This includes the HAL routines to setup, enable/activate/disable spectral
scan and configure the relevant registers.
This still requires driver interaction to enable spectral scan reporting.
Specifically:
* call ah_spectralConfigure() to configure and enable spectral scan;
* .. there's currently no way to disable spectral scan... that will have
to follow.
* call ah_spectralStart() to force start a spectral report;
* call ah_spectralStop() to force stop an active spectral report.
The spectral scan results appear as PHY errors (type 0x5 on the AR9280,
same as radar) but with the spectral scan bit set (0x10 in the last byte
of the frame) identifying it as a spectral report rather than a radar
FFT report.
Caveats:
* It's likely quite difficult to run spectral _and_ radar at the same
time. Enabling spectral scan disables the radar thresholds but
leaves radar enabled. Thus, the driver (for now) needs to ensure
that only one or the other is enabled.
* .. it needs testing on HT40 mode.
Tested:
* AR9280 in STA mode, HT/20 only
TODO:
* Test on AR9285, AR9287;
* Test in both HT20 and HT40 modes;
* .. all the driver glue.
Obtained from: Qualcomm Atheros
* Add some more ANI spur immunity levels.
* For AR5111 radios attached to an AR5212, limit the 5GHz channels
that are available. A later revision of the AR5111 supports the 4.9GHz
PSB channels but right now there's no check in place for the radio
revision.
If someone wants PSB support on AR5212+AR5111 radios then please let
me know and I'll add the relevant version check.
Obtained from: Qualcomm Atheros
AR5416 and AR9280, but leave it disabled by default.
TL;DR: don't enable this code at all unless you go through the process
of getting the NIC re-certified. This is purely to be used as a
reference and NOT a certified solution by any stretch of the imagination.
The background:
The AR5112 RF synth right up to the AR5133 RF synth (used on the AR5416,
derivative is used for the AR9130/AR9160) only implement down to 2.5MHz
channel spacing in 5GHz. Ie, the RF synth is programmed in steps of 2.5MHz
(or 5, 10, 20MHz.) So they can't represent the quarter rate channels
in the 4.9GHz PSB (which end in xxx2MHz and xxx7MHz). They support
fractional spacing in 2GHz (1MHz spacing) (or things wouldn't work,
right?)
So instead of doing this, the RF synth programming for the AR5112 and
later code will round to the nearest available frequency.
If all NICs were RF5112 or later, they'll inter-operate fine - they all
program the same. (And for reference, only the latest revision of the
RF5111 NICs do it, but the driver doesn't yet implement the programming.)
However:
* The AR5416 programming didn't at all implement the fractional synth
work around as above;
* The AR9280 programming actually programmed the accurate centre frequency
and thus wouldn't inter-operate with the legacy NICs.
So this patch:
* Implements the 4.9GHz PSB fractional synth workaround, exactly as the
RF5112 and later code does;
* Adds a very dirty workaround from me to calculate the same channel
centre "fudge" to the AR9280 code when operating on fractional frequencies
in 5GHz.
HOWEVER however:
It is disabled by default. Since the HAL didn't implement this feature,
it's highly unlikely that the AR5416 and AR928x has been tested in these
centre frequencies. There's a lot of regulatory compliance testing required
before a NIC can have this enabled - checking for centre frequency,
for drift, for synth spurs, for distortion and spectral mask compliance.
There's likely a lot of other things that need testing so please don't
treat this as an exhaustive, authoritative list. There's a perfectly good
process out there to get a NIC certified by your regulatory domain, please
go and engage someone to do that for you and pay the relevant fees.
If a company wishes to grab this work and certify existing 802.11n NICs
for work in these bands then please be my guest. The AR9280 works fine
on the correct fractional synth channels (49x2 and 49x7Mhz) so you don't
need to get certification for that. But the 500KHz offset hack may have
the above issues (spur, distortion, accuracy, etc) so you will need to
get the NIC recertified.
Please note that it's also CARD dependent. Just because the RF synth
will behave correctly doesn't at all mean that the card design will also
behave correctly. So no, I won't enable this by default if someone
verifies a specific AR5416/AR9280 NIC works. Please don't ask.
Tested:
I used the following NICs to do basic interoperability testing at
half and quarter rates. However, I only did very minimal spectrum
analyser testing (mostly "am I about to blow things up" testing;
not "certification ready" testing):
* AR5212 + AR5112 synth
* AR5413 + AR5413 synth
* AR5416 + AR5113 synth
* AR9280
I'm not sure where in the deep, distant past I found the AR_PHY_MODE
registers for half/quarter rate mode, but unfortunately that doesn't
seem to work "right" for non-AR9280 chips.
