSUM_TUOFL;
if (rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM)
rxcsum |= E1000_RXCSUM_CRCOFL;
else
rxcsum &= ~E1000_RXCSUM_CRCOFL;
E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
/* Setup the Receive Control Register. */
if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC) {
rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
/* clear STRCRC bit in all queues */
if (hw->mac.type == e1000_i350 ||
hw->mac.type == e1000_i210 ||
hw->mac.type == e1000_i211 ||
hw->mac.type == e1000_i354) {
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
uint32_t dvmolr = E1000_READ_REG(hw,
E1000_DVMOLR(rxq->reg_idx));
dvmolr &= ~E1000_DVMOLR_STRCRC;
E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
}
}
} else {
rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
/* set STRCRC bit in all queues */
if (hw->mac.type == e1000_i350 ||
hw->mac.type == e1000_i210 ||
hw->mac.type == e1000_i211 ||
hw->mac.type == e1000_i354) {
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
uint32_t dvmolr = E1000_READ_REG(hw,
E1000_DVMOLR(rxq->reg_idx));
dvmolr |= E1000_DVMOLR_STRCRC;
E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
}
}
}
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
E1000_RCTL_RDMTS_HALF |
(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
/* Make sure VLAN Filters are off. */
if (dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_VMDQ_ONLY)
rctl &= ~E1000_RCTL_VFE;
/* Don't store bad packets. */
rctl &= ~E1000_RCTL_SBP;
/* Enable Receives. */
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
/*
* Setup the HW Rx Head and Tail Descriptor Pointers.
* This needs to be done after enable.
*/
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
E1000_WRITE_REG(hw, E1000_RDH(rxq->reg_idx), 0);
E1000_WRITE_REG(hw, E1000_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
}
return 0;
}
/*********************************************************************
*
* Enable transmit unit.
*
**********************************************************************/
void
eth_igb_tx_init(struct rte_eth_dev *dev)
{
struct e1000_hw *hw;
struct igb_tx_queue *txq;
uint32_t tctl;
uint32_t txdctl;
uint16_t i;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* Setup the Base and Length of the Tx Descriptor Rings. */
for (i = 0; i < dev->data->nb_tx_queues; i++) {
uint64_t bus_addr;
txq = dev->data->tx_queues[i];
bus_addr = txq->tx_ring_phys_addr;
E1000_WRITE_REG(hw, E1000_TDLEN(txq->reg_idx),
txq->nb_tx_desc *
sizeof(union e1000_adv_tx_desc));
E1000_WRITE_REG(hw, E1000_TDBAH(txq->reg_idx),
(uint32_t)(bus_addr >> 32));
E1000_WRITE_REG(hw, E1000_TDBAL(txq->reg_idx), (uint32_t)bus_addr);
/* Setup the HW Tx Head and Tail descriptor pointers. */
E1000_WRITE_REG(hw, E1000_TDT(txq->reg_idx), 0);
E1000_WRITE_REG(hw, E1000_TDH(txq->reg_idx), 0);
/* Setup Transmit threshold registers. */
txdctl = E1000_READ_REG(hw, E1000_TXDCTL(txq->reg_idx));
txdctl |= txq->pthresh & 0x1F;
txdctl |= ((txq->hthresh & 0x1F) << 8);
txdctl |= ((txq->wthresh & 0x1F) << 16);
txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
E1000_WRITE_REG(hw, E1000_TXDCTL(txq->reg_idx), txdctl);
}
/* Program the Transmit Control Register. */
tctl = E1000_READ_REG(hw, E1000_TCTL);
tctl &= ~E1000_TCTL_CT;
tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
e1000_config_collision_dist(hw);
/* This write will effectively turn on the transmit unit. */
E1000_WRITE_REG(hw, E1000_TCTL, tctl);
}
/*********************************************************************
*
* Enable VF receive unit.
*
**********************************************************************/
int
eth_igbvf_rx_init(struct rte_eth_dev *dev)
{
struct e1000_hw *hw;
struct igb_rx_queue *rxq;
uint32_t srrctl;
uint16_t buf_size;
uint16_t rctl_bsize;
uint16_t i;
int ret;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* setup MTU */
e1000_rlpml_set_vf(hw,
(uint16_t)(dev->data->dev_conf.rxmode.max_rx_pkt_len +
VLAN_TAG_SIZE));
/* Configure and enable each RX queue. */
rctl_bsize = 0;
dev->rx_pkt_burst = eth_igb_recv_pkts;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
uint64_t bus_addr;
uint32_t rxdctl;
rxq = dev->data->rx_queues[i];
rxq->flags = 0;
/*
* i350VF LB vlan packets have vlan tags byte swapped.
