numam-dpdk/drivers/net/qede/qede_rxtx.c

1570 lines
42 KiB
C
Raw Normal View History

/*
* Copyright (c) 2016 QLogic Corporation.
* All rights reserved.
* www.qlogic.com
*
* See LICENSE.qede_pmd for copyright and licensing details.
*/
#include "qede_rxtx.h"
static bool gro_disable = 1; /* mod_param */
static inline int qede_alloc_rx_buffer(struct qede_rx_queue *rxq)
{
struct rte_mbuf *new_mb = NULL;
struct eth_rx_bd *rx_bd;
dma_addr_t mapping;
uint16_t idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
new_mb = rte_mbuf_raw_alloc(rxq->mb_pool);
if (unlikely(!new_mb)) {
PMD_RX_LOG(ERR, rxq,
"Failed to allocate rx buffer "
"sw_rx_prod %u sw_rx_cons %u mp entries %u free %u",
idx, rxq->sw_rx_cons & NUM_RX_BDS(rxq),
rte_mempool_avail_count(rxq->mb_pool),
rte_mempool_in_use_count(rxq->mb_pool));
return -ENOMEM;
}
rxq->sw_rx_ring[idx].mbuf = new_mb;
rxq->sw_rx_ring[idx].page_offset = 0;
mapping = rte_mbuf_data_dma_addr_default(new_mb);
/* Advance PROD and get BD pointer */
rx_bd = (struct eth_rx_bd *)ecore_chain_produce(&rxq->rx_bd_ring);
rx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
rx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
rxq->sw_rx_prod++;
return 0;
}
static void qede_rx_queue_release_mbufs(struct qede_rx_queue *rxq)
{
uint16_t i;
if (rxq->sw_rx_ring != NULL) {
for (i = 0; i < rxq->nb_rx_desc; i++) {
if (rxq->sw_rx_ring[i].mbuf != NULL) {
rte_pktmbuf_free(rxq->sw_rx_ring[i].mbuf);
rxq->sw_rx_ring[i].mbuf = NULL;
}
}
}
}
void qede_rx_queue_release(void *rx_queue)
{
struct qede_rx_queue *rxq = rx_queue;
if (rxq != NULL) {
qede_rx_queue_release_mbufs(rxq);
rte_free(rxq->sw_rx_ring);
rxq->sw_rx_ring = NULL;
rte_free(rxq);
rxq = NULL;
}
}
static void qede_tx_queue_release_mbufs(struct qede_tx_queue *txq)
{
unsigned int i;
PMD_TX_LOG(DEBUG, txq, "releasing %u mbufs\n", txq->nb_tx_desc);
if (txq->sw_tx_ring) {
for (i = 0; i < txq->nb_tx_desc; i++) {
if (txq->sw_tx_ring[i].mbuf) {
rte_pktmbuf_free(txq->sw_tx_ring[i].mbuf);
txq->sw_tx_ring[i].mbuf = NULL;
}
}
}
}
int
qede_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
struct qede_dev *qdev = dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
struct qede_rx_queue *rxq;
uint16_t max_rx_pkt_len;
uint16_t bufsz;
size_t size;
int rc;
int i;
PMD_INIT_FUNC_TRACE(edev);
/* Note: Ring size/align is controlled by struct rte_eth_desc_lim */
if (!rte_is_power_of_2(nb_desc)) {
DP_ERR(edev, "Ring size %u is not power of 2\n",
nb_desc);
return -EINVAL;
}
/* Free memory prior to re-allocation if needed... */
if (dev->data->rx_queues[queue_idx] != NULL) {
qede_rx_queue_release(dev->data->rx_queues[queue_idx]);
dev->data->rx_queues[queue_idx] = NULL;
}
/* First allocate the rx queue data structure */
rxq = rte_zmalloc_socket("qede_rx_queue", sizeof(struct qede_rx_queue),
RTE_CACHE_LINE_SIZE, socket_id);
if (!rxq) {
DP_ERR(edev, "Unable to allocate memory for rxq on socket %u",
socket_id);
return -ENOMEM;
}
rxq->qdev = qdev;
rxq->mb_pool = mp;
rxq->nb_rx_desc = nb_desc;
rxq->queue_id = queue_idx;
rxq->port_id = dev->data->port_id;
max_rx_pkt_len = (uint16_t)rxmode->max_rx_pkt_len;
qdev->mtu = max_rx_pkt_len;
/* Fix up RX buffer size */
bufsz = (uint16_t)rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
if ((rxmode->enable_scatter) ||
(max_rx_pkt_len + QEDE_ETH_OVERHEAD) > bufsz) {
if (!dev->data->scattered_rx) {
DP_INFO(edev, "Forcing scatter-gather mode\n");
dev->data->scattered_rx = 1;
}
}
if (dev->data->scattered_rx)
rxq->rx_buf_size = bufsz + QEDE_ETH_OVERHEAD;
else
rxq->rx_buf_size = qdev->mtu + QEDE_ETH_OVERHEAD;
/* Align to cache-line size if needed */
rxq->rx_buf_size = QEDE_CEIL_TO_CACHE_LINE_SIZE(rxq->rx_buf_size);
DP_INFO(edev, "mtu %u mbufsz %u bd_max_bytes %u scatter_mode %d\n",
qdev->mtu, bufsz, rxq->rx_buf_size, dev->data->scattered_rx);
/* Allocate the parallel driver ring for Rx buffers */
size = sizeof(*rxq->sw_rx_ring) * rxq->nb_rx_desc;
rxq->sw_rx_ring = rte_zmalloc_socket("sw_rx_ring", size,
RTE_CACHE_LINE_SIZE, socket_id);
if (!rxq->sw_rx_ring) {
DP_NOTICE(edev, false,
"Unable to alloc memory for sw_rx_ring on socket %u\n",
socket_id);
rte_free(rxq);
rxq = NULL;
return -ENOMEM;
}
/* Allocate FW Rx ring */
rc = qdev->ops->common->chain_alloc(edev,
ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
ECORE_CHAIN_MODE_NEXT_PTR,
ECORE_CHAIN_CNT_TYPE_U16,
rxq->nb_rx_desc,
sizeof(struct eth_rx_bd),
&rxq->rx_bd_ring,
NULL);
if (rc != ECORE_SUCCESS) {
DP_NOTICE(edev, false,
"Unable to alloc memory for rxbd ring on socket %u\n",
socket_id);
rte_free(rxq->sw_rx_ring);
rxq->sw_rx_ring = NULL;
rte_free(rxq);
rxq = NULL;
return -ENOMEM;
}
/* Allocate FW completion ring */
rc = qdev->ops->common->chain_alloc(edev,
ECORE_CHAIN_USE_TO_CONSUME,
ECORE_CHAIN_MODE_PBL,
ECORE_CHAIN_CNT_TYPE_U16,
rxq->nb_rx_desc,
sizeof(union eth_rx_cqe),
&rxq->rx_comp_ring,
NULL);
if (rc != ECORE_SUCCESS) {
DP_NOTICE(edev, false,
"Unable to alloc memory for cqe ring on socket %u\n",