Specifically:
* don't touch AR_PHY_MODE
* set the PLL bits when configuring half/quarter rate
I've verified this on the AR9280 (5ghz fast clock) and the AR5416.
The AR9280 works in both half/quarter rate; the AR5416 unfortunately
only currently works at half rate. It fails to calibrate on quarter rate.
some HAL definitions rather than local definitions.
The original source (ath9k) pulled this stuff from the QCA driver and
removed the HAL_* prefix. I'm just restoring the correct order of things.
Obtained from: Qualcomm Atheros
The Linux ath9k btcoex code is based off of this code.
Note this doesn't actually implement functional btcoex; there's some
driver glue and a whole lot of verification that is required.
On the other hand, I do have the AR9285+BT and AR9287+BT NICs which
this code supports..
Obtained from: Qualcomm Atheros, Linux ath9k
* Add an OS_A_REG_WRITE() routine - analog writes require a 100usec delay
on AR9280 and later, so create a method to do it.
* Use it for the AR9287 analog writes.
* Re-indent and style(9) the code.
This just requires a little HAL change (add a new config parameter) and
some glue in if_ath_pci.c, however I'm leaving this up for someone else
to do.
Obtained from: Qualcomm Atheros
These aren't strictly needed at the moment as we're not doing APSM
and forcing the NIC in and out of network sleep. But, they don't hurt.
Tested:
* AR9280 (mini-PCIe)
Obtained from: Qualcomm Atheros, Linux ath9k
not to disable the PCIe PHY in prepration for reset.
Extend the enablepci method to have a "poweroff" flag, which if equal
to true means the hardware is about to go to sleep.
* Flesh out the pcie disable method for 11n chips, as they were defaulting
to the AR5212 (empty) PCIe disable method.
* Add accessor macros for the HAL PCIe enable/disable calls.
* Call disable on ath_suspend()
* Call enable on ath_resume()
NOTE:
* This has nothing to do with the NIC sleep/run state - the NIC still
will stay in network-run state rather than supporting network-sleep
state. This is preparation work for supporting correct suspend/resume
WARs for the 11n PCIe NICs.
TODO:
* It may be feasible at this point to keep the chip powered down during
initial probe/attach and only power it up upon the first configure/reset
pass. This however would require correct (for values of "correct")
tracking of the NIC power configuration state from the driver and that
just isn't attempted at the moment.
Tested:
* AR9280 on my Lenovo T60, but with no suspend/resume pass (yet).
* Override the TX/RX stream count if the EEPROM reports a single RX or
TX stream, rather than assuming the device will always be a 2x2 strea
device.
* For AR9280 devices, don't hard-code 2x2 stream. Instead, allow the
ar5416FillCapabilityInfo() routine to correctly determine things.
The latter should be done for all 11n chips now that
ar5416FillCapabilityInfo() will set the TX/RX stream count based on the
active TX/RX chainmask in the EEPROM.
Thanks to Maciej Milewski for donating some AR9281 NICs to me for
testing.
to being more generic.
Other embedded SoCs also throw the configuration/PCI register
info into flash.
For now I'm just hard-coding the AR9280 option (for on-board AR9220's on
AP94 and commercial designs (eg D-Link DIR-825.))
TODO:
* Figure out how to support it for all 11n SoC NICs by doing it in
ar5416InitState();
* Don't hard-code the EEPROM size - add another field which is set
by the relevant chip initialisation code.
* 'owl_eep_start_loc' may need to be overridden in some cases to 0x0.
I need to do some further digging.
attached this way.
The AR5212 based NICs have a variety of RF frontends, so there's a linker set
which the AR5212 attach routine calls. The same framework is used for the
AR5416 and later but as there's a fixed RF frontend for each 11n NIC, it
is just directly attached.
However in the case of compiling a cut down HAL (eg _just_ AR9130 WMAC support),
the linker set ends up being empty and this causes the compile to fail.
So this is just a workaround for that - it means those users who wish an 11n
only HAL can compile the 11n chipsets and RF frontend they need, and just
"ath_ar5212" for the AR5212/AR5416 common code, and it'll just work.
Sponsored by: Hobnob, Inc.
Although I tried to fix this earlier by introducing HALDEBUG_G(), it
turns out there seem to be other cases where the pointer value is still
NULL.
* Fix DO_HALDEBUG() and the HALDEBUG macro to check whether ah is NULL
before deferencing it
* Remove HALDEBUG_G() as it's no longer needed
This is hopefully a merge candidate for 9.0-RELEASE as enabling
debugging at startup could result in a kernel panic.
the ar9130 code.
