numam-dpdk/drivers/net/fm10k/fm10k_ethdev.c

3317 lines
90 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2013-2016 Intel Corporation
*/
#include <rte_ethdev_driver.h>
#include <rte_ethdev_pci.h>
#include <rte_malloc.h>
#include <rte_memzone.h>
#include <rte_string_fns.h>
#include <rte_dev.h>
#include <rte_spinlock.h>
#include <rte_kvargs.h>
#include "fm10k.h"
#include "base/fm10k_api.h"
/* Default delay to acquire mailbox lock */
#define FM10K_MBXLOCK_DELAY_US 20
#define UINT64_LOWER_32BITS_MASK 0x00000000ffffffffULL
#define MAIN_VSI_POOL_NUMBER 0
/* Max try times to acquire switch status */
#define MAX_QUERY_SWITCH_STATE_TIMES 10
/* Wait interval to get switch status */
#define WAIT_SWITCH_MSG_US 100000
/* A period of quiescence for switch */
#define FM10K_SWITCH_QUIESCE_US 100000
/* Number of chars per uint32 type */
#define CHARS_PER_UINT32 (sizeof(uint32_t))
#define BIT_MASK_PER_UINT32 ((1 << CHARS_PER_UINT32) - 1)
/* default 1:1 map from queue ID to interrupt vector ID */
#define Q2V(pci_dev, queue_id) ((pci_dev)->intr_handle.intr_vec[queue_id])
/* First 64 Logical ports for PF/VMDQ, second 64 for Flow director */
#define MAX_LPORT_NUM 128
#define GLORT_FD_Q_BASE 0x40
#define GLORT_PF_MASK 0xFFC0
#define GLORT_FD_MASK GLORT_PF_MASK
#define GLORT_FD_INDEX GLORT_FD_Q_BASE
int fm10k_logtype_init;
int fm10k_logtype_driver;
static void fm10k_close_mbx_service(struct fm10k_hw *hw);
static int fm10k_dev_promiscuous_enable(struct rte_eth_dev *dev);
static int fm10k_dev_promiscuous_disable(struct rte_eth_dev *dev);
static int fm10k_dev_allmulticast_enable(struct rte_eth_dev *dev);
static int fm10k_dev_allmulticast_disable(struct rte_eth_dev *dev);
static inline int fm10k_glort_valid(struct fm10k_hw *hw);
static int
fm10k_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on);
static void fm10k_MAC_filter_set(struct rte_eth_dev *dev,
const u8 *mac, bool add, uint32_t pool);
static void fm10k_tx_queue_release(void *queue);
static void fm10k_rx_queue_release(void *queue);
static void fm10k_set_rx_function(struct rte_eth_dev *dev);
static void fm10k_set_tx_function(struct rte_eth_dev *dev);
static int fm10k_check_ftag(struct rte_devargs *devargs);
static int fm10k_link_update(struct rte_eth_dev *dev, int wait_to_complete);
static int fm10k_dev_infos_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info);
static uint64_t fm10k_get_rx_queue_offloads_capa(struct rte_eth_dev *dev);
static uint64_t fm10k_get_rx_port_offloads_capa(struct rte_eth_dev *dev);
static uint64_t fm10k_get_tx_queue_offloads_capa(struct rte_eth_dev *dev);
static uint64_t fm10k_get_tx_port_offloads_capa(struct rte_eth_dev *dev);
struct fm10k_xstats_name_off {
char name[RTE_ETH_XSTATS_NAME_SIZE];
unsigned offset;
};
static const struct fm10k_xstats_name_off fm10k_hw_stats_strings[] = {
{"completion_timeout_count", offsetof(struct fm10k_hw_stats, timeout)},
{"unsupported_requests_count", offsetof(struct fm10k_hw_stats, ur)},
{"completer_abort_count", offsetof(struct fm10k_hw_stats, ca)},
{"unsupported_message_count", offsetof(struct fm10k_hw_stats, um)},
{"checksum_error_count", offsetof(struct fm10k_hw_stats, xec)},
{"vlan_dropped", offsetof(struct fm10k_hw_stats, vlan_drop)},
{"loopback_dropped", offsetof(struct fm10k_hw_stats, loopback_drop)},
{"rx_mbuf_allocation_errors", offsetof(struct fm10k_hw_stats,
nodesc_drop)},
};
#define FM10K_NB_HW_XSTATS (sizeof(fm10k_hw_stats_strings) / \
sizeof(fm10k_hw_stats_strings[0]))
static const struct fm10k_xstats_name_off fm10k_hw_stats_rx_q_strings[] = {
{"packets", offsetof(struct fm10k_hw_stats_q, rx_packets)},
{"bytes", offsetof(struct fm10k_hw_stats_q, rx_bytes)},
{"dropped", offsetof(struct fm10k_hw_stats_q, rx_drops)},
};
#define FM10K_NB_RX_Q_XSTATS (sizeof(fm10k_hw_stats_rx_q_strings) / \
sizeof(fm10k_hw_stats_rx_q_strings[0]))
static const struct fm10k_xstats_name_off fm10k_hw_stats_tx_q_strings[] = {
{"packets", offsetof(struct fm10k_hw_stats_q, tx_packets)},
{"bytes", offsetof(struct fm10k_hw_stats_q, tx_bytes)},
};
#define FM10K_NB_TX_Q_XSTATS (sizeof(fm10k_hw_stats_tx_q_strings) / \
sizeof(fm10k_hw_stats_tx_q_strings[0]))
#define FM10K_NB_XSTATS (FM10K_NB_HW_XSTATS + FM10K_MAX_QUEUES_PF * \
(FM10K_NB_RX_Q_XSTATS + FM10K_NB_TX_Q_XSTATS))
static int
fm10k_dev_rxq_interrupt_setup(struct rte_eth_dev *dev);
static void
fm10k_mbx_initlock(struct fm10k_hw *hw)
{
rte_spinlock_init(FM10K_DEV_PRIVATE_TO_MBXLOCK(hw->back));
}
static void
fm10k_mbx_lock(struct fm10k_hw *hw)
{
while (!rte_spinlock_trylock(FM10K_DEV_PRIVATE_TO_MBXLOCK(hw->back)))
rte_delay_us(FM10K_MBXLOCK_DELAY_US);
}
static void
fm10k_mbx_unlock(struct fm10k_hw *hw)
{
rte_spinlock_unlock(FM10K_DEV_PRIVATE_TO_MBXLOCK(hw->back));
}
/* Stubs needed for linkage when vPMD is disabled */
__rte_weak int
fm10k_rx_vec_condition_check(__rte_unused struct rte_eth_dev *dev)
{
return -1;
}
__rte_weak uint16_t
fm10k_recv_pkts_vec(
__rte_unused void *rx_queue,
__rte_unused struct rte_mbuf **rx_pkts,
__rte_unused uint16_t nb_pkts)
{
return 0;
}
__rte_weak uint16_t
fm10k_recv_scattered_pkts_vec(
__rte_unused void *rx_queue,
__rte_unused struct rte_mbuf **rx_pkts,
__rte_unused uint16_t nb_pkts)
{
return 0;
}
__rte_weak int
fm10k_rxq_vec_setup(__rte_unused struct fm10k_rx_queue *rxq)
{
return -1;
}
__rte_weak void
fm10k_rx_queue_release_mbufs_vec(
__rte_unused struct fm10k_rx_queue *rxq)
{
return;
}
__rte_weak void
fm10k_txq_vec_setup(__rte_unused struct fm10k_tx_queue *txq)
{
return;
}
__rte_weak int
fm10k_tx_vec_condition_check(__rte_unused struct fm10k_tx_queue *txq)
{
return -1;
}
__rte_weak uint16_t
fm10k_xmit_fixed_burst_vec(__rte_unused void *tx_queue,
__rte_unused struct rte_mbuf **tx_pkts,
__rte_unused uint16_t nb_pkts)
{
return 0;
}
/*
* reset queue to initial state, allocate software buffers used when starting
* device.
* return 0 on success
* return -ENOMEM if buffers cannot be allocated
* return -EINVAL if buffers do not satisfy alignment condition
*/
static inline int
rx_queue_reset(struct fm10k_rx_queue *q)
{
static const union fm10k_rx_desc zero = {{0} };
uint64_t dma_addr;
int i, diag;
PMD_INIT_FUNC_TRACE();
diag = rte_mempool_get_bulk(q->mp, (void **)q->sw_ring, q->nb_desc);
if (diag != 0)
return -ENOMEM;
for (i = 0; i < q->nb_desc; ++i) {
fm10k_pktmbuf_reset(q->sw_ring[i], q->port_id);
if (!fm10k_addr_alignment_valid(q->sw_ring[i])) {
rte_mempool_put_bulk(q->mp, (void **)q->sw_ring,
q->nb_desc);
return -EINVAL;
}
dma_addr = MBUF_DMA_ADDR_DEFAULT(q->sw_ring[i]);
q->hw_ring[i].q.pkt_addr = dma_addr;
q->hw_ring[i].q.hdr_addr = dma_addr;
}
/* initialize extra software ring entries. Space for these extra
* entries is always allocated.
*/
memset(&q->fake_mbuf, 0x0, sizeof(q->fake_mbuf));
for (i = 0; i < q->nb_fake_desc; ++i) {
q->sw_ring[q->nb_desc + i] = &q->fake_mbuf;
q->hw_ring[q->nb_desc + i] = zero;
}
q->next_dd = 0;
q->next_alloc = 0;
q->next_trigger = q->alloc_thresh - 1;
FM10K_PCI_REG_WRITE(q->tail_ptr, q->nb_desc - 1);
q->rxrearm_start = 0;
q->rxrearm_nb = 0;
return 0;
}
/*
* clean queue, descriptor rings, free software buffers used when stopping
* device.
*/
static inline void
rx_queue_clean(struct fm10k_rx_queue *q)
{
union fm10k_rx_desc zero = {.q = {0, 0, 0, 0} };
uint32_t i;
PMD_INIT_FUNC_TRACE();
/* zero descriptor rings */
for (i = 0; i < q->nb_desc; ++i)
q->hw_ring[i] = zero;
/* zero faked descriptors */
for (i = 0; i < q->nb_fake_desc; ++i)
q->hw_ring[q->nb_desc + i] = zero;
/* vPMD driver has a different way of releasing mbufs. */
if (q->rx_using_sse) {
fm10k_rx_queue_release_mbufs_vec(q);
return;
}
/* free software buffers */
for (i = 0; i < q->nb_desc; ++i) {
if (q->sw_ring[i]) {
rte_pktmbuf_free_seg(q->sw_ring[i]);
q->sw_ring[i] = NULL;
}
}
}
/*
* free all queue memory used when releasing the queue (i.e. configure)
*/
static inline void
rx_queue_free(struct fm10k_rx_queue *q)
{
PMD_INIT_FUNC_TRACE();
if (q) {
PMD_INIT_LOG(DEBUG, "Freeing rx queue %p", q);
rx_queue_clean(q);
if (q->sw_ring) {
rte_free(q->sw_ring);
q->sw_ring = NULL;
}
rte_free(q);
q = NULL;
}
}
/*
* disable RX queue, wait unitl HW finished necessary flush operation
*/
static inline int
rx_queue_disable(struct fm10k_hw *hw, uint16_t qnum)
{
uint32_t reg, i;
reg = FM10K_READ_REG(hw, FM10K_RXQCTL(qnum));
FM10K_WRITE_REG(hw, FM10K_RXQCTL(qnum),
reg & ~FM10K_RXQCTL_ENABLE);
/* Wait 100us at most */
for (i = 0; i < FM10K_QUEUE_DISABLE_TIMEOUT; i++) {
rte_delay_us(1);
reg = FM10K_READ_REG(hw, FM10K_RXQCTL(qnum));
if (!(reg & FM10K_RXQCTL_ENABLE))
break;
}
if (i == FM10K_QUEUE_DISABLE_TIMEOUT)
return -1;
return 0;
}
/*
* reset queue to initial state, allocate software buffers used when starting
* device
*/
static inline void
tx_queue_reset(struct fm10k_tx_queue *q)
{
PMD_INIT_FUNC_TRACE();
q->last_free = 0;
q->next_free = 0;
q->nb_used = 0;
q->nb_free = q->nb_desc - 1;
fifo_reset(&q->rs_tracker, (q->nb_desc + 1) / q->rs_thresh);
FM10K_PCI_REG_WRITE(q->tail_ptr, 0);
}
/*
* clean queue, descriptor rings, free software buffers used when stopping
* device
*/
static inline void
tx_queue_clean(struct fm10k_tx_queue *q)
{
struct fm10k_tx_desc zero = {0, 0, 0, 0, 0, 0};
uint32_t i;
PMD_INIT_FUNC_TRACE();
/* zero descriptor rings */
for (i = 0; i < q->nb_desc; ++i)
q->hw_ring[i] = zero;
/* free software buffers */
for (i = 0; i < q->nb_desc; ++i) {
if (q->sw_ring[i]) {
rte_pktmbuf_free_seg(q->sw_ring[i]);
q->sw_ring[i] = NULL;
}
}
}
/*
* free all queue memory used when releasing the queue (i.e. configure)
*/
static inline void
tx_queue_free(struct fm10k_tx_queue *q)
{
PMD_INIT_FUNC_TRACE();
if (q) {
PMD_INIT_LOG(DEBUG, "Freeing tx queue %p", q);
tx_queue_clean(q);
if (q->rs_tracker.list) {
rte_free(q->rs_tracker.list);
q->rs_tracker.list = NULL;
}
if (q->sw_ring) {
rte_free(q->sw_ring);
q->sw_ring = NULL;
}
rte_free(q);
q = NULL;
}
}
/*
* disable TX queue, wait unitl HW finished necessary flush operation
*/
static inline int
tx_queue_disable(struct fm10k_hw *hw, uint16_t qnum)
{
uint32_t reg, i;
reg = FM10K_READ_REG(hw, FM10K_TXDCTL(qnum));
FM10K_WRITE_REG(hw, FM10K_TXDCTL(qnum),
reg & ~FM10K_TXDCTL_ENABLE);
/* Wait 100us at most */
for (i = 0; i < FM10K_QUEUE_DISABLE_TIMEOUT; i++) {
rte_delay_us(1);
reg = FM10K_READ_REG(hw, FM10K_TXDCTL(qnum));
if (!(reg & FM10K_TXDCTL_ENABLE))
break;
}
if (i == FM10K_QUEUE_DISABLE_TIMEOUT)
return -1;
return 0;
}
static int
fm10k_check_mq_mode(struct rte_eth_dev *dev)
{
enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_eth_vmdq_rx_conf *vmdq_conf;
uint16_t nb_rx_q = dev->data->nb_rx_queues;
vmdq_conf = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
if (rx_mq_mode & ETH_MQ_RX_DCB_FLAG) {
PMD_INIT_LOG(ERR, "DCB mode is not supported.");
return -EINVAL;
}
if (!(rx_mq_mode & ETH_MQ_RX_VMDQ_FLAG))
return 0;
if (hw->mac.type == fm10k_mac_vf) {
PMD_INIT_LOG(ERR, "VMDQ mode is not supported in VF.");
return -EINVAL;
}
/* Check VMDQ queue pool number */
if (vmdq_conf->nb_queue_pools >
sizeof(vmdq_conf->pool_map[0].pools) * CHAR_BIT ||
vmdq_conf->nb_queue_pools > nb_rx_q) {
PMD_INIT_LOG(ERR, "Too many of queue pools: %d",
vmdq_conf->nb_queue_pools);
return -EINVAL;
}
return 0;
}
static const struct fm10k_txq_ops def_txq_ops = {
.reset = tx_queue_reset,
};
static int
fm10k_dev_configure(struct rte_eth_dev *dev)
{
int ret;
PMD_INIT_FUNC_TRACE();
/* multipe queue mode checking */
ret = fm10k_check_mq_mode(dev);
if (ret != 0) {
PMD_DRV_LOG(ERR, "fm10k_check_mq_mode fails with %d.",
ret);
return ret;
}
dev->data->scattered_rx = 0;
return 0;
}
static void
fm10k_dev_vmdq_rx_configure(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_eth_vmdq_rx_conf *vmdq_conf;
uint32_t i;
vmdq_conf = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
for (i = 0; i < vmdq_conf->nb_pool_maps; i++) {
if (!vmdq_conf->pool_map[i].pools)
continue;
fm10k_mbx_lock(hw);
fm10k_update_vlan(hw, vmdq_conf->pool_map[i].vlan_id, 0, true);
fm10k_mbx_unlock(hw);
}
}
static void
fm10k_dev_pf_main_vsi_reset(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* Add default mac address */
fm10k_MAC_filter_set(dev, hw->mac.addr, true,
MAIN_VSI_POOL_NUMBER);
}
static void
fm10k_dev_rss_configure(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
uint32_t mrqc, *key, i, reta, j;
uint64_t hf;
#define RSS_KEY_SIZE 40
static uint8_t rss_intel_key[RSS_KEY_SIZE] = {
0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
};
if (dev_conf->rxmode.mq_mode != ETH_MQ_RX_RSS ||
dev_conf->rx_adv_conf.rss_conf.rss_hf == 0) {
FM10K_WRITE_REG(hw, FM10K_MRQC(0), 0);
return;
}
/* random key is rss_intel_key (default) or user provided (rss_key) */
if (dev_conf->rx_adv_conf.rss_conf.rss_key == NULL)
key = (uint32_t *)rss_intel_key;
else
key = (uint32_t *)dev_conf->rx_adv_conf.rss_conf.rss_key;
/* Now fill our hash function seeds, 4 bytes at a time */
for (i = 0; i < RSS_KEY_SIZE / sizeof(*key); ++i)
FM10K_WRITE_REG(hw, FM10K_RSSRK(0, i), key[i]);
/*
* Fill in redirection table
* The byte-swap is needed because NIC registers are in
* little-endian order.