socket_id);
/* TBD: Freeing RX BD ring */
rte_free(rxq->sw_rx_ring);
rxq->sw_rx_ring = NULL;
rte_free(rxq);
return -ENOMEM;
}
/* Allocate buffers for the Rx ring */
for (i = 0; i < rxq->nb_rx_desc; i++) {
rc = qede_alloc_rx_buffer(rxq);
if (rc) {
DP_NOTICE(edev, false,
"RX buffer allocation failed at idx=%d\n", i);
goto err4;
}
}
dev->data->rx_queues[queue_idx] = rxq;
DP_INFO(edev, "rxq %d num_desc %u rx_buf_size=%u socket %u\n",
queue_idx, nb_desc, qdev->mtu, socket_id);
return 0;
err4:
qede_rx_queue_release(rxq);
return -ENOMEM;
}
void qede_tx_queue_release(void *tx_queue)
{
struct qede_tx_queue *txq = tx_queue;
if (txq != NULL) {
qede_tx_queue_release_mbufs(txq);
if (txq->sw_tx_ring) {
rte_free(txq->sw_tx_ring);
txq->sw_tx_ring = NULL;
}
rte_free(txq);
}
txq = NULL;
}
int
qede_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
struct qede_dev *qdev = dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
struct qede_tx_queue *txq;
int rc;
PMD_INIT_FUNC_TRACE(edev);
if (!rte_is_power_of_2(nb_desc)) {
DP_ERR(edev, "Ring size %u is not power of 2\n",
nb_desc);
return -EINVAL;
}
/* Free memory prior to re-allocation if needed... */
if (dev->data->tx_queues[queue_idx] != NULL) {
qede_tx_queue_release(dev->data->tx_queues[queue_idx]);
dev->data->tx_queues[queue_idx] = NULL;
}
txq = rte_zmalloc_socket("qede_tx_queue", sizeof(struct qede_tx_queue),
RTE_CACHE_LINE_SIZE, socket_id);
if (txq == NULL) {
DP_ERR(edev,
"Unable to allocate memory for txq on socket %u",
socket_id);
return -ENOMEM;
}
txq->nb_tx_desc = nb_desc;
txq->qdev = qdev;
txq->port_id = dev->data->port_id;
rc = qdev->ops->common->chain_alloc(edev,
ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
ECORE_CHAIN_MODE_PBL,
ECORE_CHAIN_CNT_TYPE_U16,
txq->nb_tx_desc,
sizeof(union eth_tx_bd_types),
&txq->tx_pbl,
NULL);
if (rc != ECORE_SUCCESS) {
DP_ERR(edev,
"Unable to allocate memory for txbd ring on socket %u",
socket_id);
qede_tx_queue_release(txq);
return -ENOMEM;
}
/* Allocate software ring */
txq->sw_tx_ring = rte_zmalloc_socket("txq->sw_tx_ring",
(sizeof(struct qede_tx_entry) *
txq->nb_tx_desc),
RTE_CACHE_LINE_SIZE, socket_id);
if (!txq->sw_tx_ring) {
DP_ERR(edev,
"Unable to allocate memory for txbd ring on socket %u",
socket_id);
qede_tx_queue_release(txq);
return -ENOMEM;
}
txq->queue_id = queue_idx;
txq->nb_tx_avail = txq->nb_tx_desc;
txq->tx_free_thresh =
tx_conf->tx_free_thresh ? tx_conf->tx_free_thresh :
(txq->nb_tx_desc - QEDE_DEFAULT_TX_FREE_THRESH);
dev->data->tx_queues[queue_idx] = txq;
DP_INFO(edev,
"txq %u num_desc %u tx_free_thresh %u socket %u\n",
queue_idx, nb_desc, txq->tx_free_thresh, socket_id);
return 0;
}
/* This function inits fp content and resets the SB, RXQ and TXQ arrays */
static void qede_init_fp(struct qede_dev *qdev)
{
struct qede_fastpath *fp;
uint8_t i, rss_id, tc;
int fp_rx = qdev->fp_num_rx, rxq = 0, txq = 0;
memset((void *)qdev->fp_array, 0, (QEDE_QUEUE_CNT(qdev) *
sizeof(*qdev->fp_array)));
memset((void *)qdev->sb_array, 0, (QEDE_QUEUE_CNT(qdev) *
sizeof(*qdev->sb_array)));
for_each_queue(i) {
fp = &qdev->fp_array[i];
if (fp_rx) {
fp->type = QEDE_FASTPATH_RX;
fp_rx--;
} else{
fp->type = QEDE_FASTPATH_TX;
}
fp->qdev = qdev;
fp->id = i;
fp->sb_info = &qdev->sb_array[i];
snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", "qdev", i);
}
qdev->gro_disable = gro_disable;
}
void qede_free_fp_arrays(struct qede_dev *qdev)
{
/* It asseumes qede_free_mem_load() is called before */
if (qdev->fp_array != NULL) {
rte_free(qdev->fp_array);
qdev->fp_array = NULL;
}
if (qdev->sb_array != NULL) {
rte_free(qdev->sb_array);
qdev->sb_array = NULL;
}
}
int qede_alloc_fp_array(struct qede_dev *qdev)
{
struct qede_fastpath *fp;
struct ecore_dev *edev = &qdev->edev;
int i;
qdev->fp_array = rte_calloc("fp", QEDE_QUEUE_CNT(qdev),
sizeof(*qdev->fp_array),
RTE_CACHE_LINE_SIZE);
if (!qdev->fp_array) {
DP_ERR(edev, "fp array allocation failed\n");
return -ENOMEM;
}
qdev->sb_array = rte_calloc("sb", QEDE_QUEUE_CNT(qdev),
sizeof(*qdev->sb_array),
RTE_CACHE_LINE_SIZE);
if (!qdev->sb_array) {
DP_ERR(edev, "sb array allocation failed\n");
rte_free(qdev->fp_array);
return -ENOMEM;
}
return 0;
}
/* This function allocates fast-path status block memory */
static int
qede_alloc_mem_sb(struct qede_dev *qdev, struct ecore_sb_info *sb_info,
uint16_t sb_id)
{
struct ecore_dev *edev = &qdev->edev;
struct status_block *sb_virt;
dma_addr_t sb_phys;
int rc;
sb_virt = OSAL_DMA_ALLOC_COHERENT(edev, &sb_phys, sizeof(*sb_virt));
if (!sb_virt) {
DP_ERR(edev, "Status block allocation failed\n");
return -ENOMEM;
}
rc = qdev->ops->common->sb_init(edev, sb_info,
sb_virt, sb_phys, sb_id,
QED_SB_TYPE_L2_QUEUE);
if (rc) {
DP_ERR(edev, "Status block initialization failed\n");
/* TBD: No dma_free_coherent possible */
return rc;
}
return 0;
}
int qede_alloc_fp_resc(struct qede_dev *qdev)
{
struct ecore_dev *edev = &qdev->edev;
struct qede_fastpath *fp;