*/
if (hw->mac.type == e1000_vfadapt_i350) {
rxq->flags |= IGB_RXQ_FLAG_LB_BSWAP_VLAN;
PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap required");
} else {
PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap not required");
}
/* Allocate buffers for descriptor rings and set up queue */
ret = igb_alloc_rx_queue_mbufs(rxq);
if (ret)
return ret;
bus_addr = rxq->rx_ring_phys_addr;
E1000_WRITE_REG(hw, E1000_RDLEN(i),
rxq->nb_rx_desc *
sizeof(union e1000_adv_rx_desc));
E1000_WRITE_REG(hw, E1000_RDBAH(i),
(uint32_t)(bus_addr >> 32));
E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
/*
* Configure RX buffer size.
*/
buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
RTE_PKTMBUF_HEADROOM);
if (buf_size >= 1024) {
/*
* Configure the BSIZEPACKET field of the SRRCTL
* register of the queue.
* Value is in 1 KB resolution, from 1 KB to 127 KB.
* If this field is equal to 0b, then RCTL.BSIZE
* determines the RX packet buffer size.
*/
srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
E1000_SRRCTL_BSIZEPKT_MASK);
buf_size = (uint16_t) ((srrctl &
E1000_SRRCTL_BSIZEPKT_MASK) <<
E1000_SRRCTL_BSIZEPKT_SHIFT);
/* It adds dual VLAN length for supporting dual VLAN */
if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
2 * VLAN_TAG_SIZE) > buf_size){
if (!dev->data->scattered_rx)
PMD_INIT_LOG(DEBUG,
"forcing scatter mode");
dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
dev->data->scattered_rx = 1;
}
} else {
/*
* Use BSIZE field of the device RCTL register.
*/
if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
rctl_bsize = buf_size;
if (!dev->data->scattered_rx)
PMD_INIT_LOG(DEBUG, "forcing scatter mode");
dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
dev->data->scattered_rx = 1;
}
/* Set if packets are dropped when no descriptors available */
if (rxq->drop_en)
srrctl |= E1000_SRRCTL_DROP_EN;
E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
/* Enable this RX queue. */
rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
rxdctl &= 0xFFF00000;
rxdctl |= (rxq->pthresh & 0x1F);
rxdctl |= ((rxq->hthresh & 0x1F) << 8);
if (hw->mac.type == e1000_vfadapt) {
/*
* Workaround of 82576 VF Erratum
* force set WTHRESH to 1
* to avoid Write-Back not triggered sometimes
*/
rxdctl |= 0x10000;
PMD_INIT_LOG(DEBUG, "Force set RX WTHRESH to 1 !");
}
else
rxdctl |= ((rxq->wthresh & 0x1F) << 16);
E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
}
if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) {
if (!dev->data->scattered_rx)
PMD_INIT_LOG(DEBUG, "forcing scatter mode");
dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
dev->data->scattered_rx = 1;
}
/*
* Setup the HW Rx Head and Tail Descriptor Pointers.
* This needs to be done after enable.
*/
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
E1000_WRITE_REG(hw, E1000_RDH(i), 0);
E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
}
return 0;
}
/*********************************************************************
*
* Enable VF transmit unit.