Since at least one kernel config specifies individual ath HAL chips
rather than just "device ath_hal" (arm/AVILA), I'm doing this so people
aren't caught out when they update to -HEAD or 9.0 and discover their
ath setup doesn't compile.
I'll revisit this with a proper fix sometime before 9.0-RELEASE.
Approved by: re (kib, blanket)
Pointed out by: ray@
Pointy hat to: adrian@
systems, in the same way that AR9130 embedded systems work.
This isn't -everything- that is required - the PCI glue still
needs to be taught about the eepromdata hint, along the same
lines as the AHB glue.
Approved by: re (kib, blanket)
This seems to indicate whether to program the NIC for fractional 5ghz
mode (ie, 5mhz spaced channels, rather than 10 or 20mhz spacing) or not.
The default (0) seems to mean "only program fractional mode if needed".
A different value (eg 1) seems to always enable fractional 5ghz mode
regardless of the frequency.
Obtained from: Atheros
Approved by: re (kib)
polluting the AR5416 code with later chipset support.
Note: ar9280InitPLL() supports Merlin (AR9280) and later (AR9285, AR9287.)
Submitted by: ssgriffonuser@gmail.com
Approved by: re (kib)
to do about the few cases where the HAL state isn't available (regdomain)
or isn't yet setup (probe/attach.)
The global ath_hal_debug now affects all instances of the HAL.
This also restores the ability for probe/attach debugging to work; as
the sysctl tree may not be attached at that point. Users can just set
the global "hw.ath.hal.debug" to a suitable value to enable probe/attach
related debugging.
Please note - this doesn't in any way constitute a full DFS
implementation, it merely adds the relevant capability bits and
radar detection threshold register access.
The particulars:
* Add new capability bits outlining what the DFS capabilities
are of the various chipsets.
* Add HAL methods to set and get the radar related register values.
* Add AR5212 and AR5416+ DFS radar related register value
routines.
* Add a missing HAL phy error code that's related to radar event
processing.
* Add HAL_PHYERR_PARAM, a data type that encapsulates the radar
register values.
The AR5212 routines are just for completeness. The AR5416 routines
are a super-set of those; I may later on do a drive-by pass to
tidy up duplicate code.
Obtained from: Linux, Atheros
This has been disabled until now because there hasn't been any supported
device which has this feature. Since the AR9287 is the first device to
support it, and since now the HAL has functional AR9287+11n support,
flip this on.
AR9287 EEPROM layout.
The AR9287 only supports 2ghz, so I've removed the 5ghz code (but left
the 5ghz edge flags in there for now) and hard-coded the 2ghz-only
path.
Whilst I'm there, fix a typo (ar9285->ar9287.)
This meets basic TX throughput testing - iperf TX tests == 27-28mbit in 11g,
matching the rest of my 11g kit.
I'm assuming for now that the AR9287 is only open-loop TX power control
(as mine is) so I've hard-coded the attach path to fail if the NIC is
not open-loop.
This greatly simplifies the TX calibration path and the amount of code
which needs to be ported over.
This still isn't complete - the rate calculation code still needs to be
ported and it all needs to be glued together.
Obtained from: Linux ath9k
It isn't linked into the build because it's missing the TX power
and PDADC programming code.
This code is mostly based on the ath9k codebase, compared against
the Atheros codebase as appropriate.
What's implemented:
* probe/attach
* EEPROM board value programming
* RX initial calibration
* radio channel programming
* general MAC / baseband setup
* async fifo setup
* open-loop tx power calibration
What's missing before it can be enabled by default:
* TX power / calibration setting code
* closed-loop tx power calibration routines
* TSF2 handling
* generic timer support from ath9k
Obtained from: Atheros, ath9k
of the ANI statistics and committing some tools which use these.
* Change HAL_ANI_* commands _back_ to be numerical, rather than a
bitmap;
* modify access to the ANI control bitmap to convert a command to
a bitmap;
* Fix the ANI noise immunity fiddling for CCK errors - it wasn't
checking whether noise immunity was disabled or not.
for the AR9280 based NICs if it's actually enabled.
Some of the OLC code was erroneously called during setup
and calibration. This may have caused some incorrect behaviour.
table which contains the per-rate target TX power.
This code is shared between the v14 eeprom board setup (AR5416, AR9160,
AR9280) and will also be used by the upcoming Kite (AR9287) support.
* grab the main, alt and selected LNA config
* add some optional / disabled logging code
* add a check to reject packets with an invalid main rssi too,
in case the alt is the active receive chain and main is -ve.
Note: The software-controlled combined diversity code is still disabled.