uint32_t num_sbs;
int rc, i;
if (IS_VF(edev))
ecore_vf_get_num_sbs(ECORE_LEADING_HWFN(edev), &num_sbs);
else
num_sbs = (ecore_cxt_get_proto_cid_count
(ECORE_LEADING_HWFN(edev), PROTOCOLID_ETH, NULL)) / 2;
if (num_sbs == 0) {
DP_ERR(edev, "No status blocks available\n");
return -EINVAL;
}
if (qdev->fp_array)
qede_free_fp_arrays(qdev);
rc = qede_alloc_fp_array(qdev);
if (rc != 0)
return rc;
qede_init_fp(qdev);
for (i = 0; i < QEDE_QUEUE_CNT(qdev); i++) {
fp = &qdev->fp_array[i];
if (qede_alloc_mem_sb(qdev, fp->sb_info, i % num_sbs)) {
qede_free_fp_arrays(qdev);
return -ENOMEM;
}
}
return 0;
}
void qede_dealloc_fp_resc(struct rte_eth_dev *eth_dev)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
qede_free_mem_load(eth_dev);
qede_free_fp_arrays(qdev);
}
static inline void
qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq)
{
uint16_t bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring);
uint16_t cqe_prod = ecore_chain_get_prod_idx(&rxq->rx_comp_ring);
struct eth_rx_prod_data rx_prods = { 0 };
/* Update producers */
rx_prods.bd_prod = rte_cpu_to_le_16(bd_prod);
rx_prods.cqe_prod = rte_cpu_to_le_16(cqe_prod);
/* Make sure that the BD and SGE data is updated before updating the
* producers since FW might read the BD/SGE right after the producer
* is updated.
*/
rte_wmb();
internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
(uint32_t *)&rx_prods);
/* mmiowb is needed to synchronize doorbell writes from more than one
* processor. It guarantees that the write arrives to the device before
* the napi lock is released and another qede_poll is called (possibly
* on another CPU). Without this barrier, the next doorbell can bypass
* this doorbell. This is applicable to IA64/Altix systems.
*/
rte_wmb();
PMD_RX_LOG(DEBUG, rxq, "bd_prod %u cqe_prod %u\n", bd_prod, cqe_prod);
}
static int qede_start_queues(struct rte_eth_dev *eth_dev, bool clear_stats)
{
struct qede_dev *qdev = eth_dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
struct ecore_queue_start_common_params q_params;
struct qed_dev_info *qed_info = &qdev->dev_info.common;
struct qed_update_vport_params vport_update_params;
struct qede_tx_queue *txq;
struct qede_fastpath *fp;
dma_addr_t p_phys_table;
int txq_index;
uint16_t page_cnt;
int vlan_removal_en = 1;
int rc, tc, i;
for_each_queue(i) {
fp = &qdev->fp_array[i];
if (fp->type & QEDE_FASTPATH_RX) {
p_phys_table = ecore_chain_get_pbl_phys(&fp->rxq->
rx_comp_ring);
page_cnt = ecore_chain_get_page_cnt(&fp->rxq->
rx_comp_ring);
memset(&q_params, 0, sizeof(q_params));
q_params.queue_id = i;
q_params.vport_id = 0;
q_params.sb = fp->sb_info->igu_sb_id;
q_params.sb_idx = RX_PI;
ecore_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0);
rc = qdev->ops->q_rx_start(edev, i, &q_params,
fp->rxq->rx_buf_size,
fp->rxq->rx_bd_ring.p_phys_addr,
p_phys_table,
page_cnt,
&fp->rxq->hw_rxq_prod_addr);
if (rc) {
DP_ERR(edev, "Start rxq #%d failed %d\n",
fp->rxq->queue_id, rc);
return rc;
}
fp->rxq->hw_cons_ptr =
&fp->sb_info->sb_virt->pi_array[RX_PI];
qede_update_rx_prod(qdev, fp->rxq);
}
if (!(fp->type & QEDE_FASTPATH_TX))
continue;
for (tc = 0; tc < qdev->num_tc; tc++) {
txq = fp->txqs[tc];
txq_index = tc * QEDE_RSS_COUNT(qdev) + i;
p_phys_table = ecore_chain_get_pbl_phys(&txq->tx_pbl);
page_cnt = ecore_chain_get_page_cnt(&txq->tx_pbl);
memset(&q_params, 0, sizeof(q_params));
q_params.queue_id = txq->queue_id;
q_params.vport_id = 0;
q_params.sb = fp->sb_info->igu_sb_id;
q_params.sb_idx = TX_PI(tc);
rc = qdev->ops->q_tx_start(edev, i, &q_params,
p_phys_table,
page_cnt, /* **pp_doorbell */
&txq->doorbell_addr);
if (rc) {
DP_ERR(edev, "Start txq %u failed %d\n",
txq_index, rc);
return rc;
}
txq->hw_cons_ptr =
&fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
SET_FIELD(txq->tx_db.data.params,
ETH_DB_DATA_DEST, DB_DEST_XCM);
SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
DB_AGG_CMD_SET);
SET_FIELD(txq->tx_db.data.params,
ETH_DB_DATA_AGG_VAL_SEL,
DQ_XCM_ETH_TX_BD_PROD_CMD);
txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
}
}
/* Prepare and send the vport enable */
memset(&vport_update_params, 0, sizeof(vport_update_params));
/* Update MTU via vport update */
vport_update_params.mtu = qdev->mtu;
vport_update_params.vport_id = 0;
vport_update_params.update_vport_active_flg = 1;
vport_update_params.vport_active_flg = 1;
/* @DPDK */
if (qed_info->mf_mode == MF_NPAR && qed_info->tx_switching) {
/* TBD: Check SRIOV enabled for VF */
vport_update_params.update_tx_switching_flg = 1;
vport_update_params.tx_switching_flg = 1;
}
rc = qdev->ops->vport_update(edev, &vport_update_params);
if (rc) {
DP_ERR(edev, "Update V-PORT failed %d\n", rc);
return rc;
}
return 0;
}
static bool qede_tunn_exist(uint16_t flag)
{
return !!((PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT) & flag);
}
/*
* qede_check_tunn_csum_l4:
* Returns:
* 1 : If L4 csum is enabled AND if the validation has failed.