*
**********************************************************************/
void
eth_igbvf_tx_init(struct rte_eth_dev *dev)
{
struct e1000_hw *hw;
struct igb_tx_queue *txq;
uint32_t txdctl;
uint16_t i;
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* Setup the Base and Length of the Tx Descriptor Rings. */
for (i = 0; i < dev->data->nb_tx_queues; i++) {
uint64_t bus_addr;
txq = dev->data->tx_queues[i];
bus_addr = txq->tx_ring_phys_addr;
E1000_WRITE_REG(hw, E1000_TDLEN(i),
txq->nb_tx_desc *
sizeof(union e1000_adv_tx_desc));
E1000_WRITE_REG(hw, E1000_TDBAH(i),
(uint32_t)(bus_addr >> 32));
E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
/* Setup the HW Tx Head and Tail descriptor pointers. */
E1000_WRITE_REG(hw, E1000_TDT(i), 0);
E1000_WRITE_REG(hw, E1000_TDH(i), 0);
/* Setup Transmit threshold registers. */
txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
txdctl |= txq->pthresh & 0x1F;
txdctl |= ((txq->hthresh & 0x1F) << 8);
if (hw->mac.type == e1000_82576) {
/*
* Workaround of 82576 VF Erratum
* force set WTHRESH to 1
* to avoid Write-Back not triggered sometimes
*/
txdctl |= 0x10000;
PMD_INIT_LOG(DEBUG, "Force set TX WTHRESH to 1 !");
}
else
txdctl |= ((txq->wthresh & 0x1F) << 16);
txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
}
}
void
igb_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_rxq_info *qinfo)
{
struct igb_rx_queue *rxq;
rxq = dev->data->rx_queues[queue_id];
qinfo->mp = rxq->mb_pool;
qinfo->scattered_rx = dev->data->scattered_rx;
qinfo->nb_desc = rxq->nb_rx_desc;
qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
qinfo->conf.rx_drop_en = rxq->drop_en;
qinfo->conf.offloads = rxq->offloads;
}
void
igb_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_txq_info *qinfo)
{
struct igb_tx_queue *txq;
txq = dev->data->tx_queues[queue_id];
qinfo->nb_desc = txq->nb_tx_desc;
qinfo->conf.tx_thresh.pthresh = txq->pthresh;
qinfo->conf.tx_thresh.hthresh = txq->hthresh;
qinfo->conf.tx_thresh.wthresh = txq->wthresh;
qinfo->conf.offloads = txq->offloads;
}
int
igb_rss_conf_init(struct rte_eth_dev *dev,
struct igb_rte_flow_rss_conf *out,
const struct rte_flow_action_rss *in)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (in->key_len > RTE_DIM(out->key) ||
((hw->mac.type == e1000_82576) &&
(in->queue_num > IGB_MAX_RX_QUEUE_NUM_82576)) ||
((hw->mac.type != e1000_82576) &&
(in->queue_num > IGB_MAX_RX_QUEUE_NUM)))
return -EINVAL;
out->conf = (struct rte_flow_action_rss){
.func = in->func,
.level = in->level,
.types = in->types,
.key_len = in->key_len,
.queue_num = in->queue_num,
.key = memcpy(out->key, in->key, in->key_len),
.queue = memcpy(out->queue, in->queue,
sizeof(*in->queue) * in->queue_num),
};
return 0;
}
int
igb_action_rss_same(const struct rte_flow_action_rss *comp,
const struct rte_flow_action_rss *with)
{
return (comp->func == with->func &&
comp->level == with->level &&
comp->types == with->types &&
comp->key_len == with->key_len &&
comp->queue_num == with->queue_num &&
!memcmp(comp->key, with->key, with->key_len) &&
!memcmp(comp->queue, with->queue,
sizeof(*with->queue) * with->queue_num));
}
int
igb_config_rss_filter(struct rte_eth_dev *dev,
struct igb_rte_flow_rss_conf *conf, bool add)
{
uint32_t shift;
uint16_t i, j;
struct rte_eth_rss_conf rss_conf = {
.rss_key = conf->conf.key_len ?
(void *)(uintptr_t)conf->conf.key : NULL,
.rss_key_len = conf->conf.key_len,
.rss_hf = conf->conf.types,
};
struct e1000_filter_info *filter_info =
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (!add) {
if (igb_action_rss_same(&filter_info->rss_info.conf,
&conf->conf)) {
igb_rss_disable(dev);
memset(&filter_info->rss_info, 0,
sizeof(struct igb_rte_flow_rss_conf));
return 0;
}
return -EINVAL;
}
if (filter_info->rss_info.conf.queue_num)
return -EINVAL;
/* Fill in redirection table. */
shift = (hw->mac.type == e1000_82575) ? 6 : 0;
for (i = 0, j = 0; i < 128; i++, j++) {
union e1000_reta {
uint32_t dword;
uint8_t bytes[4];
} reta;
uint8_t q_idx;
if (j == conf->conf.queue_num)
j = 0;
q_idx = conf->conf.queue[j];
reta.bytes[i & 3] = (uint8_t)(q_idx << shift);
if ((i & 3) == 3)
E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
}
/* Configure the RSS key and the RSS protocols used to compute
* the RSS hash of input packets.
*/
if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) {
igb_rss_disable(dev);
return 0;
}
if (rss_conf.rss_key == NULL)
rss_conf.rss_key = rss_intel_key; /* Default hash key */
igb_hw_rss_hash_set(hw, &rss_conf);
if (igb_rss_conf_init(dev, &filter_info->rss_info, &conf->conf))
return -EINVAL;
return 0;
}