*/
reta = 0;
for (i = 0, j = 0; i < FM10K_MAX_RSS_INDICES; i++, j++) {
if (j == dev->data->nb_rx_queues)
j = 0;
reta = (reta << CHAR_BIT) | j;
if ((i & 3) == 3)
FM10K_WRITE_REG(hw, FM10K_RETA(0, i >> 2),
rte_bswap32(reta));
}
/*
* Generate RSS hash based on packet types, TCP/UDP
* port numbers and/or IPv4/v6 src and dst addresses
*/
hf = dev_conf->rx_adv_conf.rss_conf.rss_hf;
mrqc = 0;
mrqc |= (hf & ETH_RSS_IPV4) ? FM10K_MRQC_IPV4 : 0;
mrqc |= (hf & ETH_RSS_IPV6) ? FM10K_MRQC_IPV6 : 0;
mrqc |= (hf & ETH_RSS_IPV6_EX) ? FM10K_MRQC_IPV6 : 0;
mrqc |= (hf & ETH_RSS_NONFRAG_IPV4_TCP) ? FM10K_MRQC_TCP_IPV4 : 0;
mrqc |= (hf & ETH_RSS_NONFRAG_IPV6_TCP) ? FM10K_MRQC_TCP_IPV6 : 0;
mrqc |= (hf & ETH_RSS_IPV6_TCP_EX) ? FM10K_MRQC_TCP_IPV6 : 0;
mrqc |= (hf & ETH_RSS_NONFRAG_IPV4_UDP) ? FM10K_MRQC_UDP_IPV4 : 0;
mrqc |= (hf & ETH_RSS_NONFRAG_IPV6_UDP) ? FM10K_MRQC_UDP_IPV6 : 0;
mrqc |= (hf & ETH_RSS_IPV6_UDP_EX) ? FM10K_MRQC_UDP_IPV6 : 0;
if (mrqc == 0) {
PMD_INIT_LOG(ERR, "Specified RSS mode 0x%"PRIx64"is not"
"supported", hf);
return;
}
FM10K_WRITE_REG(hw, FM10K_MRQC(0), mrqc);
}
static void
fm10k_dev_logic_port_update(struct rte_eth_dev *dev, uint16_t nb_lport_new)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t i;
for (i = 0; i < nb_lport_new; i++) {
/* Set unicast mode by default. App can change
* to other mode in other API func.
*/
fm10k_mbx_lock(hw);
hw->mac.ops.update_xcast_mode(hw, hw->mac.dglort_map + i,
FM10K_XCAST_MODE_NONE);
fm10k_mbx_unlock(hw);
}
}
static void
fm10k_dev_mq_rx_configure(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_eth_vmdq_rx_conf *vmdq_conf;
struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
struct fm10k_macvlan_filter_info *macvlan;
uint16_t nb_queue_pools = 0; /* pool number in configuration */
uint16_t nb_lport_new;
macvlan = FM10K_DEV_PRIVATE_TO_MACVLAN(dev->data->dev_private);
vmdq_conf = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
fm10k_dev_rss_configure(dev);
/* only PF supports VMDQ */
if (hw->mac.type != fm10k_mac_pf)
return;
if (dev_conf->rxmode.mq_mode & ETH_MQ_RX_VMDQ_FLAG)
nb_queue_pools = vmdq_conf->nb_queue_pools;
/* no pool number change, no need to update logic port and VLAN/MAC */
if (macvlan->nb_queue_pools == nb_queue_pools)
return;
nb_lport_new = nb_queue_pools ? nb_queue_pools : 1;
fm10k_dev_logic_port_update(dev, nb_lport_new);
/* reset MAC/VLAN as it's based on VMDQ or PF main VSI */
memset(dev->data->mac_addrs, 0,
net: add rte prefix to ether defines Add 'RTE_' prefix to defines: - rename ETHER_ADDR_LEN as RTE_ETHER_ADDR_LEN. - rename ETHER_TYPE_LEN as RTE_ETHER_TYPE_LEN. - rename ETHER_CRC_LEN as RTE_ETHER_CRC_LEN. - rename ETHER_HDR_LEN as RTE_ETHER_HDR_LEN. - rename ETHER_MIN_LEN as RTE_ETHER_MIN_LEN. - rename ETHER_MAX_LEN as RTE_ETHER_MAX_LEN. - rename ETHER_MTU as RTE_ETHER_MTU. - rename ETHER_MAX_VLAN_FRAME_LEN as RTE_ETHER_MAX_VLAN_FRAME_LEN. - rename ETHER_MAX_VLAN_ID as RTE_ETHER_MAX_VLAN_ID. - rename ETHER_MAX_JUMBO_FRAME_LEN as RTE_ETHER_MAX_JUMBO_FRAME_LEN. - rename ETHER_MIN_MTU as RTE_ETHER_MIN_MTU. - rename ETHER_LOCAL_ADMIN_ADDR as RTE_ETHER_LOCAL_ADMIN_ADDR. - rename ETHER_GROUP_ADDR as RTE_ETHER_GROUP_ADDR. - rename ETHER_TYPE_IPv4 as RTE_ETHER_TYPE_IPv4. - rename ETHER_TYPE_IPv6 as RTE_ETHER_TYPE_IPv6. - rename ETHER_TYPE_ARP as RTE_ETHER_TYPE_ARP. - rename ETHER_TYPE_VLAN as RTE_ETHER_TYPE_VLAN. - rename ETHER_TYPE_RARP as RTE_ETHER_TYPE_RARP. - rename ETHER_TYPE_QINQ as RTE_ETHER_TYPE_QINQ. - rename ETHER_TYPE_ETAG as RTE_ETHER_TYPE_ETAG. - rename ETHER_TYPE_1588 as RTE_ETHER_TYPE_1588. - rename ETHER_TYPE_SLOW as RTE_ETHER_TYPE_SLOW. - rename ETHER_TYPE_TEB as RTE_ETHER_TYPE_TEB. - rename ETHER_TYPE_LLDP as RTE_ETHER_TYPE_LLDP. - rename ETHER_TYPE_MPLS as RTE_ETHER_TYPE_MPLS. - rename ETHER_TYPE_MPLSM as RTE_ETHER_TYPE_MPLSM. - rename ETHER_VXLAN_HLEN as RTE_ETHER_VXLAN_HLEN. - rename ETHER_ADDR_FMT_SIZE as RTE_ETHER_ADDR_FMT_SIZE. - rename VXLAN_GPE_TYPE_IPV4 as RTE_VXLAN_GPE_TYPE_IPV4. - rename VXLAN_GPE_TYPE_IPV6 as RTE_VXLAN_GPE_TYPE_IPV6. - rename VXLAN_GPE_TYPE_ETH as RTE_VXLAN_GPE_TYPE_ETH. - rename VXLAN_GPE_TYPE_NSH as RTE_VXLAN_GPE_TYPE_NSH. - rename VXLAN_GPE_TYPE_MPLS as RTE_VXLAN_GPE_TYPE_MPLS. - rename VXLAN_GPE_TYPE_GBP as RTE_VXLAN_GPE_TYPE_GBP. - rename VXLAN_GPE_TYPE_VBNG as RTE_VXLAN_GPE_TYPE_VBNG. - rename ETHER_VXLAN_GPE_HLEN as RTE_ETHER_VXLAN_GPE_HLEN. Do not update the command line library to avoid adding a dependency to librte_net. Signed-off-by: Olivier Matz <olivier.matz@6wind.com> Reviewed-by: Stephen Hemminger <stephen@networkplumber.org> Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com> Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2019-05-21 16:13:05 +00:00
RTE_ETHER_ADDR_LEN * FM10K_MAX_MACADDR_NUM);
rte_ether_addr_copy((const struct rte_ether_addr *)hw->mac.addr,
&dev->data->mac_addrs[0]);
memset(macvlan, 0, sizeof(*macvlan));
macvlan->nb_queue_pools = nb_queue_pools;
if (nb_queue_pools)
fm10k_dev_vmdq_rx_configure(dev);
else
fm10k_dev_pf_main_vsi_reset(dev);
}
static int
fm10k_dev_tx_init(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int i, ret;
struct fm10k_tx_queue *txq;
uint64_t base_addr;
uint32_t size;
/* Disable TXINT to avoid possible interrupt */
for (i = 0; i < hw->mac.max_queues; i++)
FM10K_WRITE_REG(hw, FM10K_TXINT(i),
3 << FM10K_TXINT_TIMER_SHIFT);
/* Setup TX queue */
for (i = 0; i < dev->data->nb_tx_queues; ++i) {
txq = dev->data->tx_queues[i];
base_addr = txq->hw_ring_phys_addr;
size = txq->nb_desc * sizeof(struct fm10k_tx_desc);
/* disable queue to avoid issues while updating state */
ret = tx_queue_disable(hw, i);
if (ret) {
PMD_INIT_LOG(ERR, "failed to disable queue %d", i);
return -1;
}
/* Enable use of FTAG bit in TX descriptor, PFVTCTL
* register is read-only for VF.
*/
if (fm10k_check_ftag(dev->device->devargs)) {
if (hw->mac.type == fm10k_mac_pf) {
FM10K_WRITE_REG(hw, FM10K_PFVTCTL(i),
FM10K_PFVTCTL_FTAG_DESC_ENABLE);
PMD_INIT_LOG(DEBUG, "FTAG mode is enabled");
} else {
PMD_INIT_LOG(ERR, "VF FTAG is not supported.");
return -ENOTSUP;
}
}
/* set location and size for descriptor ring */
FM10K_WRITE_REG(hw, FM10K_TDBAL(i),
base_addr & UINT64_LOWER_32BITS_MASK);
FM10K_WRITE_REG(hw, FM10K_TDBAH(i),
base_addr >> (CHAR_BIT * sizeof(uint32_t)));
FM10K_WRITE_REG(hw, FM10K_TDLEN(i), size);
/* assign default SGLORT for each TX queue by PF */
if (hw->mac.type == fm10k_mac_pf)
FM10K_WRITE_REG(hw, FM10K_TX_SGLORT(i), hw->mac.dglort_map);
}
/* set up vector or scalar TX function as appropriate */
fm10k_set_tx_function(dev);
return 0;
}
static int
fm10k_dev_rx_init(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct fm10k_macvlan_filter_info *macvlan;
struct rte_pci_device *pdev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pdev->intr_handle;
int i, ret;
struct fm10k_rx_queue *rxq;
uint64_t base_addr;
uint32_t size;
uint32_t rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
uint32_t logic_port = hw->mac.dglort_map;
uint16_t buf_size;
uint16_t queue_stride = 0;
/* enable RXINT for interrupt mode */
i = 0;
if (rte_intr_dp_is_en(intr_handle)) {
for (; i < dev->data->nb_rx_queues; i++) {
FM10K_WRITE_REG(hw, FM10K_RXINT(i), Q2V(pdev, i));
if (hw->mac.type == fm10k_mac_pf)
FM10K_WRITE_REG(hw, FM10K_ITR(Q2V(pdev, i)),
FM10K_ITR_AUTOMASK |
FM10K_ITR_MASK_CLEAR);
else
FM10K_WRITE_REG(hw, FM10K_VFITR(Q2V(pdev, i)),
FM10K_ITR_AUTOMASK |
FM10K_ITR_MASK_CLEAR);
}
}
/* Disable other RXINT to avoid possible interrupt */
for (; i < hw->mac.max_queues; i++)
FM10K_WRITE_REG(hw, FM10K_RXINT(i),
3 << FM10K_RXINT_TIMER_SHIFT);
/* Setup RX queues */
for (i = 0; i < dev->data->nb_rx_queues; ++i) {
rxq = dev->data->rx_queues[i];
base_addr = rxq->hw_ring_phys_addr;
size = rxq->nb_desc * sizeof(union fm10k_rx_desc);
/* disable queue to avoid issues while updating state */
ret = rx_queue_disable(hw, i);
if (ret) {
PMD_INIT_LOG(ERR, "failed to disable queue %d", i);
return -1;
}
/* Setup the Base and Length of the Rx Descriptor Ring */
FM10K_WRITE_REG(hw, FM10K_RDBAL(i),
base_addr & UINT64_LOWER_32BITS_MASK);
FM10K_WRITE_REG(hw, FM10K_RDBAH(i),
base_addr >> (CHAR_BIT * sizeof(uint32_t)));
FM10K_WRITE_REG(hw, FM10K_RDLEN(i), size);
/* Configure the Rx buffer size for one buff without split */
buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
RTE_PKTMBUF_HEADROOM);
/* As RX buffer is aligned to 512B within mbuf, some bytes are
* reserved for this purpose, and the worst case could be 511B.
* But SRR reg assumes all buffers have the same size. In order
* to fill the gap, we'll have to consider the worst case and
* assume 512B is reserved. If we don't do so, it's possible
* for HW to overwrite data to next mbuf.
*/
buf_size -= FM10K_RX_DATABUF_ALIGN;
FM10K_WRITE_REG(hw, FM10K_SRRCTL(i),
(buf_size >> FM10K_SRRCTL_BSIZEPKT_SHIFT) |
FM10K_SRRCTL_LOOPBACK_SUPPRESS);
/* It adds dual VLAN length for supporting dual VLAN */
if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
2 * FM10K_VLAN_TAG_SIZE) > buf_size ||
rxq->offloads & DEV_RX_OFFLOAD_SCATTER) {
uint32_t reg;
dev->data->scattered_rx = 1;
reg = FM10K_READ_REG(hw, FM10K_SRRCTL(i));
reg |= FM10K_SRRCTL_BUFFER_CHAINING_EN;
FM10K_WRITE_REG(hw, FM10K_SRRCTL(i), reg);
}
/* Enable drop on empty, it's RO for VF */
if (hw->mac.type == fm10k_mac_pf && rxq->drop_en)
rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY;
FM10K_WRITE_REG(hw, FM10K_RXDCTL(i), rxdctl);
FM10K_WRITE_FLUSH(hw);
}
/* Configure VMDQ/RSS if applicable */
fm10k_dev_mq_rx_configure(dev);
/* Decide the best RX function */
fm10k_set_rx_function(dev);
/* update RX_SGLORT for loopback suppress*/
if (hw->mac.type != fm10k_mac_pf)
return 0;
macvlan = FM10K_DEV_PRIVATE_TO_MACVLAN(dev->data->dev_private);
if (macvlan->nb_queue_pools)
queue_stride = dev->data->nb_rx_queues / macvlan->nb_queue_pools;
for (i = 0; i < dev->data->nb_rx_queues; ++i) {
if (i && queue_stride && !(i % queue_stride))
logic_port++;
FM10K_WRITE_REG(hw, FM10K_RX_SGLORT(i), logic_port);
}
return 0;
}
static int
fm10k_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int err;
uint32_t reg;
struct fm10k_rx_queue *rxq;
PMD_INIT_FUNC_TRACE();
rxq = dev->data->rx_queues[rx_queue_id];
err = rx_queue_reset(rxq);
if (err == -ENOMEM) {
PMD_INIT_LOG(ERR, "Failed to alloc memory : %d", err);
return err;
} else if (err == -EINVAL) {
PMD_INIT_LOG(ERR, "Invalid buffer address alignment :"
" %d", err);
return err;
}
/* Setup the HW Rx Head and Tail Descriptor Pointers
* Note: this must be done AFTER the queue is enabled on real
* hardware, but BEFORE the queue is enabled when using the
* emulation platform. Do it in both places for now and remove
* this comment and the following two register writes when the
* emulation platform is no longer being used.