* 0 : Otherwise
*/
static inline uint8_t qede_check_tunn_csum_l4(uint16_t flag)
{
if ((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT) & flag)
return !!((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT) & flag);
return 0;
}
static inline uint8_t qede_check_notunn_csum_l4(uint16_t flag)
{
if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag)
return !!((PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT) & flag);
return 0;
}
static inline uint8_t
qede_check_notunn_csum_l3(struct rte_mbuf *m, uint16_t flag)
{
struct ipv4_hdr *ip;
uint16_t pkt_csum;
uint16_t calc_csum;
uint16_t val;
val = ((PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT) & flag);
if (unlikely(val)) {
m->packet_type = qede_rx_cqe_to_pkt_type(flag);
if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
ip = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *,
sizeof(struct ether_hdr));
pkt_csum = ip->hdr_checksum;
ip->hdr_checksum = 0;
calc_csum = rte_ipv4_cksum(ip);
ip->hdr_checksum = pkt_csum;
return (calc_csum != pkt_csum);
} else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
return 1;
}
}
return 0;
}
static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
{
ecore_chain_consume(&rxq->rx_bd_ring);
rxq->sw_rx_cons++;
}
static inline void
qede_reuse_page(struct qede_dev *qdev,
struct qede_rx_queue *rxq, struct qede_rx_entry *curr_cons)
{
struct eth_rx_bd *rx_bd_prod = ecore_chain_produce(&rxq->rx_bd_ring);
uint16_t idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
struct qede_rx_entry *curr_prod;
dma_addr_t new_mapping;
curr_prod = &rxq->sw_rx_ring[idx];
*curr_prod = *curr_cons;
new_mapping = rte_mbuf_data_dma_addr_default(curr_prod->mbuf) +
curr_prod->page_offset;
rx_bd_prod->addr.hi = rte_cpu_to_le_32(U64_HI(new_mapping));
rx_bd_prod->addr.lo = rte_cpu_to_le_32(U64_LO(new_mapping));
rxq->sw_rx_prod++;
}
static inline void
qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
struct qede_dev *qdev, uint8_t count)
{
struct qede_rx_entry *curr_cons;
for (; count > 0; count--) {
curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS(rxq)];
qede_reuse_page(qdev, rxq, curr_cons);
qede_rx_bd_ring_consume(rxq);
}
}
static inline uint32_t qede_rx_cqe_to_pkt_type(uint16_t flags)
{
uint16_t val;
/* Lookup table */
static const uint32_t
ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = {
[QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_L3_IPV4,
[QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_L3_IPV6,
[QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
[QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
[QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
[QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
};
/* Bits (0..3) provides L3/L4 protocol type */
val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK <<
PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) |
(PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK <<
PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT)) & flags;
if (val < QEDE_PKT_TYPE_MAX)
return ptype_lkup_tbl[val] | RTE_PTYPE_L2_ETHER;
else
return RTE_PTYPE_UNKNOWN;
}
static inline uint32_t qede_rx_cqe_to_tunn_pkt_type(uint16_t flags)
{
uint32_t val;
/* Lookup table */
static const uint32_t
ptype_tunn_lkup_tbl[QEDE_PKT_TYPE_TUNN_MAX_TYPE] __rte_cache_aligned = {
[QEDE_PKT_TYPE_UNKNOWN] = RTE_PTYPE_UNKNOWN,
[QEDE_PKT_TYPE_TUNN_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE,
[QEDE_PKT_TYPE_TUNN_GRE] = RTE_PTYPE_TUNNEL_GRE,
[QEDE_PKT_TYPE_TUNN_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN,
[QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GENEVE] =
RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L2_ETHER,
[QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GRE] =
RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L2_ETHER,
[QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_VXLAN] =
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L2_ETHER,
[QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GENEVE] =
RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L2_ETHER,
[QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GRE] =
RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L2_ETHER,
[QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_VXLAN] =
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L2_ETHER,
[QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GENEVE] =
RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
[QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GRE] =
RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
[QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_VXLAN] =
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
[QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GENEVE] =
RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
[QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GRE] =
RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
[QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_VXLAN] =
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
[QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GENEVE] =
RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
[QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GRE] =
RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
[QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_VXLAN] =
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
[QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GENEVE] =
RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
[QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GRE] =
RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
[QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_VXLAN] =
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
};
/* Cover bits[4-0] to include tunn_type and next protocol */
val = ((ETH_TUNNEL_PARSING_FLAGS_TYPE_MASK <<
ETH_TUNNEL_PARSING_FLAGS_TYPE_SHIFT) |
(ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_MASK <<
ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_SHIFT)) & flags;
if (val < QEDE_PKT_TYPE_TUNN_MAX_TYPE)
return ptype_tunn_lkup_tbl[val];
else
return RTE_PTYPE_UNKNOWN;
}
static inline int
qede_process_sg_pkts(void *p_rxq, struct rte_mbuf *rx_mb,
uint8_t num_segs, uint16_t pkt_len)
{
struct qede_rx_queue *rxq = p_rxq;
struct qede_dev *qdev = rxq->qdev;
struct ecore_dev *edev = &qdev->edev;
register struct rte_mbuf *seg1 = NULL;
register struct rte_mbuf *seg2 = NULL;
uint16_t sw_rx_index;
uint16_t cur_size;
seg1 = rx_mb;
while (num_segs) {
cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
pkt_len;
if (unlikely(!cur_size)) {
PMD_RX_LOG(ERR, rxq, "Length is 0 while %u BDs"
" left for mapping jumbo\n", num_segs);
qede_recycle_rx_bd_ring(rxq, qdev, num_segs);
return -EINVAL;
}
sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
seg2 = rxq->sw_rx_ring[sw_rx_index].mbuf;
qede_rx_bd_ring_consume(rxq);
pkt_len -= cur_size;
seg2->data_len = cur_size;
seg1->next = seg2;
seg1 = seg1->next;
num_segs--;
rxq->rx_segs++;
}
return 0;
}
uint16_t
qede_recv_pkts(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
struct qede_rx_queue *rxq = p_rxq;
struct qede_dev *qdev = rxq->qdev;
struct ecore_dev *edev = &qdev->edev;
struct qede_fastpath *fp = &qdev->fp_array[rxq->queue_id];
uint16_t hw_comp_cons, sw_comp_cons, sw_rx_index;
uint16_t rx_pkt = 0;
union eth_rx_cqe *cqe;
struct eth_fast_path_rx_reg_cqe *fp_cqe;
register struct rte_mbuf *rx_mb = NULL;
register struct rte_mbuf *seg1 = NULL;
enum eth_rx_cqe_type cqe_type;
uint16_t pkt_len; /* Sum of all BD segments */
uint16_t len; /* Length of first BD */
uint8_t num_segs = 1;
uint16_t pad;
uint16_t preload_idx;
uint8_t csum_flag;
uint16_t parse_flag;
enum rss_hash_type htype;
uint8_t tunn_parse_flag;
uint8_t j;
hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
rte_rmb();
if (hw_comp_cons == sw_comp_cons)
return 0;
while (sw_comp_cons != hw_comp_cons) {
/* Get the CQE from the completion ring */
cqe =
(union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
cqe_type = cqe->fast_path_regular.type;
if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
PMD_RX_LOG(DEBUG, rxq, "Got a slowath CQE\n");
qdev->ops->eth_cqe_completion(edev, fp->id,
(struct eth_slow_path_rx_cqe *)cqe);
goto next_cqe;
}
/* Get the data from the SW ring */
sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
rx_mb = rxq->sw_rx_ring[sw_rx_index].mbuf;
assert(rx_mb != NULL);
/* non GRO */
fp_cqe = &cqe->fast_path_regular;
len = rte_le_to_cpu_16(fp_cqe->len_on_first_bd);
pkt_len = rte_le_to_cpu_16(fp_cqe->pkt_len);
pad = fp_cqe->placement_offset;
assert((len + pad) <= rx_mb->buf_len);
PMD_RX_LOG(DEBUG, rxq,
"CQE type = 0x%x, flags = 0x%x, vlan = 0x%x"
" len = %u, parsing_flags = %d\n",
cqe_type, fp_cqe->bitfields,
rte_le_to_cpu_16(fp_cqe->vlan_tag),
len, rte_le_to_cpu_16(fp_cqe->pars_flags.flags));
/* If this is an error packet then drop it */
parse_flag =
rte_le_to_cpu_16(cqe->fast_path_regular.pars_flags.flags);
rx_mb->ol_flags = 0;
if (qede_tunn_exist(parse_flag)) {
PMD_RX_LOG(DEBUG, rxq, "Rx tunneled packet\n");
if (unlikely(qede_check_tunn_csum_l4(parse_flag))) {
PMD_RX_LOG(ERR, rxq,
"L4 csum failed, flags = 0x%x\n",
parse_flag);
rxq->rx_hw_errors++;
rx_mb->ol_flags |= PKT_RX_L4_CKSUM_BAD;
} else {
tunn_parse_flag =
fp_cqe->tunnel_pars_flags.flags;
rx_mb->packet_type =
qede_rx_cqe_to_tunn_pkt_type(
tunn_parse_flag);
}
} else {
PMD_RX_LOG(DEBUG, rxq, "Rx non-tunneled packet\n");
if (unlikely(qede_check_notunn_csum_l4(parse_flag))) {
PMD_RX_LOG(ERR, rxq,
"L4 csum failed, flags = 0x%x\n",
parse_flag);
rxq->rx_hw_errors++;
rx_mb->ol_flags |= PKT_RX_L4_CKSUM_BAD;
} else if (unlikely(qede_check_notunn_csum_l3(rx_mb,
parse_flag))) {
PMD_RX_LOG(ERR, rxq,
"IP csum failed, flags = 0x%x\n",
parse_flag);
rxq->rx_hw_errors++;
rx_mb->ol_flags |= PKT_RX_IP_CKSUM_BAD;
} else {
rx_mb->packet_type =
qede_rx_cqe_to_pkt_type(parse_flag);
}
}
PMD_RX_LOG(INFO, rxq, "packet_type 0x%x\n", rx_mb->packet_type);
if (unlikely(qede_alloc_rx_buffer(rxq) != 0)) {
PMD_RX_LOG(ERR, rxq,
"New buffer allocation failed,"
"dropping incoming packet\n");
qede_recycle_rx_bd_ring(rxq, qdev, fp_cqe->bd_num);
rte_eth_devices[rxq->port_id].
data->rx_mbuf_alloc_failed++;
rxq->rx_alloc_errors++;
break;
}
qede_rx_bd_ring_consume(rxq);
if (fp_cqe->bd_num > 1) {
PMD_RX_LOG(DEBUG, rxq, "Jumbo-over-BD packet: %02x BDs"
" len on first: %04x Total Len: %04x\n",
fp_cqe->bd_num, len, pkt_len);
num_segs = fp_cqe->bd_num - 1;
seg1 = rx_mb;
if (qede_process_sg_pkts(p_rxq, seg1, num_segs,
pkt_len - len))
goto next_cqe;
for (j = 0; j < num_segs; j++) {
if (qede_alloc_rx_buffer(rxq)) {
PMD_RX_LOG(ERR, rxq,
"Buffer allocation failed\n");
rte_eth_devices[rxq->port_id].
data->rx_mbuf_alloc_failed++;
rxq->rx_alloc_errors++;
break;
}
rxq->rx_segs++;
}
}
rxq->rx_segs++; /* for the first segment */
/* Prefetch next mbuf while processing current one. */
preload_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
rte_prefetch0(rxq->sw_rx_ring[preload_idx].mbuf);
/* Update rest of the MBUF fields */
rx_mb->data_off = pad + RTE_PKTMBUF_HEADROOM;
rx_mb->nb_segs = fp_cqe->bd_num;
rx_mb->data_len = len;
rx_mb->pkt_len = pkt_len;
rx_mb->port = rxq->port_id;
htype = (uint8_t)GET_FIELD(fp_cqe->bitfields,
ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
if (qdev->rss_enable && htype) {
rx_mb->ol_flags |= PKT_RX_RSS_HASH;
rx_mb->hash.rss = rte_le_to_cpu_32(fp_cqe->rss_hash);
PMD_RX_LOG(DEBUG, rxq, "Hash result 0x%x\n",
rx_mb->hash.rss);
}
rte_prefetch1(rte_pktmbuf_mtod(rx_mb, void *));
if (CQE_HAS_VLAN(parse_flag)) {
rx_mb->vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag);
rx_mb->ol_flags |= PKT_RX_VLAN_PKT;
}
if (CQE_HAS_OUTER_VLAN(parse_flag)) {
/* FW does not provide indication of Outer VLAN tag,
* which is always stripped, so vlan_tci_outer is set
* to 0. Here vlan_tag represents inner VLAN tag.
*/
rx_mb->vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag);
rx_mb->ol_flags |= PKT_RX_QINQ_PKT;
rx_mb->vlan_tci_outer = 0;
}
rx_pkts[rx_pkt] = rx_mb;
rx_pkt++;
next_cqe:
ecore_chain_recycle_consumed(&rxq->rx_comp_ring);
sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
if (rx_pkt == nb_pkts) {
PMD_RX_LOG(DEBUG, rxq,
"Budget reached nb_pkts=%u received=%u\n",
rx_pkt, nb_pkts);
break;
}
}
qede_update_rx_prod(qdev, rxq);
rxq->rcv_pkts += rx_pkt;
PMD_RX_LOG(DEBUG, rxq, "rx_pkts=%u core=%d\n", rx_pkt, rte_lcore_id());
return rx_pkt;
}
static inline int
qede_free_tx_pkt(struct ecore_dev *edev, struct qede_tx_queue *txq)
{
uint16_t nb_segs, idx = TX_CONS(txq);
struct eth_tx_bd *tx_data_bd;
struct rte_mbuf *mbuf = txq->sw_tx_ring[idx].mbuf;
if (unlikely(!mbuf)) {
PMD_TX_LOG(ERR, txq, "null mbuf\n");
PMD_TX_LOG(ERR, txq,
"tx_desc %u tx_avail %u tx_cons %u tx_prod %u\n",
txq->nb_tx_desc, txq->nb_tx_avail, idx,
TX_PROD(txq));
return -1;
}
nb_segs = mbuf->nb_segs;
while (nb_segs) {
/* It's like consuming rxbuf in recv() */
ecore_chain_consume(&txq->tx_pbl);
txq->nb_tx_avail++;
nb_segs--;
}
rte_pktmbuf_free(mbuf);
txq->sw_tx_ring[idx].mbuf = NULL;
return 0;
}
static inline uint16_t
qede_process_tx_compl(struct ecore_dev *edev, struct qede_tx_queue *txq)
{
uint16_t tx_compl = 0;
uint16_t hw_bd_cons;
hw_bd_cons = rte_le_to_cpu_16(*txq->hw_cons_ptr);
rte_compiler_barrier();
while (hw_bd_cons != ecore_chain_get_cons_idx(&txq->tx_pbl)) {
if (qede_free_tx_pkt(edev, txq)) {
PMD_TX_LOG(ERR, txq,
"hw_bd_cons = %u, chain_cons = %u\n",
hw_bd_cons,
ecore_chain_get_cons_idx(&txq->tx_pbl));
break;
}
txq->sw_tx_cons++; /* Making TXD available */
tx_compl++;
}
PMD_TX_LOG(DEBUG, txq, "Tx compl %u sw_tx_cons %u avail %u\n",
tx_compl, txq->sw_tx_cons, txq->nb_tx_avail);
return tx_compl;
}
/* Populate scatter gather buffer descriptor fields */
static inline uint8_t
qede_encode_sg_bd(struct qede_tx_queue *p_txq, struct rte_mbuf *m_seg,
struct eth_tx_1st_bd *bd1)
{
struct qede_tx_queue *txq = p_txq;
struct eth_tx_2nd_bd *bd2 = NULL;
struct eth_tx_3rd_bd *bd3 = NULL;
struct eth_tx_bd *tx_bd = NULL;
dma_addr_t mapping;
uint8_t nb_segs = 1; /* min one segment per packet */
/* Check for scattered buffers */
while (m_seg) {
if (nb_segs == 1) {
bd2 = (struct eth_tx_2nd_bd *)
ecore_chain_produce(&txq->tx_pbl);
memset(bd2, 0, sizeof(*bd2));
mapping = rte_mbuf_data_dma_addr(m_seg);
QEDE_BD_SET_ADDR_LEN(bd2, mapping, m_seg->data_len);
PMD_TX_LOG(DEBUG, txq, "BD2 len %04x\n",
m_seg->data_len);
} else if (nb_segs == 2) {
bd3 = (struct eth_tx_3rd_bd *)
ecore_chain_produce(&txq->tx_pbl);
memset(bd3, 0, sizeof(*bd3));
mapping = rte_mbuf_data_dma_addr(m_seg);
QEDE_BD_SET_ADDR_LEN(bd3, mapping, m_seg->data_len);
PMD_TX_LOG(DEBUG, txq, "BD3 len %04x\n",
m_seg->data_len);
} else {
tx_bd = (struct eth_tx_bd *)
ecore_chain_produce(&txq->tx_pbl);
memset(tx_bd, 0, sizeof(*tx_bd));
mapping = rte_mbuf_data_dma_addr(m_seg);
QEDE_BD_SET_ADDR_LEN(tx_bd, mapping, m_seg->data_len);
PMD_TX_LOG(DEBUG, txq, "BD len %04x\n",
m_seg->data_len);
}
nb_segs++;
m_seg = m_seg->next;
}
/* Return total scattered buffers */
return nb_segs;
}
uint16_t
qede_xmit_pkts(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct qede_tx_queue *txq = p_txq;
struct qede_dev *qdev = txq->qdev;
struct ecore_dev *edev = &qdev->edev;
struct qede_fastpath *fp;
struct eth_tx_1st_bd *bd1;
struct rte_mbuf *mbuf;
struct rte_mbuf *m_seg = NULL;
uint16_t nb_tx_pkts;
uint16_t bd_prod;
uint16_t idx;
uint16_t tx_count;
uint16_t nb_frags;
uint16_t nb_pkt_sent = 0;
fp = &qdev->fp_array[QEDE_RSS_COUNT(qdev) + txq->queue_id];
if (unlikely(txq->nb_tx_avail < txq->tx_free_thresh)) {
PMD_TX_LOG(DEBUG, txq, "send=%u avail=%u free_thresh=%u\n",
nb_pkts, txq->nb_tx_avail, txq->tx_free_thresh);
(void)qede_process_tx_compl(edev, txq);
}
nb_tx_pkts = RTE_MIN(nb_pkts, (txq->nb_tx_avail /
ETH_TX_MAX_BDS_PER_NON_LSO_PACKET));
if (unlikely(nb_tx_pkts == 0)) {
PMD_TX_LOG(DEBUG, txq, "Out of BDs nb_pkts=%u avail=%u\n",
nb_pkts, txq->nb_tx_avail);
return 0;
}
tx_count = nb_tx_pkts;
while (nb_tx_pkts--) {
/* Fill the entry in the SW ring and the BDs in the FW ring */
idx = TX_PROD(txq);
mbuf = *tx_pkts++;
txq->sw_tx_ring[idx].mbuf = mbuf;
bd1 = (struct eth_tx_1st_bd *)ecore_chain_produce(&txq->tx_pbl);
bd1->data.bd_flags.bitfields =
1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
/* FW 8.10.x specific change */
bd1->data.bitfields =
(mbuf->pkt_len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK)
<< ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
/* Map MBUF linear data for DMA and set in the first BD */
QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_dma_addr(mbuf),
mbuf->data_len);
PMD_TX_LOG(INFO, txq, "BD1 len %04x\n", mbuf->data_len);
if (RTE_ETH_IS_TUNNEL_PKT(mbuf->packet_type)) {
PMD_TX_LOG(INFO, txq, "Tx tunnel packet\n");
/* First indicate its a tunnel pkt */
bd1->data.bd_flags.bitfields |=
ETH_TX_DATA_1ST_BD_TUNN_FLAG_MASK <<
ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
/* Legacy FW had flipped behavior in regard to this bit
* i.e. it needed to set to prevent FW from touching
* encapsulated packets when it didn't need to.