*/
FM10K_WRITE_REG(hw, FM10K_RDH(rx_queue_id), 0);
FM10K_WRITE_REG(hw, FM10K_RDT(rx_queue_id), rxq->nb_desc - 1);
/* Set PF ownership flag for PF devices */
reg = FM10K_READ_REG(hw, FM10K_RXQCTL(rx_queue_id));
if (hw->mac.type == fm10k_mac_pf)
reg |= FM10K_RXQCTL_PF;
reg |= FM10K_RXQCTL_ENABLE;
/* enable RX queue */
FM10K_WRITE_REG(hw, FM10K_RXQCTL(rx_queue_id), reg);
FM10K_WRITE_FLUSH(hw);
/* Setup the HW Rx Head and Tail Descriptor Pointers
* Note: this must be done AFTER the queue is enabled
*/
FM10K_WRITE_REG(hw, FM10K_RDH(rx_queue_id), 0);
FM10K_WRITE_REG(hw, FM10K_RDT(rx_queue_id), rxq->nb_desc - 1);
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
return 0;
}
static int
fm10k_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
/* Disable RX queue */
rx_queue_disable(hw, rx_queue_id);
/* Free mbuf and clean HW ring */
rx_queue_clean(dev->data->rx_queues[rx_queue_id]);
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
static int
fm10k_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/** @todo - this should be defined in the shared code */
#define FM10K_TXDCTL_WRITE_BACK_MIN_DELAY 0x00010000
uint32_t txdctl = FM10K_TXDCTL_WRITE_BACK_MIN_DELAY;
struct fm10k_tx_queue *q = dev->data->tx_queues[tx_queue_id];
PMD_INIT_FUNC_TRACE();
q->ops->reset(q);
/* reset head and tail pointers */
FM10K_WRITE_REG(hw, FM10K_TDH(tx_queue_id), 0);
FM10K_WRITE_REG(hw, FM10K_TDT(tx_queue_id), 0);
/* enable TX queue */
FM10K_WRITE_REG(hw, FM10K_TXDCTL(tx_queue_id),
FM10K_TXDCTL_ENABLE | txdctl);
FM10K_WRITE_FLUSH(hw);
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
return 0;
}
static int
fm10k_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
tx_queue_disable(hw, tx_queue_id);
tx_queue_clean(dev->data->tx_queues[tx_queue_id]);
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
static inline int fm10k_glort_valid(struct fm10k_hw *hw)
{
return ((hw->mac.dglort_map & FM10K_DGLORTMAP_NONE)
!= FM10K_DGLORTMAP_NONE);
}
static int
fm10k_dev_promiscuous_enable(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int status;
PMD_INIT_FUNC_TRACE();
/* Return if it didn't acquire valid glort range */
if ((hw->mac.type == fm10k_mac_pf) && !fm10k_glort_valid(hw))
return 0;
fm10k_mbx_lock(hw);
status = hw->mac.ops.update_xcast_mode(hw, hw->mac.dglort_map,
FM10K_XCAST_MODE_PROMISC);
fm10k_mbx_unlock(hw);
if (status != FM10K_SUCCESS) {
PMD_INIT_LOG(ERR, "Failed to enable promiscuous mode");
return -EAGAIN;
}
return 0;
}
static int
fm10k_dev_promiscuous_disable(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint8_t mode;
int status;
PMD_INIT_FUNC_TRACE();
/* Return if it didn't acquire valid glort range */
if ((hw->mac.type == fm10k_mac_pf) && !fm10k_glort_valid(hw))
return 0;
if (dev->data->all_multicast == 1)
mode = FM10K_XCAST_MODE_ALLMULTI;
else
mode = FM10K_XCAST_MODE_NONE;
fm10k_mbx_lock(hw);
status = hw->mac.ops.update_xcast_mode(hw, hw->mac.dglort_map,
mode);
fm10k_mbx_unlock(hw);
if (status != FM10K_SUCCESS) {
PMD_INIT_LOG(ERR, "Failed to disable promiscuous mode");
return -EAGAIN;
}
return 0;
}
static int
fm10k_dev_allmulticast_enable(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int status;
PMD_INIT_FUNC_TRACE();
/* Return if it didn't acquire valid glort range */
if ((hw->mac.type == fm10k_mac_pf) && !fm10k_glort_valid(hw))
return 0;
/* If promiscuous mode is enabled, it doesn't make sense to enable
* allmulticast and disable promiscuous since fm10k only can select
* one of the modes.
*/
if (dev->data->promiscuous) {
PMD_INIT_LOG(INFO, "Promiscuous mode is enabled, "\
"needn't enable allmulticast");
return 0;
}
fm10k_mbx_lock(hw);
status = hw->mac.ops.update_xcast_mode(hw, hw->mac.dglort_map,
FM10K_XCAST_MODE_ALLMULTI);
fm10k_mbx_unlock(hw);
if (status != FM10K_SUCCESS) {
PMD_INIT_LOG(ERR, "Failed to enable allmulticast mode");
return -EAGAIN;
}
return 0;
}
static int
fm10k_dev_allmulticast_disable(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int status;
PMD_INIT_FUNC_TRACE();
/* Return if it didn't acquire valid glort range */
if ((hw->mac.type == fm10k_mac_pf) && !fm10k_glort_valid(hw))
return 0;
if (dev->data->promiscuous) {
PMD_INIT_LOG(ERR, "Failed to disable allmulticast mode "\
"since promisc mode is enabled");
return -EINVAL;
}
fm10k_mbx_lock(hw);
/* Change mode to unicast mode */
status = hw->mac.ops.update_xcast_mode(hw, hw->mac.dglort_map,
FM10K_XCAST_MODE_NONE);
fm10k_mbx_unlock(hw);
if (status != FM10K_SUCCESS) {
PMD_INIT_LOG(ERR, "Failed to disable allmulticast mode");
return -EAGAIN;
}
return 0;
}
static void
fm10k_dev_dglort_map_configure(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t dglortdec, pool_len, rss_len, i, dglortmask;
uint16_t nb_queue_pools;
struct fm10k_macvlan_filter_info *macvlan;
macvlan = FM10K_DEV_PRIVATE_TO_MACVLAN(dev->data->dev_private);
nb_queue_pools = macvlan->nb_queue_pools;
pool_len = nb_queue_pools ? rte_fls_u32(nb_queue_pools - 1) : 0;
rss_len = rte_fls_u32(dev->data->nb_rx_queues - 1) - pool_len;
/* GLORT 0x0-0x3F are used by PF and VMDQ, 0x40-0x7F used by FD */
dglortdec = (rss_len << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) | pool_len;
dglortmask = (GLORT_PF_MASK << FM10K_DGLORTMAP_MASK_SHIFT) |
hw->mac.dglort_map;
FM10K_WRITE_REG(hw, FM10K_DGLORTMAP(0), dglortmask);
/* Configure VMDQ/RSS DGlort Decoder */
FM10K_WRITE_REG(hw, FM10K_DGLORTDEC(0), dglortdec);
/* Flow Director configurations, only queue number is valid. */
dglortdec = rte_fls_u32(dev->data->nb_rx_queues - 1);
dglortmask = (GLORT_FD_MASK << FM10K_DGLORTMAP_MASK_SHIFT) |
(hw->mac.dglort_map + GLORT_FD_Q_BASE);
FM10K_WRITE_REG(hw, FM10K_DGLORTMAP(1), dglortmask);
FM10K_WRITE_REG(hw, FM10K_DGLORTDEC(1), dglortdec);
/* Invalidate all other GLORT entries */
for (i = 2; i < FM10K_DGLORT_COUNT; i++)
FM10K_WRITE_REG(hw, FM10K_DGLORTMAP(i),
FM10K_DGLORTMAP_NONE);
}
#define BSIZEPKT_ROUNDUP ((1 << FM10K_SRRCTL_BSIZEPKT_SHIFT) - 1)
static int
fm10k_dev_start(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int i, diag;
PMD_INIT_FUNC_TRACE();
/* stop, init, then start the hw */
diag = fm10k_stop_hw(hw);
if (diag != FM10K_SUCCESS) {
PMD_INIT_LOG(ERR, "Hardware stop failed: %d", diag);
return -EIO;
}
diag = fm10k_init_hw(hw);
if (diag != FM10K_SUCCESS) {
PMD_INIT_LOG(ERR, "Hardware init failed: %d", diag);
return -EIO;
}
diag = fm10k_start_hw(hw);
if (diag != FM10K_SUCCESS) {
PMD_INIT_LOG(ERR, "Hardware start failed: %d", diag);
return -EIO;
}
diag = fm10k_dev_tx_init(dev);
if (diag) {
PMD_INIT_LOG(ERR, "TX init failed: %d", diag);
return diag;
}
if (fm10k_dev_rxq_interrupt_setup(dev))
return -EIO;
diag = fm10k_dev_rx_init(dev);
if (diag) {
PMD_INIT_LOG(ERR, "RX init failed: %d", diag);
return diag;
}
if (hw->mac.type == fm10k_mac_pf)
fm10k_dev_dglort_map_configure(dev);
for (i = 0; i < dev->data->nb_rx_queues; i++) {
struct fm10k_rx_queue *rxq;
rxq = dev->data->rx_queues[i];
if (rxq->rx_deferred_start)
continue;
diag = fm10k_dev_rx_queue_start(dev, i);
if (diag != 0) {
int j;
for (j = 0; j < i; ++j)
rx_queue_clean(dev->data->rx_queues[j]);
return diag;
}
}
for (i = 0; i < dev->data->nb_tx_queues; i++) {
struct fm10k_tx_queue *txq;
txq = dev->data->tx_queues[i];
if (txq->tx_deferred_start)
continue;
diag = fm10k_dev_tx_queue_start(dev, i);
if (diag != 0) {
int j;
for (j = 0; j < i; ++j)
tx_queue_clean(dev->data->tx_queues[j]);
for (j = 0; j < dev->data->nb_rx_queues; ++j)
rx_queue_clean(dev->data->rx_queues[j]);
return diag;
}
}
/* Update default vlan when not in VMDQ mode */
if (!(dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_VMDQ_FLAG))
fm10k_vlan_filter_set(dev, hw->mac.default_vid, true);
fm10k_link_update(dev, 0);
return 0;
}
static void
fm10k_dev_stop(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_pci_device *pdev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pdev->intr_handle;
int i;
PMD_INIT_FUNC_TRACE();
if (dev->data->tx_queues)
for (i = 0; i < dev->data->nb_tx_queues; i++)
fm10k_dev_tx_queue_stop(dev, i);
if (dev->data->rx_queues)
for (i = 0; i < dev->data->nb_rx_queues; i++)
fm10k_dev_rx_queue_stop(dev, i);
/* Disable datapath event */
if (rte_intr_dp_is_en(intr_handle)) {
for (i = 0; i < dev->data->nb_rx_queues; i++) {
FM10K_WRITE_REG(hw, FM10K_RXINT(i),
3 << FM10K_RXINT_TIMER_SHIFT);
if (hw->mac.type == fm10k_mac_pf)
FM10K_WRITE_REG(hw, FM10K_ITR(Q2V(pdev, i)),
FM10K_ITR_MASK_SET);
else
FM10K_WRITE_REG(hw, FM10K_VFITR(Q2V(pdev, i)),
FM10K_ITR_MASK_SET);
}
}
/* Clean datapath event and queue/vec mapping */
rte_intr_efd_disable(intr_handle);
rte_free(intr_handle->intr_vec);
intr_handle->intr_vec = NULL;
}
static void
fm10k_dev_queue_release(struct rte_eth_dev *dev)
{
int i;
PMD_INIT_FUNC_TRACE();
if (dev->data->tx_queues) {
for (i = 0; i < dev->data->nb_tx_queues; i++) {
struct fm10k_tx_queue *txq = dev->data->tx_queues[i];
tx_queue_free(txq);
}
}
if (dev->data->rx_queues) {
for (i = 0; i < dev->data->nb_rx_queues; i++)
fm10k_rx_queue_release(dev->data->rx_queues[i]);
}
}
static int
fm10k_link_update(struct rte_eth_dev *dev,
__rte_unused int wait_to_complete)
{
struct fm10k_dev_info *dev_info =
FM10K_DEV_PRIVATE_TO_INFO(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
dev->data->dev_link.link_speed = ETH_SPEED_NUM_50G;
dev->data->dev_link.link_duplex = ETH_LINK_FULL_DUPLEX;
dev->data->dev_link.link_status =
dev_info->sm_down ? ETH_LINK_DOWN : ETH_LINK_UP;
dev->data->dev_link.link_autoneg = ETH_LINK_FIXED;
return 0;
}
static int fm10k_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names, __rte_unused unsigned limit)
{
unsigned i, q;
unsigned count = 0;
if (xstats_names != NULL) {
/* Note: limit checked in rte_eth_xstats_names() */
/* Global stats */
for (i = 0; i < FM10K_NB_HW_XSTATS; i++) {
snprintf(xstats_names[count].name,
sizeof(xstats_names[count].name),
"%s", fm10k_hw_stats_strings[count].name);
count++;
}
/* PF queue stats */
for (q = 0; q < FM10K_MAX_QUEUES_PF; q++) {
for (i = 0; i < FM10K_NB_RX_Q_XSTATS; i++) {
snprintf(xstats_names[count].name,
sizeof(xstats_names[count].name),
"rx_q%u_%s", q,
fm10k_hw_stats_rx_q_strings[i].name);
count++;
}
for (i = 0; i < FM10K_NB_TX_Q_XSTATS; i++) {
snprintf(xstats_names[count].name,
sizeof(xstats_names[count].name),
"tx_q%u_%s", q,
fm10k_hw_stats_tx_q_strings[i].name);
count++;
}
}
}
return FM10K_NB_XSTATS;
}
static int
fm10k_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
unsigned n)
{
struct fm10k_hw_stats *hw_stats =
FM10K_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
unsigned i, q, count = 0;
if (n < FM10K_NB_XSTATS)
return FM10K_NB_XSTATS;
/* Global stats */
for (i = 0; i < FM10K_NB_HW_XSTATS; i++) {
xstats[count].value = *(uint64_t *)(((char *)hw_stats) +
fm10k_hw_stats_strings[count].offset);
xstats[count].id = count;
count++;
}
/* PF queue stats */
for (q = 0; q < FM10K_MAX_QUEUES_PF; q++) {
for (i = 0; i < FM10K_NB_RX_Q_XSTATS; i++) {
xstats[count].value =
*(uint64_t *)(((char *)&hw_stats->q[q]) +
fm10k_hw_stats_rx_q_strings[i].offset);
xstats[count].id = count;
count++;
}
for (i = 0; i < FM10K_NB_TX_Q_XSTATS; i++) {
xstats[count].value =
*(uint64_t *)(((char *)&hw_stats->q[q]) +
fm10k_hw_stats_tx_q_strings[i].offset);
xstats[count].id = count;
count++;
}
}
return FM10K_NB_XSTATS;
}
static int
fm10k_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
{
uint64_t ipackets, opackets, ibytes, obytes, imissed;
struct fm10k_hw *hw =
FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct fm10k_hw_stats *hw_stats =
FM10K_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
int i;