*/
if (unlikely(txq->is_legacy))
bd1->data.bitfields ^=
1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
/* Outer IP checksum offload */
if (mbuf->ol_flags & PKT_TX_OUTER_IP_CKSUM) {
PMD_TX_LOG(INFO, txq, "OuterIP csum offload\n");
bd1->data.bd_flags.bitfields |=
ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_MASK <<
ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
}
/* Outer UDP checksum offload */
bd1->data.bd_flags.bitfields |=
ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK <<
ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
}
/* Descriptor based VLAN insertion */
if (mbuf->ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) {
PMD_TX_LOG(INFO, txq, "Insert VLAN 0x%x\n",
mbuf->vlan_tci);
bd1->data.vlan = rte_cpu_to_le_16(mbuf->vlan_tci);
bd1->data.bd_flags.bitfields |=
1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
}
/* Offload the IP checksum in the hardware */
if (mbuf->ol_flags & PKT_TX_IP_CKSUM) {
PMD_TX_LOG(INFO, txq, "IP csum offload\n");
bd1->data.bd_flags.bitfields |=
1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
}
/* L4 checksum offload (tcp or udp) */
if (mbuf->ol_flags & (PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) {
PMD_TX_LOG(INFO, txq, "L4 csum offload\n");
bd1->data.bd_flags.bitfields |=
1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
/* IPv6 + extn. -> later */
}
/* Handle fragmented MBUF */
m_seg = mbuf->next;
/* Encode scatter gather buffer descriptors if required */
nb_frags = qede_encode_sg_bd(txq, m_seg, bd1);
bd1->data.nbds = nb_frags;
txq->nb_tx_avail -= nb_frags;
txq->sw_tx_prod++;
rte_prefetch0(txq->sw_tx_ring[TX_PROD(txq)].mbuf);
bd_prod =
rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
nb_pkt_sent++;
txq->xmit_pkts++;
PMD_TX_LOG(INFO, txq, "nbds = %d pkt_len = %04x\n",
bd1->data.nbds, mbuf->pkt_len);
}
/* Write value of prod idx into bd_prod */
txq->tx_db.data.bd_prod = bd_prod;
rte_wmb();
rte_compiler_barrier();
DIRECT_REG_WR(edev, txq->doorbell_addr, txq->tx_db.raw);
rte_wmb();
/* Check again for Tx completions */
(void)qede_process_tx_compl(edev, txq);
PMD_TX_LOG(DEBUG, txq, "to_send=%u can_send=%u sent=%u core=%d\n",
nb_pkts, tx_count, nb_pkt_sent, rte_lcore_id());
return nb_pkt_sent;
}
static void qede_init_fp_queue(struct rte_eth_dev *eth_dev)
{
struct qede_dev *qdev = eth_dev->data->dev_private;
struct qede_fastpath *fp;
uint8_t i, rss_id, txq_index, tc;
int rxq = 0, txq = 0;
for_each_queue(i) {
fp = &qdev->fp_array[i];
if (fp->type & QEDE_FASTPATH_RX) {
fp->rxq = eth_dev->data->rx_queues[i];
fp->rxq->queue_id = rxq++;
}
if (fp->type & QEDE_FASTPATH_TX) {
for (tc = 0; tc < qdev->num_tc; tc++) {
txq_index = tc * QEDE_TSS_COUNT(qdev) + txq;
fp->txqs[tc] =
eth_dev->data->tx_queues[txq_index];
fp->txqs[tc]->queue_id = txq_index;
if (qdev->dev_info.is_legacy)
fp->txqs[tc]->is_legacy = true;
}
txq++;
}
}
}
int qede_dev_start(struct rte_eth_dev *eth_dev)
{
struct qede_dev *qdev = eth_dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
struct qed_link_output link_output;
struct qede_fastpath *fp;
int rc;
DP_INFO(edev, "Device state is %d\n", qdev->state);
if (qdev->state == QEDE_DEV_START) {
DP_INFO(edev, "Port is already started\n");
return 0;
}
if (qdev->state == QEDE_DEV_CONFIG)
qede_init_fp_queue(eth_dev);
rc = qede_start_queues(eth_dev, true);
if (rc) {
DP_ERR(edev, "Failed to start queues\n");
/* TBD: free */
return rc;
}
/* Bring-up the link */
qede_dev_set_link_state(eth_dev, true);
/* Reset ring */
if (qede_reset_fp_rings(qdev))
return -ENOMEM;
/* Start/resume traffic */
qdev->ops->fastpath_start(edev);
qdev->state = QEDE_DEV_START;
DP_INFO(edev, "dev_state is QEDE_DEV_START\n");
return 0;
}
static int qede_drain_txq(struct qede_dev *qdev,
struct qede_tx_queue *txq, bool allow_drain)
{
struct ecore_dev *edev = &qdev->edev;
int rc, cnt = 1000;
while (txq->sw_tx_cons != txq->sw_tx_prod) {
qede_process_tx_compl(edev, txq);
if (!cnt) {
if (allow_drain) {
DP_NOTICE(edev, false,
"Tx queue[%u] is stuck,"
"requesting MCP to drain\n",
txq->queue_id);
rc = qdev->ops->common->drain(edev);
if (rc)
return rc;
return qede_drain_txq(qdev, txq, false);
}
DP_NOTICE(edev, false,
"Timeout waiting for tx queue[%d]:"
"PROD=%d, CONS=%d\n",
txq->queue_id, txq->sw_tx_prod,
txq->sw_tx_cons);
return -ENODEV;
}
cnt--;
DELAY(1000);
rte_compiler_barrier();
}
/* FW finished processing, wait for HW to transmit all tx packets */
DELAY(2000);
return 0;
}
static int qede_stop_queues(struct qede_dev *qdev)
{
struct qed_update_vport_params vport_update_params;
struct ecore_dev *edev = &qdev->edev;
int rc, tc, i;
/* Disable the vport */
memset(&vport_update_params, 0, sizeof(vport_update_params));
vport_update_params.vport_id = 0;
vport_update_params.update_vport_active_flg = 1;
vport_update_params.vport_active_flg = 0;
vport_update_params.update_rss_flg = 0;
DP_INFO(edev, "Deactivate vport\n");
rc = qdev->ops->vport_update(edev, &vport_update_params);
if (rc) {
DP_ERR(edev, "Failed to update vport\n");
return rc;
}
DP_INFO(edev, "Flushing tx queues\n");
/* Flush Tx queues. If needed, request drain from MCP */
for_each_queue(i) {
struct qede_fastpath *fp = &qdev->fp_array[i];
if (fp->type & QEDE_FASTPATH_TX) {
for (tc = 0; tc < qdev->num_tc; tc++) {
struct qede_tx_queue *txq = fp->txqs[tc];
rc = qede_drain_txq(qdev, txq, true);
if (rc)
return rc;
}
}
}
/* Stop all Queues in reverse order */
for (i = QEDE_QUEUE_CNT(qdev) - 1; i >= 0; i--) {
struct qed_stop_rxq_params rx_params;
/* Stop the Tx Queue(s) */
if (qdev->fp_array[i].type & QEDE_FASTPATH_TX) {
for (tc = 0; tc < qdev->num_tc; tc++) {
struct qed_stop_txq_params tx_params;
u8 val;
tx_params.rss_id = i;
val = qdev->fp_array[i].txqs[tc]->queue_id;
tx_params.tx_queue_id = val;
DP_INFO(edev, "Stopping tx queues\n");
rc = qdev->ops->q_tx_stop(edev, &tx_params);
if (rc) {
DP_ERR(edev, "Failed to stop TXQ #%d\n",
tx_params.tx_queue_id);
return rc;
}
}
}
/* Stop the Rx Queue */
if (qdev->fp_array[i].type & QEDE_FASTPATH_RX) {
memset(&rx_params, 0, sizeof(rx_params));
rx_params.rss_id = i;
rx_params.rx_queue_id = qdev->fp_array[i].rxq->queue_id;
rx_params.eq_completion_only = 1;
DP_INFO(edev, "Stopping rx queues\n");
rc = qdev->ops->q_rx_stop(edev, &rx_params);
if (rc) {
DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
return rc;
}
}
}
return 0;
}
int qede_reset_fp_rings(struct qede_dev *qdev)
{
struct qede_fastpath *fp;
struct qede_tx_queue *txq;
uint8_t tc;
uint16_t id, i;
for_each_queue(id) {
fp = &qdev->fp_array[id];
if (fp->type & QEDE_FASTPATH_RX) {
DP_INFO(&qdev->edev,
"Reset FP chain for RSS %u\n", id);
qede_rx_queue_release_mbufs(fp->rxq);
ecore_chain_reset(&fp->rxq->rx_bd_ring);
ecore_chain_reset(&fp->rxq->rx_comp_ring);
fp->rxq->sw_rx_prod = 0;
fp->rxq->sw_rx_cons = 0;
*fp->rxq->hw_cons_ptr = 0;
for (i = 0; i < fp->rxq->nb_rx_desc; i++) {
if (qede_alloc_rx_buffer(fp->rxq)) {
DP_ERR(&qdev->edev,
"RX buffer allocation failed\n");
return -ENOMEM;
}
}
}
if (fp->type & QEDE_FASTPATH_TX) {
for (tc = 0; tc < qdev->num_tc; tc++) {
txq = fp->txqs[tc];
qede_tx_queue_release_mbufs(txq);
ecore_chain_reset(&txq->tx_pbl);
txq->sw_tx_cons = 0;
txq->sw_tx_prod = 0;
*txq->hw_cons_ptr = 0;
}
}
}
return 0;
}
/* This function frees all memory of a single fp */
void qede_free_mem_load(struct rte_eth_dev *eth_dev)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct qede_fastpath *fp;
uint16_t txq_idx;
uint8_t id;
uint8_t tc;
for_each_queue(id) {
fp = &qdev->fp_array[id];
if (fp->type & QEDE_FASTPATH_RX) {
if (!fp->rxq)
continue;
qede_rx_queue_release(fp->rxq);
eth_dev->data->rx_queues[id] = NULL;
} else {
for (tc = 0; tc < qdev->num_tc; tc++) {
if (!fp->txqs[tc])
continue;
txq_idx = fp->txqs[tc]->queue_id;
qede_tx_queue_release(fp->txqs[tc]);
eth_dev->data->tx_queues[txq_idx] = NULL;
}
}
}
}
void qede_dev_stop(struct rte_eth_dev *eth_dev)
{
struct qede_dev *qdev = eth_dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
DP_INFO(edev, "port %u\n", eth_dev->data->port_id);
if (qdev->state != QEDE_DEV_START) {
DP_INFO(edev, "Device not yet started\n");
return;
}
if (qede_stop_queues(qdev))
DP_ERR(edev, "Didn't succeed to close queues\n");
DP_INFO(edev, "Stopped queues\n");
qdev->ops->fastpath_stop(edev);
/* Bring the link down */
qede_dev_set_link_state(eth_dev, false);
qdev->state = QEDE_DEV_STOP;
DP_INFO(edev, "dev_state is QEDE_DEV_STOP\n");
}