PMD_INIT_FUNC_TRACE();
fm10k_update_hw_stats(hw, hw_stats);
ipackets = opackets = ibytes = obytes = imissed = 0;
for (i = 0; (i < RTE_ETHDEV_QUEUE_STAT_CNTRS) &&
(i < hw->mac.max_queues); ++i) {
stats->q_ipackets[i] = hw_stats->q[i].rx_packets.count;
stats->q_opackets[i] = hw_stats->q[i].tx_packets.count;
stats->q_ibytes[i] = hw_stats->q[i].rx_bytes.count;
stats->q_obytes[i] = hw_stats->q[i].tx_bytes.count;
stats->q_errors[i] = hw_stats->q[i].rx_drops.count;
ipackets += stats->q_ipackets[i];
opackets += stats->q_opackets[i];
ibytes += stats->q_ibytes[i];
obytes += stats->q_obytes[i];
imissed += stats->q_errors[i];
}
stats->ipackets = ipackets;
stats->opackets = opackets;
stats->ibytes = ibytes;
stats->obytes = obytes;
stats->imissed = imissed;
return 0;
}
static int
fm10k_stats_reset(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct fm10k_hw_stats *hw_stats =
FM10K_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
memset(hw_stats, 0, sizeof(*hw_stats));
fm10k_rebind_hw_stats(hw, hw_stats);
return 0;
}
static int
fm10k_dev_infos_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_pci_device *pdev = RTE_ETH_DEV_TO_PCI(dev);
PMD_INIT_FUNC_TRACE();
dev_info->min_rx_bufsize = FM10K_MIN_RX_BUF_SIZE;
dev_info->max_rx_pktlen = FM10K_MAX_PKT_SIZE;
dev_info->max_rx_queues = hw->mac.max_queues;
dev_info->max_tx_queues = hw->mac.max_queues;
dev_info->max_mac_addrs = FM10K_MAX_MACADDR_NUM;
dev_info->max_hash_mac_addrs = 0;
dev_info->max_vfs = pdev->max_vfs;
dev_info->vmdq_pool_base = 0;
dev_info->vmdq_queue_base = 0;
dev_info->max_vmdq_pools = ETH_32_POOLS;
dev_info->vmdq_queue_num = FM10K_MAX_QUEUES_PF;
dev_info->rx_queue_offload_capa = fm10k_get_rx_queue_offloads_capa(dev);
dev_info->rx_offload_capa = fm10k_get_rx_port_offloads_capa(dev) |
dev_info->rx_queue_offload_capa;
dev_info->tx_queue_offload_capa = fm10k_get_tx_queue_offloads_capa(dev);
dev_info->tx_offload_capa = fm10k_get_tx_port_offloads_capa(dev) |
dev_info->tx_queue_offload_capa;
dev_info->hash_key_size = FM10K_RSSRK_SIZE * sizeof(uint32_t);
dev_info->reta_size = FM10K_MAX_RSS_INDICES;
dev_info->flow_type_rss_offloads = ETH_RSS_IPV4 |
ETH_RSS_IPV6 |
ETH_RSS_IPV6_EX |
ETH_RSS_NONFRAG_IPV4_TCP |
ETH_RSS_NONFRAG_IPV6_TCP |
ETH_RSS_IPV6_TCP_EX |
ETH_RSS_NONFRAG_IPV4_UDP |
ETH_RSS_NONFRAG_IPV6_UDP |
ETH_RSS_IPV6_UDP_EX;
dev_info->default_rxconf = (struct rte_eth_rxconf) {
.rx_thresh = {
.pthresh = FM10K_DEFAULT_RX_PTHRESH,
.hthresh = FM10K_DEFAULT_RX_HTHRESH,
.wthresh = FM10K_DEFAULT_RX_WTHRESH,
},
.rx_free_thresh = FM10K_RX_FREE_THRESH_DEFAULT(0),
.rx_drop_en = 0,
.offloads = 0,
};
dev_info->default_txconf = (struct rte_eth_txconf) {
.tx_thresh = {
.pthresh = FM10K_DEFAULT_TX_PTHRESH,
.hthresh = FM10K_DEFAULT_TX_HTHRESH,
.wthresh = FM10K_DEFAULT_TX_WTHRESH,
},
.tx_free_thresh = FM10K_TX_FREE_THRESH_DEFAULT(0),
.tx_rs_thresh = FM10K_TX_RS_THRESH_DEFAULT(0),
.offloads = 0,
};
dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = FM10K_MAX_RX_DESC,
.nb_min = FM10K_MIN_RX_DESC,
.nb_align = FM10K_MULT_RX_DESC,
};
dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = FM10K_MAX_TX_DESC,
.nb_min = FM10K_MIN_TX_DESC,
.nb_align = FM10K_MULT_TX_DESC,
.nb_seg_max = FM10K_TX_MAX_SEG,
.nb_mtu_seg_max = FM10K_TX_MAX_MTU_SEG,
};
dev_info->speed_capa = ETH_LINK_SPEED_1G | ETH_LINK_SPEED_2_5G |
ETH_LINK_SPEED_10G | ETH_LINK_SPEED_25G |
ETH_LINK_SPEED_40G | ETH_LINK_SPEED_100G;
return 0;
}
#ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE
static const uint32_t *
fm10k_dev_supported_ptypes_get(struct rte_eth_dev *dev)
{
if (dev->rx_pkt_burst == fm10k_recv_pkts ||
dev->rx_pkt_burst == fm10k_recv_scattered_pkts) {
static uint32_t ptypes[] = {
/* refers to rx_desc_to_ol_flags() */
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L3_IPV4,
RTE_PTYPE_L3_IPV4_EXT,
RTE_PTYPE_L3_IPV6,
RTE_PTYPE_L3_IPV6_EXT,
RTE_PTYPE_L4_TCP,
RTE_PTYPE_L4_UDP,
RTE_PTYPE_UNKNOWN
};
return ptypes;
} else if (dev->rx_pkt_burst == fm10k_recv_pkts_vec ||
dev->rx_pkt_burst == fm10k_recv_scattered_pkts_vec) {
static uint32_t ptypes_vec[] = {
/* refers to fm10k_desc_to_pktype_v() */
RTE_PTYPE_L3_IPV4,
RTE_PTYPE_L3_IPV4_EXT,
RTE_PTYPE_L3_IPV6,
RTE_PTYPE_L3_IPV6_EXT,
RTE_PTYPE_L4_TCP,
RTE_PTYPE_L4_UDP,
RTE_PTYPE_TUNNEL_GENEVE,
RTE_PTYPE_TUNNEL_NVGRE,
RTE_PTYPE_TUNNEL_VXLAN,
RTE_PTYPE_TUNNEL_GRE,
RTE_PTYPE_UNKNOWN
};
return ptypes_vec;
}
return NULL;
}
#else
static const uint32_t *
fm10k_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
{
return NULL;
}
#endif
static int
fm10k_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
{
s32 result;
uint16_t mac_num = 0;
uint32_t vid_idx, vid_bit, mac_index;
struct fm10k_hw *hw;
struct fm10k_macvlan_filter_info *macvlan;
struct rte_eth_dev_data *data = dev->data;
hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
macvlan = FM10K_DEV_PRIVATE_TO_MACVLAN(dev->data->dev_private);
if (macvlan->nb_queue_pools > 0) { /* VMDQ mode */
PMD_INIT_LOG(ERR, "Cannot change VLAN filter in VMDQ mode");
return -EINVAL;
}
if (vlan_id > ETH_VLAN_ID_MAX) {
PMD_INIT_LOG(ERR, "Invalid vlan_id: must be < 4096");
return -EINVAL;
}
vid_idx = FM10K_VFTA_IDX(vlan_id);
vid_bit = FM10K_VFTA_BIT(vlan_id);
/* this VLAN ID is already in the VLAN filter table, return SUCCESS */
if (on && (macvlan->vfta[vid_idx] & vid_bit))
return 0;
/* this VLAN ID is NOT in the VLAN filter table, cannot remove */
if (!on && !(macvlan->vfta[vid_idx] & vid_bit)) {
PMD_INIT_LOG(ERR, "Invalid vlan_id: not existing "
"in the VLAN filter table");
return -EINVAL;
}
fm10k_mbx_lock(hw);
result = fm10k_update_vlan(hw, vlan_id, 0, on);
fm10k_mbx_unlock(hw);
if (result != FM10K_SUCCESS) {
PMD_INIT_LOG(ERR, "VLAN update failed: %d", result);
return -EIO;
}
for (mac_index = 0; (mac_index < FM10K_MAX_MACADDR_NUM) &&
(result == FM10K_SUCCESS); mac_index++) {
if (rte_is_zero_ether_addr(&data->mac_addrs[mac_index]))
continue;
if (mac_num > macvlan->mac_num - 1) {
PMD_INIT_LOG(ERR, "MAC address number "
"not match");
break;
}
fm10k_mbx_lock(hw);
result = fm10k_update_uc_addr(hw, hw->mac.dglort_map,
data->mac_addrs[mac_index].addr_bytes,
vlan_id, on, 0);
fm10k_mbx_unlock(hw);
mac_num++;
}
if (result != FM10K_SUCCESS) {
PMD_INIT_LOG(ERR, "MAC address update failed: %d", result);
return -EIO;
}
if (on) {
macvlan->vlan_num++;
macvlan->vfta[vid_idx] |= vid_bit;
} else {
macvlan->vlan_num--;
macvlan->vfta[vid_idx] &= ~vid_bit;
}
return 0;
}
static int
fm10k_vlan_offload_set(struct rte_eth_dev *dev, int mask)
{
if (mask & ETH_VLAN_STRIP_MASK) {
if (!(dev->data->dev_conf.rxmode.offloads &
DEV_RX_OFFLOAD_VLAN_STRIP))
PMD_INIT_LOG(ERR, "VLAN stripping is "
"always on in fm10k");
}
if (mask & ETH_VLAN_EXTEND_MASK) {
if (dev->data->dev_conf.rxmode.offloads &
DEV_RX_OFFLOAD_VLAN_EXTEND)
PMD_INIT_LOG(ERR, "VLAN QinQ is not "
"supported in fm10k");
}
if (mask & ETH_VLAN_FILTER_MASK) {
if (!(dev->data->dev_conf.rxmode.offloads &
DEV_RX_OFFLOAD_VLAN_FILTER))
PMD_INIT_LOG(ERR, "VLAN filter is always on in fm10k");
}
return 0;
}
/* Add/Remove a MAC address, and update filters to main VSI */
static void fm10k_MAC_filter_set_main_vsi(struct rte_eth_dev *dev,
const u8 *mac, bool add, uint32_t pool)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct fm10k_macvlan_filter_info *macvlan;
uint32_t i, j, k;
macvlan = FM10K_DEV_PRIVATE_TO_MACVLAN(dev->data->dev_private);
if (pool != MAIN_VSI_POOL_NUMBER) {
PMD_DRV_LOG(ERR, "VMDQ not enabled, can't set "
"mac to pool %u", pool);
return;
}
for (i = 0, j = 0; j < FM10K_VFTA_SIZE; j++) {
if (!macvlan->vfta[j])
continue;
for (k = 0; k < FM10K_UINT32_BIT_SIZE; k++) {
if (!(macvlan->vfta[j] & (1 << k)))
continue;
if (i + 1 > macvlan->vlan_num) {
PMD_INIT_LOG(ERR, "vlan number not match");
return;
}
fm10k_mbx_lock(hw);
fm10k_update_uc_addr(hw, hw->mac.dglort_map, mac,
j * FM10K_UINT32_BIT_SIZE + k, add, 0);
fm10k_mbx_unlock(hw);
i++;
}
}
}
/* Add/Remove a MAC address, and update filters to VMDQ */
static void fm10k_MAC_filter_set_vmdq(struct rte_eth_dev *dev,
const u8 *mac, bool add, uint32_t pool)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct fm10k_macvlan_filter_info *macvlan;
struct rte_eth_vmdq_rx_conf *vmdq_conf;
uint32_t i;
macvlan = FM10K_DEV_PRIVATE_TO_MACVLAN(dev->data->dev_private);
vmdq_conf = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
if (pool > macvlan->nb_queue_pools) {
PMD_DRV_LOG(ERR, "Pool number %u invalid."
" Max pool is %u",
pool, macvlan->nb_queue_pools);
return;
}
for (i = 0; i < vmdq_conf->nb_pool_maps; i++) {
if (!(vmdq_conf->pool_map[i].pools & (1UL << pool)))
continue;
fm10k_mbx_lock(hw);
fm10k_update_uc_addr(hw, hw->mac.dglort_map + pool, mac,
vmdq_conf->pool_map[i].vlan_id, add, 0);
fm10k_mbx_unlock(hw);
}
}
/* Add/Remove a MAC address, and update filters */
static void fm10k_MAC_filter_set(struct rte_eth_dev *dev,
const u8 *mac, bool add, uint32_t pool)
{
struct fm10k_macvlan_filter_info *macvlan;
macvlan = FM10K_DEV_PRIVATE_TO_MACVLAN(dev->data->dev_private);
if (macvlan->nb_queue_pools > 0) /* VMDQ mode */
fm10k_MAC_filter_set_vmdq(dev, mac, add, pool);
else
fm10k_MAC_filter_set_main_vsi(dev, mac, add, pool);
if (add)
macvlan->mac_num++;
else
macvlan->mac_num--;
}
/* Add a MAC address, and update filters */
static int
fm10k_macaddr_add(struct rte_eth_dev *dev,
struct rte_ether_addr *mac_addr,
uint32_t index,
uint32_t pool)
{
struct fm10k_macvlan_filter_info *macvlan;
macvlan = FM10K_DEV_PRIVATE_TO_MACVLAN(dev->data->dev_private);
fm10k_MAC_filter_set(dev, mac_addr->addr_bytes, TRUE, pool);
macvlan->mac_vmdq_id[index] = pool;
return 0;
}
/* Remove a MAC address, and update filters */
static void
fm10k_macaddr_remove(struct rte_eth_dev *dev, uint32_t index)
{
struct rte_eth_dev_data *data = dev->data;
struct fm10k_macvlan_filter_info *macvlan;
macvlan = FM10K_DEV_PRIVATE_TO_MACVLAN(dev->data->dev_private);
fm10k_MAC_filter_set(dev, data->mac_addrs[index].addr_bytes,
FALSE, macvlan->mac_vmdq_id[index]);
macvlan->mac_vmdq_id[index] = 0;
}
static inline int
check_nb_desc(uint16_t min, uint16_t max, uint16_t mult, uint16_t request)
{
if ((request < min) || (request > max) || ((request % mult) != 0))
return -1;
else
return 0;
}
static inline int
check_thresh(uint16_t min, uint16_t max, uint16_t div, uint16_t request)
{
if ((request < min) || (request > max) || ((div % request) != 0))
return -1;
else
return 0;
}
static inline int
handle_rxconf(struct fm10k_rx_queue *q, const struct rte_eth_rxconf *conf)
{
uint16_t rx_free_thresh;
if (conf->rx_free_thresh == 0)
rx_free_thresh = FM10K_RX_FREE_THRESH_DEFAULT(q);
else
rx_free_thresh = conf->rx_free_thresh;
/* make sure the requested threshold satisfies the constraints */
if (check_thresh(FM10K_RX_FREE_THRESH_MIN(q),
FM10K_RX_FREE_THRESH_MAX(q),
FM10K_RX_FREE_THRESH_DIV(q),
rx_free_thresh)) {
PMD_INIT_LOG(ERR, "rx_free_thresh (%u) must be "
"less than or equal to %u, "
"greater than or equal to %u, "
"and a divisor of %u",
rx_free_thresh, FM10K_RX_FREE_THRESH_MAX(q),
FM10K_RX_FREE_THRESH_MIN(q),
FM10K_RX_FREE_THRESH_DIV(q));
return -EINVAL;
}
q->alloc_thresh = rx_free_thresh;
q->drop_en = conf->rx_drop_en;
q->rx_deferred_start = conf->rx_deferred_start;
return 0;
}
/*
* Hardware requires specific alignment for Rx packet buffers. At
* least one of the following two conditions must be satisfied.
* 1. Address is 512B aligned
* 2. Address is 8B aligned and buffer does not cross 4K boundary.
*
* As such, the driver may need to adjust the DMA address within the
* buffer by up to 512B.
*
* return 1 if the element size is valid, otherwise return 0.
*/
static int
mempool_element_size_valid(struct rte_mempool *mp)
{
uint32_t min_size;
/* elt_size includes mbuf header and headroom */
min_size = mp->elt_size - sizeof(struct rte_mbuf) -
RTE_PKTMBUF_HEADROOM;
/* account for up to 512B of alignment */
min_size -= FM10K_RX_DATABUF_ALIGN;
/* sanity check for overflow */
if (min_size > mp->elt_size)
return 0;
/* size is valid */
return 1;
}
static uint64_t fm10k_get_rx_queue_offloads_capa(struct rte_eth_dev *dev)
{
RTE_SET_USED(dev);
return (uint64_t)(DEV_RX_OFFLOAD_SCATTER);
}
static uint64_t fm10k_get_rx_port_offloads_capa(struct rte_eth_dev *dev)
{
RTE_SET_USED(dev);
return (uint64_t)(DEV_RX_OFFLOAD_VLAN_STRIP |
DEV_RX_OFFLOAD_VLAN_FILTER |
DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM |
DEV_RX_OFFLOAD_JUMBO_FRAME |
DEV_RX_OFFLOAD_HEADER_SPLIT);
}
static int
fm10k_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_id,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_rxconf *conf, struct rte_mempool *mp)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct fm10k_dev_info *dev_info =
FM10K_DEV_PRIVATE_TO_INFO(dev->data->dev_private);
struct fm10k_rx_queue *q;
const struct rte_memzone *mz;
ethdev: new Rx/Tx offloads API This patch check if a input requested offloading is valid or not. Any reuqested offloading must be supported in the device capabilities. Any offloading is disabled by default if it is not set in the parameter dev_conf->[rt]xmode.offloads to rte_eth_dev_configure() and [rt]x_conf->offloads to rte_eth_[rt]x_queue_setup(). If any offloading is enabled in rte_eth_dev_configure() by application, it is enabled on all queues no matter whether it is per-queue or per-port type and no matter whether it is set or cleared in [rt]x_conf->offloads to rte_eth_[rt]x_queue_setup(). If a per-queue offloading hasn't be enabled in rte_eth_dev_configure(), it can be enabled or disabled for individual queue in ret_eth_[rt]x_queue_setup(). A new added offloading is the one which hasn't been enabled in rte_eth_dev_configure() and is reuqested to be enabled in rte_eth_[rt]x_queue_setup(), it must be per-queue type, otherwise trigger an error log. The underlying PMD must be aware that the requested offloadings to PMD specific queue_setup() function only carries those new added offloadings of per-queue type. This patch can make above such checking in a common way in rte_ethdev layer to avoid same checking in underlying PMD. This patch assumes that all PMDs in 18.05-rc2 have already converted to offload API defined in 17.11 . It also assumes that all PMDs can return correct offloading capabilities in rte_eth_dev_infos_get(). In the beginning of [rt]x_queue_setup() of underlying PMD, add offloads = [rt]xconf->offloads | dev->data->dev_conf.[rt]xmode.offloads; to keep same as offload API defined in 17.11 to avoid upper application broken due to offload API change. PMD can use the info that input [rt]xconf->offloads only carry the new added per-queue offloads to do some optimization or some code change on base of this patch. Signed-off-by: Wei Dai <wei.dai@intel.com> Signed-off-by: Ferruh Yigit <ferruh.yigit@intel.com> Signed-off-by: Qi Zhang <qi.z.zhang@intel.com>
2018-05-10 11:56:55 +00:00
uint64_t offloads;
PMD_INIT_FUNC_TRACE();
ethdev: new Rx/Tx offloads API This patch check if a input requested offloading is valid or not. Any reuqested offloading must be supported in the device capabilities. Any offloading is disabled by default if it is not set in the parameter dev_conf->[rt]xmode.offloads to rte_eth_dev_configure() and [rt]x_conf->offloads to rte_eth_[rt]x_queue_setup(). If any offloading is enabled in rte_eth_dev_configure() by application, it is enabled on all queues no matter whether it is per-queue or per-port type and no matter whether it is set or cleared in [rt]x_conf->offloads to rte_eth_[rt]x_queue_setup(). If a per-queue offloading hasn't be enabled in rte_eth_dev_configure(), it can be enabled or disabled for individual queue in ret_eth_[rt]x_queue_setup(). A new added offloading is the one which hasn't been enabled in rte_eth_dev_configure() and is reuqested to be enabled in rte_eth_[rt]x_queue_setup(), it must be per-queue type, otherwise trigger an error log. The underlying PMD must be aware that the requested offloadings to PMD specific queue_setup() function only carries those new added offloadings of per-queue type. This patch can make above such checking in a common way in rte_ethdev layer to avoid same checking in underlying PMD. This patch assumes that all PMDs in 18.05-rc2 have already converted to offload API defined in 17.11 . It also assumes that all PMDs can return correct offloading capabilities in rte_eth_dev_infos_get(). In the beginning of [rt]x_queue_setup() of underlying PMD, add offloads = [rt]xconf->offloads | dev->data->dev_conf.[rt]xmode.offloads; to keep same as offload API defined in 17.11 to avoid upper application broken due to offload API change. PMD can use the info that input [rt]xconf->offloads only carry the new added per-queue offloads to do some optimization or some code change on base of this patch. Signed-off-by: Wei Dai <wei.dai@intel.com> Signed-off-by: Ferruh Yigit <ferruh.yigit@intel.com> Signed-off-by: Qi Zhang <qi.z.zhang@intel.com>
2018-05-10 11:56:55 +00:00
offloads = conf->offloads | dev->data->dev_conf.rxmode.offloads;
/* make sure the mempool element size can account for alignment. */
if (!mempool_element_size_valid(mp)) {
PMD_INIT_LOG(ERR, "Error : Mempool element size is too small");
return -EINVAL;
}
/* make sure a valid number of descriptors have been requested */
if (check_nb_desc(FM10K_MIN_RX_DESC, FM10K_MAX_RX_DESC,
FM10K_MULT_RX_DESC, nb_desc)) {
PMD_INIT_LOG(ERR, "Number of Rx descriptors (%u) must be "
"less than or equal to %"PRIu32", "
"greater than or equal to %u, "
"and a multiple of %u",
nb_desc, (uint32_t)FM10K_MAX_RX_DESC, FM10K_MIN_RX_DESC,
FM10K_MULT_RX_DESC);
return -EINVAL;
}
/*
* if this queue existed already, free the associated memory. The
* queue cannot be reused in case we need to allocate memory on
* different socket than was previously used.
*/
if (dev->data->rx_queues[queue_id] != NULL) {
rx_queue_free(dev->data->rx_queues[queue_id]);
dev->data->rx_queues[queue_id] = NULL;
}
/* allocate memory for the queue structure */
q = rte_zmalloc_socket("fm10k", sizeof(*q), RTE_CACHE_LINE_SIZE,
socket_id);
if (q == NULL) {
PMD_INIT_LOG(ERR, "Cannot allocate queue structure");
return -ENOMEM;
}
/* setup queue */
q->mp = mp;
q->nb_desc = nb_desc;
q->nb_fake_desc = FM10K_MULT_RX_DESC;
q->port_id = dev->data->port_id;
q->queue_id = queue_id;
q->tail_ptr = (volatile uint32_t *)
&((uint32_t *)hw->hw_addr)[FM10K_RDT(queue_id)];
ethdev: new Rx/Tx offloads API This patch check if a input requested offloading is valid or not. Any reuqested offloading must be supported in the device capabilities. Any offloading is disabled by default if it is not set in the parameter dev_conf->[rt]xmode.offloads to rte_eth_dev_configure() and [rt]x_conf->offloads to rte_eth_[rt]x_queue_setup(). If any offloading is enabled in rte_eth_dev_configure() by application, it is enabled on all queues no matter whether it is per-queue or per-port type and no matter whether it is set or cleared in [rt]x_conf->offloads to rte_eth_[rt]x_queue_setup(). If a per-queue offloading hasn't be enabled in rte_eth_dev_configure(), it can be enabled or disabled for individual queue in ret_eth_[rt]x_queue_setup(). A new added offloading is the one which hasn't been enabled in rte_eth_dev_configure() and is reuqested to be enabled in rte_eth_[rt]x_queue_setup(), it must be per-queue type, otherwise trigger an error log. The underlying PMD must be aware that the requested offloadings to PMD specific queue_setup() function only carries those new added offloadings of per-queue type. This patch can make above such checking in a common way in rte_ethdev layer to avoid same checking in underlying PMD. This patch assumes that all PMDs in 18.05-rc2 have already converted to offload API defined in 17.11 . It also assumes that all PMDs can return correct offloading capabilities in rte_eth_dev_infos_get(). In the beginning of [rt]x_queue_setup() of underlying PMD, add offloads = [rt]xconf->offloads | dev->data->dev_conf.[rt]xmode.offloads; to keep same as offload API defined in 17.11 to avoid upper application broken due to offload API change. PMD can use the info that input [rt]xconf->offloads only carry the new added per-queue offloads to do some optimization or some code change on base of this patch. Signed-off-by: Wei Dai <wei.dai@intel.com> Signed-off-by: Ferruh Yigit <ferruh.yigit@intel.com> Signed-off-by: Qi Zhang <qi.z.zhang@intel.com>
2018-05-10 11:56:55 +00:00
q->offloads = offloads;
if (handle_rxconf(q, conf))
return -EINVAL;
/* allocate memory for the software ring */
q->sw_ring = rte_zmalloc_socket("fm10k sw ring",
(nb_desc + q->nb_fake_desc) * sizeof(struct rte_mbuf *),
RTE_CACHE_LINE_SIZE, socket_id);
if (q->sw_ring == NULL) {
PMD_INIT_LOG(ERR, "Cannot allocate software ring");
rte_free(q);
return -ENOMEM;
}
/*
* allocate memory for the hardware descriptor ring. A memzone large
* enough to hold the maximum ring size is requested to allow for
* resizing in later calls to the queue setup function.
*/
mz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_id,
FM10K_MAX_RX_RING_SZ, FM10K_ALIGN_RX_DESC,
socket_id);
if (mz == NULL) {
PMD_INIT_LOG(ERR, "Cannot allocate hardware ring");
rte_free(q->sw_ring);
rte_free(q);
return -ENOMEM;
}
q->hw_ring = mz->addr;
q->hw_ring_phys_addr = mz->iova;
/* Check if number of descs satisfied Vector requirement */
if (!rte_is_power_of_2(nb_desc)) {
PMD_INIT_LOG(DEBUG, "queue[%d] doesn't meet Vector Rx "
"preconditions - canceling the feature for "
"the whole port[%d]",
q->queue_id, q->port_id);
dev_info->rx_vec_allowed = false;
} else
fm10k_rxq_vec_setup(q);
dev->data->rx_queues[queue_id] = q;
return 0;
}
static void
fm10k_rx_queue_release(void *queue)
{
PMD_INIT_FUNC_TRACE();
rx_queue_free(queue);
}
static inline int
handle_txconf(struct fm10k_tx_queue *q, const struct rte_eth_txconf *conf)
{
uint16_t tx_free_thresh;
uint16_t tx_rs_thresh;
/* constraint MACROs require that tx_free_thresh is configured
* before tx_rs_thresh */
if (conf->tx_free_thresh == 0)
tx_free_thresh = FM10K_TX_FREE_THRESH_DEFAULT(q);
else
tx_free_thresh = conf->tx_free_thresh;
/* make sure the requested threshold satisfies the constraints */
if (check_thresh(FM10K_TX_FREE_THRESH_MIN(q),
FM10K_TX_FREE_THRESH_MAX(q),
FM10K_TX_FREE_THRESH_DIV(q),
tx_free_thresh)) {
PMD_INIT_LOG(ERR, "tx_free_thresh (%u) must be "
"less than or equal to %u, "
"greater than or equal to %u, "
"and a divisor of %u",
tx_free_thresh, FM10K_TX_FREE_THRESH_MAX(q),
FM10K_TX_FREE_THRESH_MIN(q),
FM10K_TX_FREE_THRESH_DIV(q));
return -EINVAL;
}
q->free_thresh = tx_free_thresh;
if (conf->tx_rs_thresh == 0)
tx_rs_thresh = FM10K_TX_RS_THRESH_DEFAULT(q);
else
tx_rs_thresh = conf->tx_rs_thresh;
q->tx_deferred_start = conf->tx_deferred_start;
/* make sure the requested threshold satisfies the constraints */
if (check_thresh(FM10K_TX_RS_THRESH_MIN(q),
FM10K_TX_RS_THRESH_MAX(q),
FM10K_TX_RS_THRESH_DIV(q),
tx_rs_thresh)) {
PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be "
"less than or equal to %u, "
"greater than or equal to %u, "
"and a divisor of %u",
tx_rs_thresh, FM10K_TX_RS_THRESH_MAX(q),
FM10K_TX_RS_THRESH_MIN(q),
FM10K_TX_RS_THRESH_DIV(q));
return -EINVAL;
}
q->rs_thresh = tx_rs_thresh;
return 0;
}
static uint64_t fm10k_get_tx_queue_offloads_capa(struct rte_eth_dev *dev)
{
RTE_SET_USED(dev);
return 0;
}
static uint64_t fm10k_get_tx_port_offloads_capa(struct rte_eth_dev *dev)
{
RTE_SET_USED(dev);
return (uint64_t)(DEV_TX_OFFLOAD_VLAN_INSERT |
DEV_TX_OFFLOAD_MULTI_SEGS |
DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_TCP_TSO);
}
static int
fm10k_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_id,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_txconf *conf)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct fm10k_tx_queue *q;
const struct rte_memzone *mz;
ethdev: new Rx/Tx offloads API This patch check if a input requested offloading is valid or not. Any reuqested offloading must be supported in the device capabilities. Any offloading is disabled by default if it is not set in the parameter dev_conf->[rt]xmode.offloads to rte_eth_dev_configure() and [rt]x_conf->offloads to rte_eth_[rt]x_queue_setup(). If any offloading is enabled in rte_eth_dev_configure() by application, it is enabled on all queues no matter whether it is per-queue or per-port type and no matter whether it is set or cleared in [rt]x_conf->offloads to rte_eth_[rt]x_queue_setup(). If a per-queue offloading hasn't be enabled in rte_eth_dev_configure(), it can be enabled or disabled for individual queue in ret_eth_[rt]x_queue_setup(). A new added offloading is the one which hasn't been enabled in rte_eth_dev_configure() and is reuqested to be enabled in rte_eth_[rt]x_queue_setup(), it must be per-queue type, otherwise trigger an error log. The underlying PMD must be aware that the requested offloadings to PMD specific queue_setup() function only carries those new added offloadings of per-queue type. This patch can make above such checking in a common way in rte_ethdev layer to avoid same checking in underlying PMD. This patch assumes that all PMDs in 18.05-rc2 have already converted to offload API defined in 17.11 . It also assumes that all PMDs can return correct offloading capabilities in rte_eth_dev_infos_get(). In the beginning of [rt]x_queue_setup() of underlying PMD, add offloads = [rt]xconf->offloads | dev->data->dev_conf.[rt]xmode.offloads; to keep same as offload API defined in 17.11 to avoid upper application broken due to offload API change. PMD can use the info that input [rt]xconf->offloads only carry the new added per-queue offloads to do some optimization or some code change on base of this patch. Signed-off-by: Wei Dai <wei.dai@intel.com> Signed-off-by: Ferruh Yigit <ferruh.yigit@intel.com> Signed-off-by: Qi Zhang <qi.z.zhang@intel.com>
2018-05-10 11:56:55 +00:00
uint64_t offloads;
PMD_INIT_FUNC_TRACE();
ethdev: new Rx/Tx offloads API This patch check if a input requested offloading is valid or not. Any reuqested offloading must be supported in the device capabilities. Any offloading is disabled by default if it is not set in the parameter dev_conf->[rt]xmode.offloads to rte_eth_dev_configure() and [rt]x_conf->offloads to rte_eth_[rt]x_queue_setup(). If any offloading is enabled in rte_eth_dev_configure() by application, it is enabled on all queues no matter whether it is per-queue or per-port type and no matter whether it is set or cleared in [rt]x_conf->offloads to rte_eth_[rt]x_queue_setup(). If a per-queue offloading hasn't be enabled in rte_eth_dev_configure(), it can be enabled or disabled for individual queue in ret_eth_[rt]x_queue_setup(). A new added offloading is the one which hasn't been enabled in rte_eth_dev_configure() and is reuqested to be enabled in rte_eth_[rt]x_queue_setup(), it must be per-queue type, otherwise trigger an error log. The underlying PMD must be aware that the requested offloadings to PMD specific queue_setup() function only carries those new added offloadings of per-queue type. This patch can make above such checking in a common way in rte_ethdev layer to avoid same checking in underlying PMD. This patch assumes that all PMDs in 18.05-rc2 have already converted to offload API defined in 17.11 . It also assumes that all PMDs can return correct offloading capabilities in rte_eth_dev_infos_get(). In the beginning of [rt]x_queue_setup() of underlying PMD, add offloads = [rt]xconf->offloads | dev->data->dev_conf.[rt]xmode.offloads; to keep same as offload API defined in 17.11 to avoid upper application broken due to offload API change. PMD can use the info that input [rt]xconf->offloads only carry the new added per-queue offloads to do some optimization or some code change on base of this patch. Signed-off-by: Wei Dai <wei.dai@intel.com> Signed-off-by: Ferruh Yigit <ferruh.yigit@intel.com> Signed-off-by: Qi Zhang <qi.z.zhang@intel.com>
2018-05-10 11:56:55 +00:00
offloads = conf->offloads | dev->data->dev_conf.txmode.offloads;
/* make sure a valid number of descriptors have been requested */
if (check_nb_desc(FM10K_MIN_TX_DESC, FM10K_MAX_TX_DESC,
FM10K_MULT_TX_DESC, nb_desc)) {
PMD_INIT_LOG(ERR, "Number of Tx descriptors (%u) must be "
"less than or equal to %"PRIu32", "
"greater than or equal to %u, "
"and a multiple of %u",
nb_desc, (uint32_t)FM10K_MAX_TX_DESC, FM10K_MIN_TX_DESC,
FM10K_MULT_TX_DESC);
return -EINVAL;
}
/*
* if this queue existed already, free the associated memory. The
* queue cannot be reused in case we need to allocate memory on
* different socket than was previously used.
*/
if (dev->data->tx_queues[queue_id] != NULL) {
struct fm10k_tx_queue *txq = dev->data->tx_queues[queue_id];
tx_queue_free(txq);
dev->data->tx_queues[queue_id] = NULL;
}
/* allocate memory for the queue structure */
q = rte_zmalloc_socket("fm10k", sizeof(*q), RTE_CACHE_LINE_SIZE,
socket_id);
if (q == NULL) {
PMD_INIT_LOG(ERR, "Cannot allocate queue structure");
return -ENOMEM;
}
/* setup queue */
q->nb_desc = nb_desc;
q->port_id = dev->data->port_id;
q->queue_id = queue_id;
ethdev: new Rx/Tx offloads API This patch check if a input requested offloading is valid or not. Any reuqested offloading must be supported in the device capabilities. Any offloading is disabled by default if it is not set in the parameter dev_conf->[rt]xmode.offloads to rte_eth_dev_configure() and [rt]x_conf->offloads to rte_eth_[rt]x_queue_setup(). If any offloading is enabled in rte_eth_dev_configure() by application, it is enabled on all queues no matter whether it is per-queue or per-port type and no matter whether it is set or cleared in [rt]x_conf->offloads to rte_eth_[rt]x_queue_setup(). If a per-queue offloading hasn't be enabled in rte_eth_dev_configure(), it can be enabled or disabled for individual queue in ret_eth_[rt]x_queue_setup(). A new added offloading is the one which hasn't been enabled in rte_eth_dev_configure() and is reuqested to be enabled in rte_eth_[rt]x_queue_setup(), it must be per-queue type, otherwise trigger an error log. The underlying PMD must be aware that the requested offloadings to PMD specific queue_setup() function only carries those new added offloadings of per-queue type. This patch can make above such checking in a common way in rte_ethdev layer to avoid same checking in underlying PMD. This patch assumes that all PMDs in 18.05-rc2 have already converted to offload API defined in 17.11 . It also assumes that all PMDs can return correct offloading capabilities in rte_eth_dev_infos_get(). In the beginning of [rt]x_queue_setup() of underlying PMD, add offloads = [rt]xconf->offloads | dev->data->dev_conf.[rt]xmode.offloads; to keep same as offload API defined in 17.11 to avoid upper application broken due to offload API change. PMD can use the info that input [rt]xconf->offloads only carry the new added per-queue offloads to do some optimization or some code change on base of this patch. Signed-off-by: Wei Dai <wei.dai@intel.com> Signed-off-by: Ferruh Yigit <ferruh.yigit@intel.com> Signed-off-by: Qi Zhang <qi.z.zhang@intel.com>
2018-05-10 11:56:55 +00:00
q->offloads = offloads;
q->ops = &def_txq_ops;
q->tail_ptr = (volatile uint32_t *)
&((uint32_t *)hw->hw_addr)[FM10K_TDT(queue_id)];
if (handle_txconf(q, conf))
return -EINVAL;
/* allocate memory for the software ring */
q->sw_ring = rte_zmalloc_socket("fm10k sw ring",
nb_desc * sizeof(struct rte_mbuf *),
RTE_CACHE_LINE_SIZE, socket_id);
if (q->sw_ring == NULL) {
PMD_INIT_LOG(ERR, "Cannot allocate software ring");
rte_free(q);
return -ENOMEM;
}
/*
* allocate memory for the hardware descriptor ring. A memzone large
* enough to hold the maximum ring size is requested to allow for
* resizing in later calls to the queue setup function.
*/
mz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_id,
FM10K_MAX_TX_RING_SZ, FM10K_ALIGN_TX_DESC,
socket_id);
if (mz == NULL) {
PMD_INIT_LOG(ERR, "Cannot allocate hardware ring");
rte_free(q->sw_ring);
rte_free(q);
return -ENOMEM;
}
q->hw_ring = mz->addr;
q->hw_ring_phys_addr = mz->iova;
/*
* allocate memory for the RS bit tracker. Enough slots to hold the
* descriptor index for each RS bit needing to be set are required.
*/
q->rs_tracker.list = rte_zmalloc_socket("fm10k rs tracker",
((nb_desc + 1) / q->rs_thresh) *
sizeof(uint16_t),
RTE_CACHE_LINE_SIZE, socket_id);
if (q->rs_tracker.list == NULL) {
PMD_INIT_LOG(ERR, "Cannot allocate RS bit tracker");
rte_free(q->sw_ring);
rte_free(q);
return -ENOMEM;
}
dev->data->tx_queues[queue_id] = q;
return 0;
}
static void
fm10k_tx_queue_release(void *queue)
{
struct fm10k_tx_queue *q = queue;
PMD_INIT_FUNC_TRACE();
tx_queue_free(q);
}
static int
fm10k_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint16_t i, j, idx, shift;
uint8_t mask;
uint32_t reta;
PMD_INIT_FUNC_TRACE();
if (reta_size > FM10K_MAX_RSS_INDICES) {
PMD_INIT_LOG(ERR, "The size of hash lookup table configured "
"(%d) doesn't match the number hardware can supported "
"(%d)", reta_size, FM10K_MAX_RSS_INDICES);
return -EINVAL;
}
/*
* Update Redirection Table RETA[n], n=0..31. The redirection table has
* 128-entries in 32 registers
*/
for (i = 0; i < FM10K_MAX_RSS_INDICES; i += CHARS_PER_UINT32) {
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
mask = (uint8_t)((reta_conf[idx].mask >> shift) &
BIT_MASK_PER_UINT32);
if (mask == 0)
continue;
reta = 0;
if (mask != BIT_MASK_PER_UINT32)
reta = FM10K_READ_REG(hw, FM10K_RETA(0, i >> 2));
for (j = 0; j < CHARS_PER_UINT32; j++) {
if (mask & (0x1 << j)) {
if (mask != 0xF)
reta &= ~(UINT8_MAX << CHAR_BIT * j);
reta |= reta_conf[idx].reta[shift + j] <<
(CHAR_BIT * j);
}
}
FM10K_WRITE_REG(hw, FM10K_RETA(0, i >> 2), reta);
}
return 0;
}
static int
fm10k_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint16_t i, j, idx, shift;
uint8_t mask;
uint32_t reta;
PMD_INIT_FUNC_TRACE();
if (reta_size < FM10K_MAX_RSS_INDICES) {
PMD_INIT_LOG(ERR, "The size of hash lookup table configured "
"(%d) doesn't match the number hardware can supported "
"(%d)", reta_size, FM10K_MAX_RSS_INDICES);
return -EINVAL;
}
/*
* Read Redirection Table RETA[n], n=0..31. The redirection table has
* 128-entries in 32 registers
*/
for (i = 0; i < FM10K_MAX_RSS_INDICES; i += CHARS_PER_UINT32) {
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
mask = (uint8_t)((reta_conf[idx].mask >> shift) &
BIT_MASK_PER_UINT32);
if (mask == 0)
continue;
reta = FM10K_READ_REG(hw, FM10K_RETA(0, i >> 2));
for (j = 0; j < CHARS_PER_UINT32; j++) {
if (mask & (0x1 << j))
reta_conf[idx].reta[shift + j] = ((reta >>
CHAR_BIT * j) & UINT8_MAX);
}
}
return 0;
}
static int
fm10k_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t *key = (uint32_t *)rss_conf->rss_key;
uint32_t mrqc;
uint64_t hf = rss_conf->rss_hf;
int i;
PMD_INIT_FUNC_TRACE();
if (key && (rss_conf->rss_key_len < FM10K_RSSRK_SIZE *
FM10K_RSSRK_ENTRIES_PER_REG))
return -EINVAL;
if (hf == 0)
return -EINVAL;
mrqc = 0;
mrqc |= (hf & ETH_RSS_IPV4) ? FM10K_MRQC_IPV4 : 0;
mrqc |= (hf & ETH_RSS_IPV6) ? FM10K_MRQC_IPV6 : 0;
mrqc |= (hf & ETH_RSS_IPV6_EX) ? FM10K_MRQC_IPV6 : 0;
mrqc |= (hf & ETH_RSS_NONFRAG_IPV4_TCP) ? FM10K_MRQC_TCP_IPV4 : 0;
mrqc |= (hf & ETH_RSS_NONFRAG_IPV6_TCP) ? FM10K_MRQC_TCP_IPV6 : 0;
mrqc |= (hf & ETH_RSS_IPV6_TCP_EX) ? FM10K_MRQC_TCP_IPV6 : 0;
mrqc |= (hf & ETH_RSS_NONFRAG_IPV4_UDP) ? FM10K_MRQC_UDP_IPV4 : 0;
mrqc |= (hf & ETH_RSS_NONFRAG_IPV6_UDP) ? FM10K_MRQC_UDP_IPV6 : 0;
mrqc |= (hf & ETH_RSS_IPV6_UDP_EX) ? FM10K_MRQC_UDP_IPV6 : 0;
/* If the mapping doesn't fit any supported, return */
if (mrqc == 0)
return -EINVAL;
if (key != NULL)
for (i = 0; i < FM10K_RSSRK_SIZE; ++i)
FM10K_WRITE_REG(hw, FM10K_RSSRK(0, i), key[i]);
FM10K_WRITE_REG(hw, FM10K_MRQC(0), mrqc);
return 0;
}
static int
fm10k_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t *key = (uint32_t *)rss_conf->rss_key;
uint32_t mrqc;
uint64_t hf;
int i;
PMD_INIT_FUNC_TRACE();
if (key && (rss_conf->rss_key_len < FM10K_RSSRK_SIZE *
FM10K_RSSRK_ENTRIES_PER_REG))
return -EINVAL;
if (key != NULL)
for (i = 0; i < FM10K_RSSRK_SIZE; ++i)
key[i] = FM10K_READ_REG(hw, FM10K_RSSRK(0, i));
mrqc = FM10K_READ_REG(hw, FM10K_MRQC(0));
hf = 0;
hf |= (mrqc & FM10K_MRQC_IPV4) ? ETH_RSS_IPV4 : 0;
hf |= (mrqc & FM10K_MRQC_IPV6) ? ETH_RSS_IPV6 : 0;
hf |= (mrqc & FM10K_MRQC_IPV6) ? ETH_RSS_IPV6_EX : 0;
hf |= (mrqc & FM10K_MRQC_TCP_IPV4) ? ETH_RSS_NONFRAG_IPV4_TCP : 0;
hf |= (mrqc & FM10K_MRQC_TCP_IPV6) ? ETH_RSS_NONFRAG_IPV6_TCP : 0;
hf |= (mrqc & FM10K_MRQC_TCP_IPV6) ? ETH_RSS_IPV6_TCP_EX : 0;
hf |= (mrqc & FM10K_MRQC_UDP_IPV4) ? ETH_RSS_NONFRAG_IPV4_UDP : 0;
hf |= (mrqc & FM10K_MRQC_UDP_IPV6) ? ETH_RSS_NONFRAG_IPV6_UDP : 0;
hf |= (mrqc & FM10K_MRQC_UDP_IPV6) ? ETH_RSS_IPV6_UDP_EX : 0;
rss_conf->rss_hf = hf;
return 0;
}
static void
fm10k_dev_enable_intr_pf(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t int_map = FM10K_INT_MAP_IMMEDIATE;
/* Bind all local non-queue interrupt to vector 0 */
int_map |= FM10K_MISC_VEC_ID;
FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_mailbox), int_map);
FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_pcie_fault), int_map);
FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_switch_up_down), int_map);
FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_switch_event), int_map);
FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_sram), int_map);
FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_vflr), int_map);
/* Enable misc causes */
FM10K_WRITE_REG(hw, FM10K_EIMR, FM10K_EIMR_ENABLE(PCA_FAULT) |
FM10K_EIMR_ENABLE(THI_FAULT) |
FM10K_EIMR_ENABLE(FUM_FAULT) |
FM10K_EIMR_ENABLE(MAILBOX) |
FM10K_EIMR_ENABLE(SWITCHREADY) |
FM10K_EIMR_ENABLE(SWITCHNOTREADY) |
FM10K_EIMR_ENABLE(SRAMERROR) |
FM10K_EIMR_ENABLE(VFLR));
/* Enable ITR 0 */
FM10K_WRITE_REG(hw, FM10K_ITR(0), FM10K_ITR_AUTOMASK |
FM10K_ITR_MASK_CLEAR);
FM10K_WRITE_FLUSH(hw);
}
static void
fm10k_dev_disable_intr_pf(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t int_map = FM10K_INT_MAP_DISABLE;
int_map |= FM10K_MISC_VEC_ID;
FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_mailbox), int_map);
FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_pcie_fault), int_map);
FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_switch_up_down), int_map);
FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_switch_event), int_map);
FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_sram), int_map);
FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_vflr), int_map);
/* Disable misc causes */
FM10K_WRITE_REG(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(PCA_FAULT) |
FM10K_EIMR_DISABLE(THI_FAULT) |
FM10K_EIMR_DISABLE(FUM_FAULT) |
FM10K_EIMR_DISABLE(MAILBOX) |
FM10K_EIMR_DISABLE(SWITCHREADY) |
FM10K_EIMR_DISABLE(SWITCHNOTREADY) |
FM10K_EIMR_DISABLE(SRAMERROR) |
FM10K_EIMR_DISABLE(VFLR));
/* Disable ITR 0 */
FM10K_WRITE_REG(hw, FM10K_ITR(0), FM10K_ITR_MASK_SET);
FM10K_WRITE_FLUSH(hw);
}
static void
fm10k_dev_enable_intr_vf(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t int_map = FM10K_INT_MAP_IMMEDIATE;
/* Bind all local non-queue interrupt to vector 0 */
int_map |= FM10K_MISC_VEC_ID;
/* Only INT 0 available, other 15 are reserved. */
FM10K_WRITE_REG(hw, FM10K_VFINT_MAP, int_map);
/* Enable ITR 0 */
FM10K_WRITE_REG(hw, FM10K_VFITR(0), FM10K_ITR_AUTOMASK |
FM10K_ITR_MASK_CLEAR);
FM10K_WRITE_FLUSH(hw);
}
static void
fm10k_dev_disable_intr_vf(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t int_map = FM10K_INT_MAP_DISABLE;
int_map |= FM10K_MISC_VEC_ID;
/* Only INT 0 available, other 15 are reserved. */
FM10K_WRITE_REG(hw, FM10K_VFINT_MAP, int_map);
/* Disable ITR 0 */
FM10K_WRITE_REG(hw, FM10K_VFITR(0), FM10K_ITR_MASK_SET);
FM10K_WRITE_FLUSH(hw);
}
static int
fm10k_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_pci_device *pdev = RTE_ETH_DEV_TO_PCI(dev);
/* Enable ITR */
if (hw->mac.type == fm10k_mac_pf)
FM10K_WRITE_REG(hw, FM10K_ITR(Q2V(pdev, queue_id)),
FM10K_ITR_AUTOMASK | FM10K_ITR_MASK_CLEAR);
else
FM10K_WRITE_REG(hw, FM10K_VFITR(Q2V(pdev, queue_id)),
FM10K_ITR_AUTOMASK | FM10K_ITR_MASK_CLEAR);
rte_intr_ack(&pdev->intr_handle);
return 0;
}
static int
fm10k_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_pci_device *pdev = RTE_ETH_DEV_TO_PCI(dev);
/* Disable ITR */
if (hw->mac.type == fm10k_mac_pf)
FM10K_WRITE_REG(hw, FM10K_ITR(Q2V(pdev, queue_id)),
FM10K_ITR_MASK_SET);
else
FM10K_WRITE_REG(hw, FM10K_VFITR(Q2V(pdev, queue_id)),
FM10K_ITR_MASK_SET);
return 0;
}
static int
fm10k_dev_rxq_interrupt_setup(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_pci_device *pdev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pdev->intr_handle;
uint32_t intr_vector, vec;
uint16_t queue_id;
int result = 0;
/* fm10k needs one separate interrupt for mailbox,
* so only drivers which support multiple interrupt vectors
* e.g. vfio-pci can work for fm10k interrupt mode
*/
if (!rte_intr_cap_multiple(intr_handle) ||
dev->data->dev_conf.intr_conf.rxq == 0)
return result;
intr_vector = dev->data->nb_rx_queues;
/* disable interrupt first */
rte_intr_disable(intr_handle);
if (hw->mac.type == fm10k_mac_pf)
fm10k_dev_disable_intr_pf(dev);
else
fm10k_dev_disable_intr_vf(dev);
if (rte_intr_efd_enable(intr_handle, intr_vector)) {
PMD_INIT_LOG(ERR, "Failed to init event fd");
result = -EIO;
}
if (rte_intr_dp_is_en(intr_handle) && !result) {
intr_handle->intr_vec = rte_zmalloc("intr_vec",
dev->data->nb_rx_queues * sizeof(int), 0);
if (intr_handle->intr_vec) {
for (queue_id = 0, vec = FM10K_RX_VEC_START;
queue_id < dev->data->nb_rx_queues;
queue_id++) {
intr_handle->intr_vec[queue_id] = vec;
if (vec < intr_handle->nb_efd - 1
+ FM10K_RX_VEC_START)
vec++;
}
} else {
PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
" intr_vec", dev->data->nb_rx_queues);
rte_intr_efd_disable(intr_handle);
result = -ENOMEM;
}
}
if (hw->mac.type == fm10k_mac_pf)
fm10k_dev_enable_intr_pf(dev);
else
fm10k_dev_enable_intr_vf(dev);
rte_intr_enable(intr_handle);
hw->mac.ops.update_int_moderator(hw);
return result;
}
static int
fm10k_dev_handle_fault(struct fm10k_hw *hw, uint32_t eicr)
{
struct fm10k_fault fault;
int err;
const char *estr = "Unknown error";
/* Process PCA fault */
if (eicr & FM10K_EICR_PCA_FAULT) {
err = fm10k_get_fault(hw, FM10K_PCA_FAULT, &fault);
if (err)
goto error;
switch (fault.type) {
case PCA_NO_FAULT:
estr = "PCA_NO_FAULT"; break;
case PCA_UNMAPPED_ADDR:
estr = "PCA_UNMAPPED_ADDR"; break;
case PCA_BAD_QACCESS_PF:
estr = "PCA_BAD_QACCESS_PF"; break;
case PCA_BAD_QACCESS_VF:
estr = "PCA_BAD_QACCESS_VF"; break;
case PCA_MALICIOUS_REQ:
estr = "PCA_MALICIOUS_REQ"; break;
case PCA_POISONED_TLP:
estr = "PCA_POISONED_TLP"; break;
case PCA_TLP_ABORT:
estr = "PCA_TLP_ABORT"; break;
default:
goto error;
}
PMD_INIT_LOG(ERR, "%s: %s(%d) Addr:0x%"PRIx64" Spec: 0x%x",
estr, fault.func ? "VF" : "PF", fault.func,
fault.address, fault.specinfo);
}
/* Process THI fault */
if (eicr & FM10K_EICR_THI_FAULT) {
err = fm10k_get_fault(hw, FM10K_THI_FAULT, &fault);
if (err)
goto error;
switch (fault.type) {
case THI_NO_FAULT:
estr = "THI_NO_FAULT"; break;
case THI_MAL_DIS_Q_FAULT:
estr = "THI_MAL_DIS_Q_FAULT"; break;
default:
goto error;
}
PMD_INIT_LOG(ERR, "%s: %s(%d) Addr:0x%"PRIx64" Spec: 0x%x",
estr, fault.func ? "VF" : "PF", fault.func,
fault.address, fault.specinfo);
}
/* Process FUM fault */
if (eicr & FM10K_EICR_FUM_FAULT) {
err = fm10k_get_fault(hw, FM10K_FUM_FAULT, &fault);
if (err)
goto error;
switch (fault.type) {
case FUM_NO_FAULT:
estr = "FUM_NO_FAULT"; break;
case FUM_UNMAPPED_ADDR:
estr = "FUM_UNMAPPED_ADDR"; break;
case FUM_POISONED_TLP:
estr = "FUM_POISONED_TLP"; break;
case FUM_BAD_VF_QACCESS:
estr = "FUM_BAD_VF_QACCESS"; break;
case FUM_ADD_DECODE_ERR:
estr = "FUM_ADD_DECODE_ERR"; break;
case FUM_RO_ERROR:
estr = "FUM_RO_ERROR"; break;
case FUM_QPRC_CRC_ERROR:
estr = "FUM_QPRC_CRC_ERROR"; break;
case FUM_CSR_TIMEOUT:
estr = "FUM_CSR_TIMEOUT"; break;
case FUM_INVALID_TYPE:
estr = "FUM_INVALID_TYPE"; break;
case FUM_INVALID_LENGTH:
estr = "FUM_INVALID_LENGTH"; break;
case FUM_INVALID_BE:
estr = "FUM_INVALID_BE"; break;
case FUM_INVALID_ALIGN:
estr = "FUM_INVALID_ALIGN"; break;
default:
goto error;
}
PMD_INIT_LOG(ERR, "%s: %s(%d) Addr:0x%"PRIx64" Spec: 0x%x",
estr, fault.func ? "VF" : "PF", fault.func,
fault.address, fault.specinfo);
}
return 0;
error:
PMD_INIT_LOG(ERR, "Failed to handle fault event.");
return err;
}
/**
* PF interrupt handler triggered by NIC for handling specific interrupt.
*
* @param handle
* Pointer to interrupt handle.
* @param param
* The address of parameter (struct rte_eth_dev *) regsitered before.
*
* @return
* void
*/
static void
fm10k_dev_interrupt_handler_pf(void *param)
{
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t cause, status;
struct fm10k_dev_info *dev_info =
FM10K_DEV_PRIVATE_TO_INFO(dev->data->dev_private);
int status_mbx;
s32 err;
if (hw->mac.type != fm10k_mac_pf)
return;
cause = FM10K_READ_REG(hw, FM10K_EICR);
/* Handle PCI fault cases */
if (cause & FM10K_EICR_FAULT_MASK) {
PMD_INIT_LOG(ERR, "INT: find fault!");
fm10k_dev_handle_fault(hw, cause);
}
/* Handle switch up/down */
if (cause & FM10K_EICR_SWITCHNOTREADY)
PMD_INIT_LOG(ERR, "INT: Switch is not ready");
if (cause & FM10K_EICR_SWITCHREADY) {
PMD_INIT_LOG(INFO, "INT: Switch is ready");
if (dev_info->sm_down == 1) {
fm10k_mbx_lock(hw);
/* For recreating logical ports */
status_mbx = hw->mac.ops.update_lport_state(hw,
hw->mac.dglort_map, MAX_LPORT_NUM, 1);
if (status_mbx == FM10K_SUCCESS)
PMD_INIT_LOG(INFO,
"INT: Recreated Logical port");
else
PMD_INIT_LOG(INFO,
"INT: Logical ports weren't recreated");
status_mbx = hw->mac.ops.update_xcast_mode(hw,
hw->mac.dglort_map, FM10K_XCAST_MODE_NONE);
if (status_mbx != FM10K_SUCCESS)
PMD_INIT_LOG(ERR, "Failed to set XCAST mode");
fm10k_mbx_unlock(hw);
/* first clear the internal SW recording structure */
if (!(dev->data->dev_conf.rxmode.mq_mode &
ETH_MQ_RX_VMDQ_FLAG))
fm10k_vlan_filter_set(dev, hw->mac.default_vid,
false);
fm10k_MAC_filter_set(dev, hw->mac.addr, false,
MAIN_VSI_POOL_NUMBER);
/*
* Add default mac address and vlan for the logical
* ports that have been created, leave to the
* application to fully recover Rx filtering.
*/
fm10k_MAC_filter_set(dev, hw->mac.addr, true,
MAIN_VSI_POOL_NUMBER);
if (!(dev->data->dev_conf.rxmode.mq_mode &
ETH_MQ_RX_VMDQ_FLAG))
fm10k_vlan_filter_set(dev, hw->mac.default_vid,
true);
dev_info->sm_down = 0;
_rte_eth_dev_callback_process(dev,
RTE_ETH_EVENT_INTR_LSC,
NULL);
}
}
/* Handle mailbox message */
fm10k_mbx_lock(hw);
err = hw->mbx.ops.process(hw, &hw->mbx);
fm10k_mbx_unlock(hw);
if (err == FM10K_ERR_RESET_REQUESTED) {
PMD_INIT_LOG(INFO, "INT: Switch is down");
dev_info->sm_down = 1;
_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC,
NULL);
}
/* Handle SRAM error */
if (cause & FM10K_EICR_SRAMERROR) {
PMD_INIT_LOG(ERR, "INT: SRAM error on PEP");
status = FM10K_READ_REG(hw, FM10K_SRAM_IP);
/* Write to clear pending bits */
FM10K_WRITE_REG(hw, FM10K_SRAM_IP, status);
/* Todo: print out error message after shared code updates */
}
/* Clear these 3 events if having any */
cause &= FM10K_EICR_SWITCHNOTREADY | FM10K_EICR_MAILBOX |
FM10K_EICR_SWITCHREADY;
if (cause)
FM10K_WRITE_REG(hw, FM10K_EICR, cause);
/* Re-enable interrupt from device side */
FM10K_WRITE_REG(hw, FM10K_ITR(0), FM10K_ITR_AUTOMASK |
FM10K_ITR_MASK_CLEAR);
/* Re-enable interrupt from host side */
rte_intr_ack(dev->intr_handle);
}
/**
* VF interrupt handler triggered by NIC for handling specific interrupt.
*
* @param handle
* Pointer to interrupt handle.
* @param param
* The address of parameter (struct rte_eth_dev *) regsitered before.
*
* @return
* void
*/
static void
fm10k_dev_interrupt_handler_vf(void *param)
{
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct fm10k_mbx_info *mbx = &hw->mbx;
struct fm10k_dev_info *dev_info =
FM10K_DEV_PRIVATE_TO_INFO(dev->data->dev_private);
const enum fm10k_mbx_state state = mbx->state;
int status_mbx;
if (hw->mac.type != fm10k_mac_vf)
return;
/* Handle mailbox message if lock is acquired */
fm10k_mbx_lock(hw);
hw->mbx.ops.process(hw, &hw->mbx);
fm10k_mbx_unlock(hw);
if (state == FM10K_STATE_OPEN && mbx->state == FM10K_STATE_CONNECT) {
PMD_INIT_LOG(INFO, "INT: Switch has gone down");
fm10k_mbx_lock(hw);
hw->mac.ops.update_lport_state(hw, hw->mac.dglort_map,
MAX_LPORT_NUM, 1);
fm10k_mbx_unlock(hw);
/* Setting reset flag */
dev_info->sm_down = 1;
_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC,
NULL);
}
if (dev_info->sm_down == 1 &&
hw->mac.dglort_map == FM10K_DGLORTMAP_ZERO) {
PMD_INIT_LOG(INFO, "INT: Switch has gone up");
fm10k_mbx_lock(hw);
status_mbx = hw->mac.ops.update_xcast_mode(hw,
hw->mac.dglort_map, FM10K_XCAST_MODE_NONE);
if (status_mbx != FM10K_SUCCESS)
PMD_INIT_LOG(ERR, "Failed to set XCAST mode");
fm10k_mbx_unlock(hw);
/* first clear the internal SW recording structure */
fm10k_vlan_filter_set(dev, hw->mac.default_vid, false);
fm10k_MAC_filter_set(dev, hw->mac.addr, false,
MAIN_VSI_POOL_NUMBER);
/*
* Add default mac address and vlan for the logical ports that
* have been created, leave to the application to fully recover
* Rx filtering.
*/
fm10k_MAC_filter_set(dev, hw->mac.addr, true,
MAIN_VSI_POOL_NUMBER);
fm10k_vlan_filter_set(dev, hw->mac.default_vid, true);
dev_info->sm_down = 0;
_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC,
NULL);
}
/* Re-enable interrupt from device side */
FM10K_WRITE_REG(hw, FM10K_VFITR(0), FM10K_ITR_AUTOMASK |
FM10K_ITR_MASK_CLEAR);
/* Re-enable interrupt from host side */
rte_intr_ack(dev->intr_handle);
}
/* Mailbox message handler in VF */
static const struct fm10k_msg_data fm10k_msgdata_vf[] = {
FM10K_TLV_MSG_TEST_HANDLER(fm10k_tlv_msg_test),
FM10K_VF_MSG_MAC_VLAN_HANDLER(fm10k_msg_mac_vlan_vf),
FM10K_VF_MSG_LPORT_STATE_HANDLER(fm10k_msg_lport_state_vf),
FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
};
static int
fm10k_setup_mbx_service(struct fm10k_hw *hw)
{
int err = 0;
/* Initialize mailbox lock */
fm10k_mbx_initlock(hw);
/* Replace default message handler with new ones */
if (hw->mac.type == fm10k_mac_vf)
err = hw->mbx.ops.register_handlers(&hw->mbx, fm10k_msgdata_vf);
if (err) {
PMD_INIT_LOG(ERR, "Failed to register mailbox handler.err:%d",
err);
return err;
}
/* Connect to SM for PF device or PF for VF device */
return hw->mbx.ops.connect(hw, &hw->mbx);
}
static void
fm10k_close_mbx_service(struct fm10k_hw *hw)
{
/* Disconnect from SM for PF device or PF for VF device */
hw->mbx.ops.disconnect(hw, &hw->mbx);
}
static void
fm10k_dev_close(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_pci_device *pdev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pdev->intr_handle;
PMD_INIT_FUNC_TRACE();
fm10k_mbx_lock(hw);
hw->mac.ops.update_lport_state(hw, hw->mac.dglort_map,
MAX_LPORT_NUM, false);
fm10k_mbx_unlock(hw);
/* allow 100ms for device to quiesce */
rte_delay_us(FM10K_SWITCH_QUIESCE_US);
/* Stop mailbox service first */
fm10k_close_mbx_service(hw);
fm10k_dev_stop(dev);
fm10k_dev_queue_release(dev);
fm10k_stop_hw(hw);
dev->dev_ops = NULL;
dev->rx_pkt_burst = NULL;
dev->tx_pkt_burst = NULL;
/* disable uio/vfio intr */
rte_intr_disable(intr_handle);
/*PF/VF has different interrupt handling mechanism */
if (hw->mac.type == fm10k_mac_pf) {
/* disable interrupt */
fm10k_dev_disable_intr_pf(dev);
/* unregister callback func to eal lib */
rte_intr_callback_unregister(intr_handle,
fm10k_dev_interrupt_handler_pf, (void *)dev);
} else {
/* disable interrupt */
fm10k_dev_disable_intr_vf(dev);
rte_intr_callback_unregister(intr_handle,
fm10k_dev_interrupt_handler_vf, (void *)dev);
}
}
static const struct eth_dev_ops fm10k_eth_dev_ops = {
.dev_configure = fm10k_dev_configure,
.dev_start = fm10k_dev_start,
.dev_stop = fm10k_dev_stop,
.dev_close = fm10k_dev_close,
.promiscuous_enable = fm10k_dev_promiscuous_enable,
.promiscuous_disable = fm10k_dev_promiscuous_disable,
.allmulticast_enable = fm10k_dev_allmulticast_enable,
.allmulticast_disable = fm10k_dev_allmulticast_disable,
.stats_get = fm10k_stats_get,
.xstats_get = fm10k_xstats_get,
.xstats_get_names = fm10k_xstats_get_names,
.stats_reset = fm10k_stats_reset,
.xstats_reset = fm10k_stats_reset,
.link_update = fm10k_link_update,
.dev_infos_get = fm10k_dev_infos_get,
.dev_supported_ptypes_get = fm10k_dev_supported_ptypes_get,
.vlan_filter_set = fm10k_vlan_filter_set,
.vlan_offload_set = fm10k_vlan_offload_set,
.mac_addr_add = fm10k_macaddr_add,
.mac_addr_remove = fm10k_macaddr_remove,
.rx_queue_start = fm10k_dev_rx_queue_start,
.rx_queue_stop = fm10k_dev_rx_queue_stop,
.tx_queue_start = fm10k_dev_tx_queue_start,
.tx_queue_stop = fm10k_dev_tx_queue_stop,
.rx_queue_setup = fm10k_rx_queue_setup,
.rx_queue_release = fm10k_rx_queue_release,
.tx_queue_setup = fm10k_tx_queue_setup,
.tx_queue_release = fm10k_tx_queue_release,
.rx_queue_count = fm10k_dev_rx_queue_count,
.rx_descriptor_done = fm10k_dev_rx_descriptor_done,
.rx_descriptor_status = fm10k_dev_rx_descriptor_status,
.tx_descriptor_status = fm10k_dev_tx_descriptor_status,
.rx_queue_intr_enable = fm10k_dev_rx_queue_intr_enable,
.rx_queue_intr_disable = fm10k_dev_rx_queue_intr_disable,
.reta_update = fm10k_reta_update,
.reta_query = fm10k_reta_query,
.rss_hash_update = fm10k_rss_hash_update,
.rss_hash_conf_get = fm10k_rss_hash_conf_get,
};
static int ftag_check_handler(__rte_unused const char *key,
const char *value, __rte_unused void *opaque)
{
if (strcmp(value, "1"))
return -1;
return 0;
}
static int
fm10k_check_ftag(struct rte_devargs *devargs)
{
struct rte_kvargs *kvlist;
const char *ftag_key = "enable_ftag";
if (devargs == NULL)
return 0;
kvlist = rte_kvargs_parse(devargs->args, NULL);
if (kvlist == NULL)
return 0;
if (!rte_kvargs_count(kvlist, ftag_key)) {
rte_kvargs_free(kvlist);
return 0;
}
/* FTAG is enabled when there's key-value pair: enable_ftag=1 */
if (rte_kvargs_process(kvlist, ftag_key,
ftag_check_handler, NULL) < 0) {
rte_kvargs_free(kvlist);
return 0;
}
rte_kvargs_free(kvlist);
return 1;
}
static uint16_t
fm10k_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
uint16_t nb_tx = 0;
struct fm10k_tx_queue *txq = (struct fm10k_tx_queue *)tx_queue;
while (nb_pkts) {
uint16_t ret, num;
num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh);
ret = fm10k_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx],
num);
nb_tx += ret;
nb_pkts -= ret;
if (ret < num)
break;
}
return nb_tx;
}
static void __attribute__((cold))
fm10k_set_tx_function(struct rte_eth_dev *dev)
{
struct fm10k_tx_queue *txq;
int i;
int use_sse = 1;
uint16_t tx_ftag_en = 0;
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
/* primary process has set the ftag flag and offloads */
txq = dev->data->tx_queues[0];
if (fm10k_tx_vec_condition_check(txq)) {
dev->tx_pkt_burst = fm10k_xmit_pkts;
dev->tx_pkt_prepare = fm10k_prep_pkts;
PMD_INIT_LOG(DEBUG, "Use regular Tx func");
} else {
PMD_INIT_LOG(DEBUG, "Use vector Tx func");
dev->tx_pkt_burst = fm10k_xmit_pkts_vec;
dev->tx_pkt_prepare = NULL;
}
return;
}
if (fm10k_check_ftag(dev->device->devargs))
tx_ftag_en = 1;
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
txq->tx_ftag_en = tx_ftag_en;
/* Check if Vector Tx is satisfied */
if (fm10k_tx_vec_condition_check(txq))
use_sse = 0;
}
if (use_sse) {
PMD_INIT_LOG(DEBUG, "Use vector Tx func");
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
fm10k_txq_vec_setup(txq);
}
dev->tx_pkt_burst = fm10k_xmit_pkts_vec;
dev->tx_pkt_prepare = NULL;
} else {
dev->tx_pkt_burst = fm10k_xmit_pkts;
dev->tx_pkt_prepare = fm10k_prep_pkts;
PMD_INIT_LOG(DEBUG, "Use regular Tx func");
}
}
static void __attribute__((cold))
fm10k_set_rx_function(struct rte_eth_dev *dev)
{
struct fm10k_dev_info *dev_info =
FM10K_DEV_PRIVATE_TO_INFO(dev->data->dev_private);
uint16_t i, rx_using_sse;
uint16_t rx_ftag_en = 0;
if (fm10k_check_ftag(dev->device->devargs))
rx_ftag_en = 1;
/* In order to allow Vector Rx there are a few configuration
* conditions to be met.
*/
if (!fm10k_rx_vec_condition_check(dev) &&
dev_info->rx_vec_allowed && !rx_ftag_en) {
if (dev->data->scattered_rx)
dev->rx_pkt_burst = fm10k_recv_scattered_pkts_vec;
else
dev->rx_pkt_burst = fm10k_recv_pkts_vec;
} else if (dev->data->scattered_rx)
dev->rx_pkt_burst = fm10k_recv_scattered_pkts;
else
dev->rx_pkt_burst = fm10k_recv_pkts;
rx_using_sse =
(dev->rx_pkt_burst == fm10k_recv_scattered_pkts_vec ||
dev->rx_pkt_burst == fm10k_recv_pkts_vec);
if (rx_using_sse)
PMD_INIT_LOG(DEBUG, "Use vector Rx func");
else
PMD_INIT_LOG(DEBUG, "Use regular Rx func");
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
struct fm10k_rx_queue *rxq = dev->data->rx_queues[i];
rxq->rx_using_sse = rx_using_sse;
rxq->rx_ftag_en = rx_ftag_en;
}
}
static void
fm10k_params_init(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct fm10k_dev_info *info =
FM10K_DEV_PRIVATE_TO_INFO(dev->data->dev_private);
/* Inialize bus info. Normally we would call fm10k_get_bus_info(), but
* there is no way to get link status without reading BAR4. Until this
* works, assume we have maximum bandwidth.
* @todo - fix bus info
*/
hw->bus_caps.speed = fm10k_bus_speed_8000;
hw->bus_caps.width = fm10k_bus_width_pcie_x8;
hw->bus_caps.payload = fm10k_bus_payload_512;
hw->bus.speed = fm10k_bus_speed_8000;
hw->bus.width = fm10k_bus_width_pcie_x8;
hw->bus.payload = fm10k_bus_payload_256;
info->rx_vec_allowed = true;
info->sm_down = false;
}
static int
eth_fm10k_dev_init(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_pci_device *pdev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pdev->intr_handle;
int diag, i;
struct fm10k_macvlan_filter_info *macvlan;
PMD_INIT_FUNC_TRACE();
dev->dev_ops = &fm10k_eth_dev_ops;
dev->rx_pkt_burst = &fm10k_recv_pkts;
dev->tx_pkt_burst = &fm10k_xmit_pkts;
dev->tx_pkt_prepare = &fm10k_prep_pkts;
/*
* Primary process does the whole initialization, for secondary
* processes, we just select the same Rx and Tx function as primary.
*/
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
fm10k_set_rx_function(dev);
fm10k_set_tx_function(dev);
return 0;
}
rte_eth_copy_pci_info(dev, pdev);
macvlan = FM10K_DEV_PRIVATE_TO_MACVLAN(dev->data->dev_private);
memset(macvlan, 0, sizeof(*macvlan));
/* Vendor and Device ID need to be set before init of shared code */
memset(hw, 0, sizeof(*hw));
hw->device_id = pdev->id.device_id;
hw->vendor_id = pdev->id.vendor_id;
hw->subsystem_device_id = pdev->id.subsystem_device_id;
hw->subsystem_vendor_id = pdev->id.subsystem_vendor_id;
hw->revision_id = 0;
hw->hw_addr = (void *)pdev->mem_resource[0].addr;
if (hw->hw_addr == NULL) {
PMD_INIT_LOG(ERR, "Bad mem resource."
" Try to blacklist unused devices.");
return -EIO;
}
/* Store fm10k_adapter pointer */
hw->back = dev->data->dev_private;
/* Initialize the shared code */
diag = fm10k_init_shared_code(hw);
if (diag != FM10K_SUCCESS) {
PMD_INIT_LOG(ERR, "Shared code init failed: %d", diag);
return -EIO;
}
/* Initialize parameters */
fm10k_params_init(dev);
/* Initialize the hw */
diag = fm10k_init_hw(hw);
if (diag != FM10K_SUCCESS) {
PMD_INIT_LOG(ERR, "Hardware init failed: %d", diag);
return -EIO;
}
/* Initialize MAC address(es) */
dev->data->mac_addrs = rte_zmalloc("fm10k",
net: add rte prefix to ether defines Add 'RTE_' prefix to defines: - rename ETHER_ADDR_LEN as RTE_ETHER_ADDR_LEN. - rename ETHER_TYPE_LEN as RTE_ETHER_TYPE_LEN. - rename ETHER_CRC_LEN as RTE_ETHER_CRC_LEN. - rename ETHER_HDR_LEN as RTE_ETHER_HDR_LEN. - rename ETHER_MIN_LEN as RTE_ETHER_MIN_LEN. - rename ETHER_MAX_LEN as RTE_ETHER_MAX_LEN. - rename ETHER_MTU as RTE_ETHER_MTU. - rename ETHER_MAX_VLAN_FRAME_LEN as RTE_ETHER_MAX_VLAN_FRAME_LEN. - rename ETHER_MAX_VLAN_ID as RTE_ETHER_MAX_VLAN_ID. - rename ETHER_MAX_JUMBO_FRAME_LEN as RTE_ETHER_MAX_JUMBO_FRAME_LEN. - rename ETHER_MIN_MTU as RTE_ETHER_MIN_MTU. - rename ETHER_LOCAL_ADMIN_ADDR as RTE_ETHER_LOCAL_ADMIN_ADDR. - rename ETHER_GROUP_ADDR as RTE_ETHER_GROUP_ADDR. - rename ETHER_TYPE_IPv4 as RTE_ETHER_TYPE_IPv4. - rename ETHER_TYPE_IPv6 as RTE_ETHER_TYPE_IPv6. - rename ETHER_TYPE_ARP as RTE_ETHER_TYPE_ARP. - rename ETHER_TYPE_VLAN as RTE_ETHER_TYPE_VLAN. - rename ETHER_TYPE_RARP as RTE_ETHER_TYPE_RARP. - rename ETHER_TYPE_QINQ as RTE_ETHER_TYPE_QINQ. - rename ETHER_TYPE_ETAG as RTE_ETHER_TYPE_ETAG. - rename ETHER_TYPE_1588 as RTE_ETHER_TYPE_1588. - rename ETHER_TYPE_SLOW as RTE_ETHER_TYPE_SLOW. - rename ETHER_TYPE_TEB as RTE_ETHER_TYPE_TEB. - rename ETHER_TYPE_LLDP as RTE_ETHER_TYPE_LLDP. - rename ETHER_TYPE_MPLS as RTE_ETHER_TYPE_MPLS. - rename ETHER_TYPE_MPLSM as RTE_ETHER_TYPE_MPLSM. - rename ETHER_VXLAN_HLEN as RTE_ETHER_VXLAN_HLEN. - rename ETHER_ADDR_FMT_SIZE as RTE_ETHER_ADDR_FMT_SIZE. - rename VXLAN_GPE_TYPE_IPV4 as RTE_VXLAN_GPE_TYPE_IPV4. - rename VXLAN_GPE_TYPE_IPV6 as RTE_VXLAN_GPE_TYPE_IPV6. - rename VXLAN_GPE_TYPE_ETH as RTE_VXLAN_GPE_TYPE_ETH. - rename VXLAN_GPE_TYPE_NSH as RTE_VXLAN_GPE_TYPE_NSH. - rename VXLAN_GPE_TYPE_MPLS as RTE_VXLAN_GPE_TYPE_MPLS. - rename VXLAN_GPE_TYPE_GBP as RTE_VXLAN_GPE_TYPE_GBP. - rename VXLAN_GPE_TYPE_VBNG as RTE_VXLAN_GPE_TYPE_VBNG. - rename ETHER_VXLAN_GPE_HLEN as RTE_ETHER_VXLAN_GPE_HLEN. Do not update the command line library to avoid adding a dependency to librte_net. Signed-off-by: Olivier Matz <olivier.matz@6wind.com> Reviewed-by: Stephen Hemminger <stephen@networkplumber.org> Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com> Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2019-05-21 16:13:05 +00:00
RTE_ETHER_ADDR_LEN * FM10K_MAX_MACADDR_NUM, 0);
if (dev->data->mac_addrs == NULL) {
PMD_INIT_LOG(ERR, "Cannot allocate memory for MAC addresses");
return -ENOMEM;
}
diag = fm10k_read_mac_addr(hw);
rte_ether_addr_copy((const struct rte_ether_addr *)hw->mac.addr,
&dev->data->mac_addrs[0]);
if (diag != FM10K_SUCCESS ||
!rte_is_valid_assigned_ether_addr(dev->data->mac_addrs)) {
/* Generate a random addr */
rte_eth_random_addr(hw->mac.addr);
memcpy(hw->mac.perm_addr, hw->mac.addr, ETH_ALEN);
rte_ether_addr_copy((const struct rte_ether_addr *)hw->mac.addr,
&dev->data->mac_addrs[0]);
}
/* Pass the information to the rte_eth_dev_close() that it should also
* release the private port resources.
*/
dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
/* Reset the hw statistics */
diag = fm10k_stats_reset(dev);
if (diag != 0) {
PMD_INIT_LOG(ERR, "Stats reset failed: %d", diag);
return diag;
}
/* Reset the hw */
diag = fm10k_reset_hw(hw);
if (diag != FM10K_SUCCESS) {
PMD_INIT_LOG(ERR, "Hardware reset failed: %d", diag);
return -EIO;
}
/* Setup mailbox service */
diag = fm10k_setup_mbx_service(hw);
if (diag != FM10K_SUCCESS) {
PMD_INIT_LOG(ERR, "Failed to setup mailbox: %d", diag);
return -EIO;
}
/*PF/VF has different interrupt handling mechanism */
if (hw->mac.type == fm10k_mac_pf) {
/* register callback func to eal lib */
rte_intr_callback_register(intr_handle,
fm10k_dev_interrupt_handler_pf, (void *)dev);
/* enable MISC interrupt */
fm10k_dev_enable_intr_pf(dev);
} else { /* VF */
rte_intr_callback_register(intr_handle,
fm10k_dev_interrupt_handler_vf, (void *)dev);
fm10k_dev_enable_intr_vf(dev);
}
/* Enable intr after callback registered */
rte_intr_enable(intr_handle);
hw->mac.ops.update_int_moderator(hw);
/* Make sure Switch Manager is ready before going forward. */
if (hw->mac.type == fm10k_mac_pf) {
int switch_ready = 0;
for (i = 0; i < MAX_QUERY_SWITCH_STATE_TIMES; i++) {
fm10k_mbx_lock(hw);
hw->mac.ops.get_host_state(hw, &switch_ready);
fm10k_mbx_unlock(hw);
if (switch_ready)
break;
/* Delay some time to acquire async LPORT_MAP info. */
rte_delay_us(WAIT_SWITCH_MSG_US);
}
if (switch_ready == 0) {
PMD_INIT_LOG(ERR, "switch is not ready");
return -1;
}
}
/*
* Below function will trigger operations on mailbox, acquire lock to
* avoid race condition from interrupt handler. Operations on mailbox
* FIFO will trigger interrupt to PF/SM, in which interrupt handler
* will handle and generate an interrupt to our side. Then, FIFO in
* mailbox will be touched.
*/
fm10k_mbx_lock(hw);
/* Enable port first */
hw->mac.ops.update_lport_state(hw, hw->mac.dglort_map,
MAX_LPORT_NUM, 1);
/* Set unicast mode by default. App can change to other mode in other
* API func.
*/
hw->mac.ops.update_xcast_mode(hw, hw->mac.dglort_map,
FM10K_XCAST_MODE_NONE);
fm10k_mbx_unlock(hw);
/* Make sure default VID is ready before going forward. */
if (hw->mac.type == fm10k_mac_pf) {
for (i = 0; i < MAX_QUERY_SWITCH_STATE_TIMES; i++) {
if (hw->mac.default_vid)
break;
/* Delay some time to acquire async port VLAN info. */
rte_delay_us(WAIT_SWITCH_MSG_US);
}
if (!hw->mac.default_vid) {
PMD_INIT_LOG(ERR, "default VID is not ready");
return -1;
}
}
/* Add default mac address */
fm10k_MAC_filter_set(dev, hw->mac.addr, true,
MAIN_VSI_POOL_NUMBER);
return 0;
}
static int
eth_fm10k_dev_uninit(struct rte_eth_dev *dev)
{
PMD_INIT_FUNC_TRACE();
/* only uninitialize in the primary process */
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
/* safe to close dev here */
fm10k_dev_close(dev);
return 0;
}
static int eth_fm10k_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_probe(pci_dev,
sizeof(struct fm10k_adapter), eth_fm10k_dev_init);
}
static int eth_fm10k_pci_remove(struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_remove(pci_dev, eth_fm10k_dev_uninit);
}
/*
* The set of PCI devices this driver supports. This driver will enable both PF
* and SRIOV-VF devices.
*/
static const struct rte_pci_id pci_id_fm10k_map[] = {
{ RTE_PCI_DEVICE(FM10K_INTEL_VENDOR_ID, FM10K_DEV_ID_PF) },
{ RTE_PCI_DEVICE(FM10K_INTEL_VENDOR_ID, FM10K_DEV_ID_SDI_FM10420_QDA2) },
{ RTE_PCI_DEVICE(FM10K_INTEL_VENDOR_ID, FM10K_DEV_ID_VF) },
{ .vendor_id = 0, /* sentinel */ },
};
static struct rte_pci_driver rte_pmd_fm10k = {
.id_table = pci_id_fm10k_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
.probe = eth_fm10k_pci_probe,
.remove = eth_fm10k_pci_remove,
};
RTE_PMD_REGISTER_PCI(net_fm10k, rte_pmd_fm10k);
RTE_PMD_REGISTER_PCI_TABLE(net_fm10k, pci_id_fm10k_map);
RTE_PMD_REGISTER_KMOD_DEP(net_fm10k, "* igb_uio | uio_pci_generic | vfio-pci");
RTE_INIT(fm10k_init_log)
{
fm10k_logtype_init = rte_log_register("pmd.net.fm10k.init");
if (fm10k_logtype_init >= 0)
rte_log_set_level(fm10k_logtype_init, RTE_LOG_NOTICE);
fm10k_logtype_driver = rte_log_register("pmd.net.fm10k.driver");
if (fm10k_logtype_driver >= 0)
rte_log_set_level(fm10k_logtype_driver, RTE_LOG_NOTICE);
}